Skip to main content

Advertisement

Log in

Chidamide works synergistically with Dasatinib by inducing cell-cycle arrest and apoptosis in acute myeloid leukemia cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This research aimed to explore whether Chidamide works synergistically with Dasatinib in the therapy of Acute myeloid leukemia (AML) and the potential molecular mechanism. The inhibition rate of the Dasatinib and Chidamide combination was significantly better than that of the single-drug application for HL-60 cells. The combination of Dasatinib and Chidamide significantly enhanced the Abnormal histone deacetylase (HDAC) inhibitory activity of Chidamide in Kasumi-1 and HL-60 cells. In the combined group, the proportion of S phase was significantly decreased, and the proportions of G2/M phase were significantly increased. The inhibitory rate of CD34+ CD38− HL-60 cells or Kasumi-1 cells was elevated when the cells were disposed with both Chidamide and Dasatinib. Dasatinib and Chidamide had synergistic antitumor effect. The combination with Dasatinib enhanced the HDAC inhibitory activity of Chidamide, promoted cell apoptosis and cell-cycle arrest of AML cells, and enhanced the inhibition of leukemia stem cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Pelcovits A, Niroula R (2020) Acute myeloid leukemia: a review. R I Med J 103:38–40

    Google Scholar 

  2. De Kouchkovsky I, Abdul-Hay M (2016) Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J 6:e441. https://doi.org/10.1038/bcj.2016.50

    Article  PubMed  PubMed Central  Google Scholar 

  3. Infante MS, Piris MA, Hernandez-Rivas JA (2018) Molecular alterations in acute myeloid leukemia and their clinical and therapeutical implications. Med Clin 151:362–367. https://doi.org/10.1016/j.medcli.2018.05.002

    Article  Google Scholar 

  4. Kayser S, Levis MJ (2019) Clinical implications of molecular markers in acute myeloid leukemia. Eur J Haematol 102:20–35. https://doi.org/10.1111/ejh.13172

    Article  CAS  PubMed  Google Scholar 

  5. Liu H (2021) Emerging agents and regimens for AML. J Hematol Oncol 14:49. https://doi.org/10.1186/s13045-021-01062-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yi M, Li A, Zhou L, Chu Q, Song Y, Wu K (2020) The global burden and attributable risk factor analysis of acute myeloid leukemia in 195 countries and territories from 1990 to 2017: estimates based on the global burden of disease study 2017. J Hematol Oncol 13:72. https://doi.org/10.1186/s13045-020-00908-z

    Article  PubMed  PubMed Central  Google Scholar 

  7. Megias-Vericat JE, Ballesta-Lopez O, Barragan E, Martinez-Cuadron D, Montesinos P (2020) Tyrosine kinase inhibitors for acute myeloid leukemia: a step toward disease control? Blood Rev 44:100675. https://doi.org/10.1016/j.blre.2020.100675

    Article  CAS  PubMed  Google Scholar 

  8. Lindauer M, Hochhaus A (2018) Dasatinib. Recent Results Cancer Res 212:29–68. https://doi.org/10.1007/978-3-319-91439-8_2

    Article  CAS  PubMed  Google Scholar 

  9. Duncan EA, Goetz CA, Stein SJ, Mayo KJ, Skaggs BJ, Ziegelbauer K, Sawyers CL, Baldwin AS (2008) IkappaB kinase beta inhibition induces cell death in Imatinib-resistant and T315I Dasatinib-resistant BCR-ABL+ cells. Mol Cancer Ther 7:391–397. https://doi.org/10.1158/1535-7163.MCT-07-0305

    Article  CAS  PubMed  Google Scholar 

  10. Baker WJ, Royer GL Jr, Weiss RB (1991) Cytarabine and neurologic toxicity. J Clin Oncol 9:679–693. https://doi.org/10.1200/JCO.1991.9.4.679

    Article  CAS  PubMed  Google Scholar 

  11. Patzke CL, Emadi A (2020) High dose cytarabine, mitoxantrone, pegasapargase (HAM-pegA) in combination with dasatinib for the first-line treatment of Philadelphia chromosome positive mixed phenotype acute leukemia. Am J Leuk Res 4:1020

    PubMed  PubMed Central  Google Scholar 

  12. Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6:a018713. https://doi.org/10.1101/cshperspect.a018713

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xu QY, Yu L (2020) Epigenetic therapies in acute myeloid leukemia: the role of hypomethylating agents, histone deacetylase inhibitors and the combination of hypomethylating agents with histone deacetylase inhibitors. Chin Med J. https://doi.org/10.1097/CM9.0000000000000685

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shi Y, Jia B, Xu W, Li W, Liu T, Liu P, Zhao W, Zhang H, Sun X, Yang H, Zhang X, Jin J, Jin Z, Li Z, Qiu L, Dong M, Huang X, Luo Y, Wang X, Wang X, Wu J, Xu J, Yi P, Zhou J, He H, Liu L, Shen J, Tang X, Wang J, Yang J, Zeng Q, Zhang Z, Cai Z, Chen X, Ding K, Hou M, Huang H, Li X, Liang R, Liu Q, Song Y, Su H, Gao Y, Liu L, Luo J, Su L, Sun Z, Tan H, Wang H, Wang J, Wang S, Zhang H, Zhang X, Zhou D, Bai O, Wu G, Zhang L, Zhang Y (2017) Chidamide in relapsed or refractory peripheral T cell lymphoma: a multicenter real-world study in China. J Hematol Oncol 10:69. https://doi.org/10.1186/s13045-017-0439-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nguyen T, Dai Y, Attkisson E, Kramer L, Jordan N, Nguyen N, Kolluri N, Muschen M, Grant S (2011) HDAC inhibitors potentiate the activity of the BCR/ABL kinase inhibitor KW-2449 in imatinib-sensitive or -resistant BCR/ABL+ leukemia cells in vitro and in vivo. Clin Cancer Res 17:3219–3232. https://doi.org/10.1158/1078-0432.CCR-11-0234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang B, Strauss AC, Chu S, Li M, Ho Y, Shiang KD, Snyder DS, Huettner CS, Shultz L, Holyoake T, Bhatia R (2010) Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell 17:427–442. https://doi.org/10.1016/j.ccr.2010.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aggerholm-Pedersen N, Demuth C, Safwat A, Meldgaard P, Kassem M, Sandahl Sorensen B (2016) Dasatinib and doxorubicin treatment of sarcoma initiating cells: a possible new treatment strategy. Stem Cells Int 2016:9601493. https://doi.org/10.1155/2016/9601493

    Article  CAS  PubMed  Google Scholar 

  18. Bose P, Vachhani P, Cortes JE (2017) Treatment of relapsed/refractory acute myeloid leukemia. Curr Treat Options Oncol 18:17. https://doi.org/10.1007/s11864-017-0456-2

    Article  PubMed  Google Scholar 

  19. Short NJ, Konopleva M, Kadia TM, Borthakur G, Ravandi F, DiNardo CD, Daver N (2020) Advances in the treatment of acute myeloid leukemia: new drugs and new challenges. Cancer Discov 10:506–525. https://doi.org/10.1158/2159-8290.CD-19-1011

    Article  CAS  PubMed  Google Scholar 

  20. Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: What are the cancer relevant targets? Cancer Lett 277:8–21. https://doi.org/10.1016/j.canlet.2008.08.016

    Article  CAS  PubMed  Google Scholar 

  21. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749. https://doi.org/10.1042/BJ20021321

    Article  PubMed  PubMed Central  Google Scholar 

  22. San Jose-Eneriz E, Gimenez-Camino N, Agirre X, Prosper F (2019) HDAC inhibitors in acute myeloid leukemia. Cancers 11:1794. https://doi.org/10.3390/cancers11111794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakagawa M, Oda Y, Eguchi T, Aishima S, Yao T, Hosoi F, Basaki Y, Ono M, Kuwano M, Tanaka M, Tsuneyoshi M (2007) Expression profile of class I histone deacetylases in human cancer tissues. Oncol Rep 18:769–774

    CAS  PubMed  Google Scholar 

  24. Lernoux M, Schnekenburger M, Dicato M, Diederich M (2020) Epigenetic mechanisms underlying the therapeutic effects of HDAC inhibitors in chronic myeloid leukemia. Biochem Pharmacol 173:113698. https://doi.org/10.1016/j.bcp.2019.113698

    Article  CAS  PubMed  Google Scholar 

  25. Ho TCS, Chan AHY, Ganesan A (2020) Thirty years of HDAC inhibitors: 2020 insight and hindsight. J Med Chem 63:12460–12484. https://doi.org/10.1021/acs.jmedchem.0c00830

    Article  CAS  PubMed  Google Scholar 

  26. Xu Y, Zhang P, Liu Y (2017) Chidamide tablets: HDAC inhibition to treat lymphoma. Drugs Today 53:167–176. https://doi.org/10.1358/dot.2017.53.3.2595452

    Article  CAS  Google Scholar 

  27. Ding N, You A, Tian W, Gu L, Deng D (2020) Chidamide increases the sensitivity of non-small cell lung cancer to Crizotinib by decreasing c-MET mRNA methylation. Int J Biol Sci 16:2595–2611. https://doi.org/10.7150/ijbs.45886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chan TS, Tse E, Kwong YL (2017) Chidamide in the treatment of peripheral T-cell lymphoma. Onco Targets Ther 10:347–352. https://doi.org/10.2147/OTT.S93528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peng J, Li SJ, Fu X, Liu Y, Zhao XL (2020) Chidamide acts on the histone deacetylase-mediated miR-34a/Bcl-2 axis to regulate NB4 cell line proliferation and apoptosis. Kaohsiung J Med Sci 36:1004–1013. https://doi.org/10.1002/kjm2.12283

    Article  CAS  PubMed  Google Scholar 

  30. Trenker R, Jura N (2020) Receptor tyrosine kinase activation: from the ligand perspective. Curr Opin Cell Biol 63:174–185. https://doi.org/10.1016/j.ceb.2020.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Doepfner KT, Boller D, Arcaro A (2007) Targeting receptor tyrosine kinase signaling in acute myeloid leukemia. Crit Rev Oncol Hematol 63:215–230. https://doi.org/10.1016/j.critrevonc.2007.05.005

    Article  PubMed  Google Scholar 

  32. McCafferty EH, Dhillon S, Deeks ED (2018) Dasatinib: a review in pediatric chronic myeloid leukemia. Paediatr Drugs 20:593–600. https://doi.org/10.1007/s40272-018-0319-8

    Article  PubMed  Google Scholar 

  33. Mpakou VE, Kontsioti F, Papageorgiou S, Spathis A, Kottaridi C, Girkas K, Karakitsos P, Dimitriadis G, Dervenoulas I, Pappa V (2013) Dasatinib inhibits proliferation and induces apoptosis in the KASUMI-1 cell line bearing the t(8;21)(q22;q22) and the N822K c-kit mutation. Leuk Res 37:175–182. https://doi.org/10.1016/j.leukres.2012.10.011

    Article  CAS  PubMed  Google Scholar 

  34. Hackl H, Astanina K, Wieser R (2017) Molecular and genetic alterations associated with therapy resistance and relapse of acute myeloid leukemia. J Hematol Oncol 10:51. https://doi.org/10.1186/s13045-017-0416-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shi Y, Dong M, Hong X, Zhang W, Feng J, Zhu J, Yu L, Ke X, Huang H, Shen Z, Fan Y, Li W, Zhao X, Qi J, Huang H, Zhou D, Ning Z, Lu X (2015) Results from a multicenter, open-label, pivotal phase II study of chidamide in relapsed or refractory peripheral T-cell lymphoma. Ann Oncol 26:1766–1771. https://doi.org/10.1093/annonc/mdv237

    Article  CAS  PubMed  Google Scholar 

  36. Wang L, Luo J, Chen G, Fang M, Wei X, Li Y, Liu Z, Zhang Y, Gao S, Shen J, Wang X, Gao X, Zhou W, Ma Y, Liu H, Li X, Yang L, Sun K, Yu L (2020) Chidamide, decitabine, cytarabine, aclarubicin, and granulocyte colony-stimulating factor (CDCAG) in patients with relapsed/refractory acute myeloid leukemia: a single-arm, phase 1/2 study. Clin Epigenet 12:132. https://doi.org/10.1186/s13148-020-00923-4

    Article  CAS  Google Scholar 

  37. Eckschlager T, Plch J, Stiborova M, Hrabeta J (2017) Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci 18:1414. https://doi.org/10.3390/ijms18071414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liang S, Zhou X, Cai D, Rodrigues-Lima F, Wang L (2021) Chidamide inhibits cell proliferation via the PI3K/AKT pathway in K562 cells based on network pharmacology and experimental validation. Curr Pharm Des. https://doi.org/10.2174/1381612827666210701152250

    Article  PubMed  Google Scholar 

  39. Thomas D, Majeti R (2017) Biology and relevance of human acute myeloid leukemia stem cells. Blood 129:1577–1585. https://doi.org/10.1182/blood-2016-10-696054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Y, Wang Y, Zhou Y, Li J, Chen K, Zhang L, Deng M, Deng S, Li P, Xu B (2017) Cooperative effect of chidamide and chemotherapeutic drugs induce apoptosis by DNA damage accumulation and repair defects in acute myeloid leukemia stem and progenitor cells. Clin Epigenet 9:83. https://doi.org/10.1186/s13148-017-0377-8

    Article  CAS  Google Scholar 

  41. Liu L, Yin S, Brobbey C, Gan W (2020) Ubiquitination in cancer stem cell: roles and targeted cancer therapy. STEMedicine 1:e37. https://doi.org/10.37175/stemedicine.v1i3.37

    Article  Google Scholar 

  42. Li Y, Chen K, Zhou Y, Xiao Y, Deng M, Jiang Z, Ye W, Wang X, Wei X, Li J, Liang J, Zheng Z, Yao Y, Wang W, Li P, Xu B (2015) A new strategy to target acute myeloid leukemia stem and progenitor cells using chidamide, a histone Deacetylase inhibitor. Curr Cancer Drug Targets 15:493–503. https://doi.org/10.2174/156800961506150805153230

    Article  CAS  PubMed  Google Scholar 

  43. He B, Wang Q, Liu X, Lu Z, Han J, Pan C, Carter BZ, Liu Q, Xu N, Zhou H (2020) A novel HDAC inhibitor chidamide combined with imatinib synergistically targets tyrosine kinase inhibitor resistant chronic myeloid leukemia cells. Biomed Pharmacother 129:110390. https://doi.org/10.1016/j.biopha.2020.110390

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Natural Science Foundation of Hunan Province (2018JJ2581).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyang Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by Xiangya Second Hospital, Central South University.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, M., Xiao, H., Peng, H. et al. Chidamide works synergistically with Dasatinib by inducing cell-cycle arrest and apoptosis in acute myeloid leukemia cells. Mol Cell Biochem 478, 851–860 (2023). https://doi.org/10.1007/s11010-022-04554-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04554-6

Keywords

Navigation