Skip to main content
Log in

Inhibition of PI3K-AKT-mTOR pathway and modulation of histone deacetylase enzymes reduce the growth of acute myeloid leukemia cells

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

One of the most widespread forms of blood cancer is known as acute myeloid leukemia (AML) which has an incidence of 80% with poor prognosis. Although there are different treatment methods for AML in clinic, the heterogeneity and complexity of the disease show that new treatments are needed. The aim of this study is to investigate the anticancer effects of inhibition of PI3K and HDAC enzymes on CMK and MOLM-13 AML cells lines. We demonstrated that the combination of LY294002 with SAHA and Tubastatin A significantly decreased the cell viability of both cell lines. In contrast, the LY294002 and PCI-34051 combination did not show a significant difference compared to the single LY294002 administration. The combination treatment of LY294002 and HDAC inhibitors did not induce apoptosis significantly. However, LY294002 + SAHA and LY294002 + PCI-34051 resulted in G0/G1 and G2/M cell cycle arrest in CMK cells, respectively. On the other hand, compared to control cells, LY294002 + SAHA and LY294002 + PCI-34051 led to G0/G1 phase arrest in MOLM-13. Furthermore, the LY294002 + PCI-34051 combination elevated the expression rate of LC3BII/I, an autophagy marker, in CMK cells by 2.5-fold. Our study revealed that the combinations of PI3K inhibitor and HDAC inhibitors showed a synergistic effect and caused a reduction in cell viability and increased cell cycle arrest on MOLM-13 and CMK cell lines. In addition, the expression of LC3BII was elevated in the CMK cell line. In conclusion, although more mechanistic studies are required, a combinational inhibition of PI3K and HDAC could be a promising approach for AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AML:

Acute myeloid leukemia

PI3K:

Phosphoinositide 3-kinase

mTOR:

Mammalian Target of Rapamycin

HDAC:

Histone deacetylase

IC20:

The 20% inhibitory concentration

IC50:

The 50% inhibitory concentration

LC3B:

Microtubule-associated protein light chain 3

References

  1. De LMC, Da SDB, Freund APF, Dacoregio JS, Costa TEJB, Costa I, et al. Acute myeloid leukemia: analysis of epidemiological profile and survival rate. J Pediatr (Rio J). 2016;92:283–9.

    Article  Google Scholar 

  2. Nix M, Price A. Acute myeloid leukemia: an ever-changing disease. J Adv Pract Oncol. 2019;10:4–8.

    PubMed Central  Google Scholar 

  3. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    Article  PubMed  Google Scholar 

  4. Thein MS, Ershler WB, Jemal A, Yates JW, Baer MR. Outcome of older patients with acute myeloid leukemia. Cancer. 2013;119:2720–7.

    Article  PubMed  Google Scholar 

  5. Lagunas-Rangel FA, Chávez-Valencia V, Ángel Gómez-Guijosa M, Cortes-Penagos C. Acute myeloid leukemia-genetic alterations and their clinical prognosis. Int J Hematol Oncol Stem Cell Res Rev. 2017;11:328.

    Google Scholar 

  6. De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6:441.

    Article  Google Scholar 

  7. Harrison CJ. Targeting signaling pathways in acute lymphoblastic leukemia: new insights. http://ashpublications.org/hematology/article-pdf/2013/1/118/1250024/bep00113000118.pdf

  8. Park S, Chapuis N, Tamburini J, Bardet V, Cornillet-Lefebvre P, Willems L, et al. Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica. 2010;95:819–28.

    Article  CAS  PubMed  Google Scholar 

  9. Hemmings BA, Restuccia DF. PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol. 2012;4:1.

    Article  Google Scholar 

  10. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M. Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood. 2003;102:972–80.

    Article  CAS  Google Scholar 

  11. Zhang J, Roberts TM, Shivdasani RA. Targeting PI3K signaling as a therapeutic approach for colorectal cancer. Gastroenterology. 2011;141:50–61.

    Article  CAS  PubMed  Google Scholar 

  12. Hao Y, Zhang N, Wei N, Yin H, Zhang Y, Xu H, et al. Matrine induces apoptosis in acute myeloid leukemia cells by inhibiting the PI3K/Akt/mTOR signaling pathway. Oncol Lett. 2019;18:2891–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Elfiky AA, Aziz SA, Conrad PJ, Siddiqui S, Hackl W, Maira M, et al. Characterization and targeting of phosphatidylinositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) in renal cell cancer. J Transl Med. 2011;9:133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Annageldiyev C, Tan SF, Thakur S, Dhanyamraju PK, Ramisetti SR, Bhadauria P, et al. The PI3K/AKT pathway ınhibitor ISC-4 ınduces apoptosis and ınhibits growth of leukemia in preclinical models of acute myeloid leukemia. Front Oncol. 2020;10:393.

    Article  PubMed Central  Google Scholar 

  15. Nepstad I, Hatfield KJ, Grønningsæter IS, Reikvam H. The PI3K-AKT-MTOR signaling pathway in human acute myeloid leukemia (AML) cells. Int J Mol Sci. 2020;31:2907.

    Article  Google Scholar 

  16. Zhang H, Song G, Song G, Li R, Gao M, Ye L, et al. Identification of DNA methylation prognostic signature of acute myelocytic leukemia. PLoS ONE. 2018;13: 199689.

    Google Scholar 

  17. Stankov MV, El Khatib M, Kumar Thakur B, Heitmann K, Panayotova-Dimitrova D, Schoening J, et al. Histone deacetylase inhibitors induce apoptosis in myeloid leukemia by suppressing autophagy. Leukemia. 2014;28:577–88.

    Article  CAS  Google Scholar 

  18. Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007;1:19–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. José-Enériz ES, Gimenez-Camino N, Agirre X, Prosper F. HDAC inhibitors in acute myeloid leukemia. Cancers (Basel). 2019;11:1794.

    Article  Google Scholar 

  20. Li Y, Seto E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med. 2016;6: 026831.

    Article  Google Scholar 

  21. Chen J, Cao L, Ma J, Yue C, Zhu D, An R, et al. hdac8 promotes liver metastasis of colorectal cancer via ınhibition of IRF1 and upregulation of SUCNR1. Oxid Med Cell Longev. 2022;2022:2815187.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chiu CF, Chin HK, Huang WJ, Bai LY, Huang HY, Weng JR. Induction of apoptosis and autophagy in breast cancer cells by a novel hdac8 inhibitor. Biomolecules. 2019;9:824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sriraks R, Limpaiboon T. Histone deacetylases and their inhibitors as potential therapeutic drugs for cholangiocarcinoma -cell line findings. Asian Pac J Cancer Prev. 2013;14:2503–8.

    Article  Google Scholar 

  24. Ho TCS, Chan AHY, Ganesan A. Thirty years of HDAC ınhibitors: 2020 ınsight and hindsight. J Med Chem. 2020;63:12460–84.

    Article  CAS  PubMed  Google Scholar 

  25. Shiozawa K, Nakanishi T, Tan M, Fang H, Wang WC, Edelman MJ, et al. Preclinical studies of vorinostat (suberoylanilide hydroxamic acid) combined with cytosine arabinoside and etoposide for treatment of acute leukemias. Clin Cancer Res. 2009;15:1698–707.

    Article  CAS  PubMed  Google Scholar 

  26. Kirschbaum M, Gojo I, Goldberg SL, Bredeson C, Kujawski LA, Yang A, et al. A phase 1 clinical trial of vorinostat in combination with decitabine in patients with acute myeloid leukaemia or myelodysplastic syndrome. Br J Haematol. 2014;167:185–93.

    Article  CAS  PubMed  Google Scholar 

  27. Urdiciain A, Erausquin E, Meléndez B, Rey JA, Idoate MA, Castresana JS. Tubastatin A, an inhibitor of HDAC6, enhances temozolomide-induced apoptosis and reverses the malignant phenotype of glioblastoma cells. Int J Oncol. 2019;54:1797–808.

    CAS  PubMed  Google Scholar 

  28. Woan KV, Lienlaf M, Perez-Villaroel P, Lee C, Cheng F, Knox T, et al. Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: enhanced antitumor immunity and impaired cell proliferation. Mol Oncol. 2015;9:1447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Spreafico M, Gruszka AM, Valli D, Mazzola M, Deflorian G, Quintè A, et al. HDAC8: a promising therapeutic target for acute myeloid leukemia. Front Cell Dev Biol. 2020;8:1.

    Article  Google Scholar 

  30. Balasubramanian S, Ramos J, Luo W, Sirisawad M, Verner E, Buggy JJ. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia. 2008;22:1026–34.

    Article  CAS  Google Scholar 

  31. Chou T-C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.

    Article  CAS  PubMed  Google Scholar 

  32. Yenigül M, Akçok İ, Gencer Akçok EB. Ethacrynic acid and cinnamic acid combination exhibits selective anticancer effects on K562 chronic myeloid leukemia cells. Mol Biol Rep. 2022;49:7521–30.

    Article  PubMed  Google Scholar 

  33. Huang A, Zeng P, Li Y, Lu W, Lai Y. LY294002 Is a promising ınhibitor to overcome sorafenib resistance in FLT3-ITD mutant AML cells by ınterfering with PI3K/Akt signaling pathway. Front Oncol. 2021;11:782065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pchejetski D, Alfraidi A, Sacco K, Alshaker H, Muhammad A, Monzon L. Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer. J Cancer Res Clin Oncol. 2016;1659:1659–71.

    Article  Google Scholar 

  35. Duvic M, Vu J. Vorinostat: a new oral histone deacetylase inhibitor approved for cutaneous T-cell lymphoma. Expert Opin Investig Drugs. 2007;16:1111–20.

    Article  CAS  PubMed  Google Scholar 

  36. Chilamakuri R, Agarwal S. Dual targeting of PI3K and HDAC by CUDC-907 ınhibits pediatric neuroblastoma growth. Cancers (Basel). 2022;14:1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang K, Huang L, Lai F, Lin S, Tian H, Wu D, et al. Bioevaluation of a dual PI3K/HDAC inhibitor for the treatment of diffuse large B-cell lymphoma. Bioorg Med Chem Lett. 2022;71:128825.

    Article  CAS  PubMed  Google Scholar 

  38. Telles E, Seto E. Modulation of cell cycle regulators by HDACs. Front Biosci. 2012;4:431.

    Google Scholar 

  39. Rodríguez-Arribas M, Yakhine-Diop SMS, González-Polo RA, Niso-Santano M, Fuentes JM. Turnover of lipidated LC3 and autophagic cargoes in mammalian cells. Methods Enzymol. 2017;1:55–70.

    Article  Google Scholar 

  40. Wang A, Chen Hu, Chen C, Liang X, Wang B, Zou F, et al. Selectively targeting FLT3-ITD mutants over FLT3-wt by a novel inhibitor for acute myeloid leukemia. Haematologica. 2020;106:605–9.

    Article  PubMed Central  Google Scholar 

  41. Yenigül M, Gencer Akçok EB. Histone deacetylase inhibition and autophagy modulation induces a synergistic antiproliferative effect and cell death in cholangiocarcinoma cells. ACS Omega. 2023;8:21755–68.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen P, Wu J, Yuan Q, Jiang X, Huang H. The synergistic killing of AML cells co-cultured with HS-5 bone marrow stromal cells by As2O3 and the PI3K/Akt signaling pathway inhibitor LY294002. Pharmazie. 2015;70:322–7.

    CAS  Google Scholar 

  43. Geng Y, Wu W, Zhou L, Li J, Geng Y, Yang Y. Synergistic effects of LY294002 and ABT199 on the cell cycle in K562, HL60 and KG1a cells. Oncol Rep. 2021;45:97.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang A, Lau NA, Wong A, Brown LG, Coleman IM, De Sarkar N, et al. Concurrent targeting of HDAC and PI3K to overcome phenotypic heterogeneity of castration-resistant and neuroendocrine prostate cancers. Cancer Research Communications. 2023;

  45. Li X, Yongwei Su, Hege K, Madlambayan G, Edwards H, Knight T, et al. The HDAC and PI3K dual inhibitor CUDC-907 synergistically enhances the antileukemic activity of venetoclax in preclinical models of acute myeloid leukemia. Haematologica. 2020;106:1262–77.

    Article  PubMed Central  Google Scholar 

  46. Hege Hurrish K, Qiao X, Li X, Su Y, Carter J, Ma J, et al. Co-targeting of HDAC, PI3K, and Bcl-2 results in metabolic and transcriptional reprogramming and decreased mitochondrial function in acute myeloid leukemia. Biochem Pharmacol. 2022;205: 115283.

    Article  CAS  Google Scholar 

  47. Qi J, Singh S, Hua WK, Cai Q, Chao SW, Li L, et al. HDAC8 ınhibition specifically targets ınv(16) acute myeloid leukemic stem cells by restoring p53 acetylation. Cell Stem Cell. 2015;17:597–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Quan P, Moınfar F, Kufferath I, Absenger M, Kueznık T, Denk H, et al. Effects of targeting endometrial stromal sarcoma cells via histone deacetylase and PI3K/AKT/mTOR signaling. Anticancer Res. 2014;34:2883.

    CAS  PubMed  Google Scholar 

  49. Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, Bjedov I, et al. Autophagy in healthy aging and disease. Nat Aging. 2021;1:634–50.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Koukourakis MI, Kalamida D, Giatromanolaki A, Zois CE, Sivridis E, Pouliliou S, et al. Autophagosome proteins LC3A, LC3B and LC3C have distinct subcellular distribution kinetics and expression in cancer cell lines. PLoS ONE. 2015;10:e0137675.

    Article  PubMed Central  Google Scholar 

  51. Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. 2001;61:7233–9.

    CAS  PubMed  Google Scholar 

  52. Grafone T, Palmisano M, Nicci C, Storti S. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment. Oncol Rev. 2012;6:1.

    Article  Google Scholar 

  53. Long J, Jia M-Y, Fang W-Y, Chen X-J, Mu L-L, Wang Z-Y, et al. FLT3 inhibition upregulates HDAC8 via FOXO to inactivate p53 and promote maintenance of FLT3-ITD+ acute myeloid leukemia. Blood. 2020;135:1472–83.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the flow cytometry facility in the Abdullah Gül University, Central Research Laboratory. We thank Esma Saraymen, the flow cytometry specialist, for her technical assistance during flow cytometry experiments.

Funding

This study was supported by TUBITAK with project number 121Z691 within the context of “1002—Short Term R&D Funding Program”.

Author information

Authors and Affiliations

Authors

Contributions

EBGA contributed to the study conception and design. Material preparation, data collection and analysis were performed by MŞ and HS. MŞ and HS analyzed and generated Figs. 1, 2 and 3. MŞ analyzed and generated Figs. 4, 5, and 6. The first draft of the manuscript was written by MŞ and EBGA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Emel Başak Gencer Akçok.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şansaçar, M., Sağır, H. & Gencer Akçok, E.B. Inhibition of PI3K-AKT-mTOR pathway and modulation of histone deacetylase enzymes reduce the growth of acute myeloid leukemia cells. Med Oncol 41, 31 (2024). https://doi.org/10.1007/s12032-023-02247-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02247-8

Keywords

Navigation