Skip to main content

Advertisement

Log in

Research progress of ferroptosis in glaucoma and optic nerve damage

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Unlike other death forms, such as autophagy, necrosis, and apoptosis, ferroptosis is a novel type of programmed cell death with iron-dependent properties. Esteroxygenase affects the content of unsaturated fatty acids and promotes lipid peroxidation. In addition, GSH can cause the reduction of GPX4, which can cause ferroptosis. P53 and its signaling pathways also regulate ferroptosis. Recent studies have confirmed that ferroptosis also promotes the death of RGC. The progressive loss of RGC is one of the pathological features of glaucoma, indicating that ferroptosis may be related to the onset of glaucoma. Down-regulation of GPX4 leads to the loss of nerve cells, which suggests that ferroptosis may also be related to diseases related to optic nerve damage. At present, ferroptosis has been extensively researched and advanced in systemic diseases, such as cardiovascular diseases, gastrointestinal tumors such as stomach, liver, and pancreas, and brain diseases. This review focuses on the research progress of ferroptosis in ophthalmic diseases, especially glaucoma and optic nerve damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

These authors have not disclosed any data availability.

References

  1. Hirschhorn T, Stockwell BR (2019) The development of the concept of ferroptosis. Free Radic Biol Med 133:130–143

    Article  CAS  PubMed  Google Scholar 

  2. Liu J, Zhang C, Wang J, Hu W, Feng Z (2020) The regulation of ferroptosis by tumor suppressor p53 and its pathway. Int J Mol Sci 21(21):8387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bertrand RL (2017) Iron accumulation, glutathione depletion, and lipid peroxidation must occur simultaneously during ferroptosis and are mutually amplifying events. Med Hypotheses 101:69–74

    Article  CAS  PubMed  Google Scholar 

  4. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ng SW, Norwitz SG, Norwitz ER (2019) The impact of iron overload and ferroptosis on reproductive disorders in humans: implications for preeclampsia. Int J Mol Sci 20(13):3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59(2):298–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mandal PK, Seiler A, Perisic T, Kölle P, Banjac Canak A, Förster H, Weiss N, Kremmer E, Lieberman MW, Bannai S, Kuhlencordt P, Sato H, Bornkamm GW, Conrad M (2010) System x(c)- and thioredoxin reductase 1 cooperatively rescue glutathione deficiency. J Biol Chem 285(29):22244–22253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aoyama K, Nakaki T (2015) Glutathione in cellular redox homeostasis: association with the excitatory amino acid carrier 1 (EAAC1). Molecules 20(5):8742–8758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stockwell BR, Jiang X, Gu W (2020) Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol 30(6):478–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Conrad M, Friedmann Angeli JP (2015) Glutathione peroxidase 4 (Gpx4) and ferroptosis: what’s so special about it? Mol Cell Oncol 2(3):e995047

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu DS, Duong CP, Haupt S, Montgomery KG, House CM, Azar WJ, Pearson HB, Fisher OM, Read M, Guerra GR, Haupt Y, Cullinane C, Wiman KG, Abrahmsen L, Phillips WA, Clemons NJ (2017) Inhibiting the system xc-/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nat Commun 8:14844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li W, Li W, Leng Y, Xiong Y, Xia Z (2020) Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol 39(2):210–225

    Article  CAS  PubMed  Google Scholar 

  13. Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, Cheng Q, Zhang P, Dai W, Chen J, Yang F, Yang HT, Linkermann A, Gu W, Min J, Wang F (2019) Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA 116(7):2672–2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang J, Deng B, Liu Q, Huang Y, Chen W, Li J, Zhou Z, Zhang L, Liang B, He J, Chen Z, Yan C, Yang Z, Xian S, Wang L (2020) Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload. Cell Death Dis 11(7):574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yin Z, Ding G, Chen X, Qin X, Xu H, Zeng B, Ren J, Zheng Q, Wang S (2020) Beclin1 haploinsufficiency rescues low ambient temperature-induced cardiac remodeling and contractile dysfunction through inhibition of ferroptosis and mitochondrial injury. Metabolism 113:154397

    Article  CAS  PubMed  Google Scholar 

  16. Yang M, Chen P, Liu J, Zhu S, Kroemer G, Klionsky DJ, Lotze MT, Zeh HJ, Kang R, Tang D (2019) Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv. https://doi.org/10.1126/sciadv.aaw2238

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cancel LM, Ebong EE, Mensah S, Hirschberg C, Tarbell JM (2016) Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model. Atherosclerosis 252:136–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, Wang Q, Crouch PJ, Ganio K, Wang XC, Pei L, Adlard PA, Lu YM, Cappai R, Wang JZ, Liu R, Bush AI (2017) Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 22(11):1520–1530

    Article  CAS  PubMed  Google Scholar 

  19. Massie A, Schallier A, Kim SW, Fernando R, Kobayashi S, Beck H, De Bundel D, Vermoesen K, Bannai S, Smolders I, Conrad M, Plesnila N, Sato H, Michotte Y (2011) Dopaminergic neurons of system x(c)-deficient mice are highly protected against 6-hydroxydopamine-induced toxicity. FASEB J 25(4):1359–1369

    Article  CAS  PubMed  Google Scholar 

  20. Van Do B, Gouel F, Jonneaux A, Timmerman K, Gelé P, Pétrault M, Bastide M, Laloux C, Moreau C, Bordet R, Devos D, Devedjian JC (2016) Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol Dis 94:169–178

    Article  Google Scholar 

  21. Fonseca-Nunes A, Jakszyn P, Agudo A (2014) Iron and cancer risk: a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol Biomark Prev 23(1):12–31

    Article  CAS  Google Scholar 

  22. Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K (2007) DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell 25(5):725–738

    Article  CAS  PubMed  Google Scholar 

  23. Jennis M, Kung CP, Basu S, Budina-Kolomets A, Leu JI, Khaku S, Scott JP, Cai KQ, Campbell MR, Porter DK, Wang X, Bell DA, Li X, Garlick DS, Liu Q, Hollstein M, George DL, Murphy ME (2016) An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev 30(8):918–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D (2016) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63(1):173–184

    Article  CAS  PubMed  Google Scholar 

  25. Badgley MA, Kremer DM, Maurer HC, DelGiorno KE, Lee HJ, Purohit V, Sagalovskiy IR, Ma A, Kapilian J, Firl CEM, Decker AR, Sastra SA, Palermo CF, Andrade LR, Sajjakulnukit P, Zhang L, Tolstyka ZP, Hirschhorn T, Lamb C, Liu T, Gu W, Seeley ES, Stone E, Georgiou G, Manor U, Iuga A, Wahl GM, Stockwell BR, Lyssiotis CA, Olive KP (2020) Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368(6486):85–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR (2015) Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2(5):517–532

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ 3rd, Kang R, Tang D (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12(8):1425–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, Oshima M, Ikeda T, Asaba R, Yagi H, Masuko T, Shimizu T, Ishikawa T, Kai K, Takahashi E, Imamura Y, Baba Y, Ohmura M, Suematsu M, Baba H, Saya H (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(−) and thereby promotes tumor growth. Cancer Cell 19(3):387–400

    Article  CAS  PubMed  Google Scholar 

  29. Ye Z, Liu W, Zhuo Q, Hu Q, Liu M, Sun Q, Zhang Z, Fan G, Xu W, Ji S, Yu X, Qin Y, Xu X (2020) Ferroptosis: final destination for cancer? Cell Prolif 53(3):e12761

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sharfuddin AA, Molitoris BA (2011) Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol 7(4):189–200

    Article  CAS  PubMed  Google Scholar 

  31. Linkermann A, Bräsen JH, Darding M, Jin MK, Sanz AB, Heller JO, De Zen F, Weinlich R, Ortiz A, Walczak H, Weinberg JM, Green DR, Kunzendorf U, Krautwald S (2013) Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci USA 110(29):12024–12029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jang HR, Rabb H (2009) The innate immune response in ischemic acute kidney injury. Clin Immunol 130(1):41–50

    Article  CAS  PubMed  Google Scholar 

  33. Peng JJ, Song WT, Yao F, Zhang X, Peng J, Luo XJ, Xia XB (2020) Involvement of regulated necrosis in blinding diseases: focus on necroptosis and ferroptosis. Exp Eye Res 191:107922

    Article  CAS  PubMed  Google Scholar 

  34. Ruan Y, Jiang S, Musayeva A, Pfeiffer N, Gericke A (2021) Corneal epithelial stem cells-physiology, pathophysiology and therapeutic options. Cells 10(9):2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bath C (2013) Human corneal epithelial subpopulations: oxygen dependent ex vivo expansion and transcriptional profiling. Acta Ophthalmol 91(4):1–34

    Article  PubMed  Google Scholar 

  36. Sakai O, Uchida T, Imai H, Ueta T (2016) Glutathione peroxidase 4 plays an important role in oxidative homeostasis and wound repair in corneal epithelial cells. FEBS Open Bio 6(12):1238–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chou R, Dana T, Bougatsos C, Grusing S, Blazina I (2016) Screening for impaired visual acuity in older adults: updated evidence report and systematic review for the US preventive services task force. JAMA 315(9):915–933

    Article  CAS  PubMed  Google Scholar 

  38. Cao JY, Dixon SJ (2016) Mechanisms of ferroptosis. Cell Mol Life Sci 73(11–12):2195–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao T, Guo X, Sun Y (2021) Iron accumulation and lipid peroxidation in the aging retina: implication of ferroptosis in age-related macular degeneration. Aging Dis 12(2):529–551

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hernández-Zimbrón LF, Zamora-Alvarado R, Ochoa-De la Paz L, Velez-Montoya R, Zenteno E, Gulias-Cañizo R, Quiroz-Mercado H, Gonzalez-Salinas R (2018) Age-related macular degeneration: new paradigms for treatment and management of AMD. Oxid Med Cell Longev 2018:8374647

    Article  PubMed  PubMed Central  Google Scholar 

  41. Totsuka K, Ueta T, Uchida T, Roggia MF, Nakagawa S, Vavvas DG, Honjo M, Aihara M (2019) Oxidative stress induces ferroptotic cell death in retinal pigment epithelial cells. Exp Eye Res 181:316–324

    Article  CAS  PubMed  Google Scholar 

  42. Ola MS, Alhomida AS, LaNoue KF (2019) Gabapentin attenuates oxidative stress and apoptosis in the diabetic rat retina. Neurotox Res 36(1):81–90

    Article  CAS  PubMed  Google Scholar 

  43. Zhang YH, Wang DW, Xu SF, Zhang S, Fan YG, Yang YY, Guo SQ, Wang S, Guo T, Wang ZY, Guo C (2018) α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biol 14:535–548

    Article  CAS  PubMed  Google Scholar 

  44. Ning A, Cui J, To E, Ashe KH, Matsubara J (2008) Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Vis Sci 49(11):5136–5143

    Article  PubMed  Google Scholar 

  45. Yang X, Huo F, Liu B, Liu J, Chen T, Li J, Zhu Z, Lv B (2017) Crocin inhibits oxidative stress and pro-inflammatory response of microglial cells associated with diabetic retinopathy through the activation of PI3K/Akt signaling pathway. J Mol Neurosci 61(4):581–589

    Article  CAS  PubMed  Google Scholar 

  46. He J, Li Z, Xia P, Shi A, FuChen X, Zhang J, Yu P (2022) Ferroptosis and ferritinophagy in diabetes complications. Mol Metab 60:101470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sun Y, Zheng Y, Wang C, Liu Y (2018) Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells. Cell Death Dis 9(7):753

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang J, Sheng S, Wang W, Dai J, Zhong Y, Ren J, Jiang K, Li S, Bian X, Liu L (2022) Molecular mechanisms of iron mediated programmed cell death and its roles in eye diseases. Front Nutr 9:844757

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang D, Tang L, Zhang Y, Ge G, Jiang X, Mo Y, Wu P, Deng X, Li L, Zuo S, Yan Q, Zhang S, Wang F, Shi L, Li X, Xiang B, Zhou M, Liao Q, Guo C, Zeng Z, Xiong W, Gong Z (2022) Regulatory pathways and drugs associated with ferroptosis in tumors. Cell Death Dis 13(6):544

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jelinek A, Heyder L, Daude M, Plessner M, Krippner S, Grosse R, Diederich WE, Culmsee C (2018) Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Free Radic Biol Med 117:45–57

    Article  CAS  PubMed  Google Scholar 

  51. Kuganesan N, Dlamini S, Tillekeratne LMV, Taylor WR (2021) Tumor suppressor p53 promotes ferroptosis in oxidative stress conditions independent of modulation of ferroptosis by p21, CDKs, RB, and E2F. J Biol Chem 297(6):101365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121(11):2081–2090

    Article  PubMed  Google Scholar 

  53. Burton MJ, Ramke J, Marques AP, Bourne RRA, Congdon N, Jones I, Ah Tong BAM, Arunga S, Bachani D, Bascaran C, Bastawrous A, Blanchet K, Braithwaite T, Buchan JC, Cairns J, Cama A, Chagunda M, Chuluunkhuu C, Cooper A, Crofts-Lawrence J, Dean WH, Denniston AK, Ehrlich JR, Emerson PM, Evans JR, Frick KD, Friedman DS, Furtado JM, Gichangi MM, Gichuhi S, Gilbert SS, Gurung R, Habtamu E, Holland P, Jonas JB, Keane PA, Keay L, Khanna RC, Khaw PT, Kuper H, Kyari F, Lansingh VC, Mactaggart I, Mafwiri MM, Mathenge W, McCormick I, Morjaria P, Mowatt L, Muirhead D, Murthy GVS, Mwangi N, Patel DB, Peto T, Qureshi BM, Salomão SR, Sarah V, Shilio BR, Solomon AW, Swenor BK, Taylor HR, Wang N, Webson A, West SK, Wong TY, Wormald R, Yasmin S, Yusufu M, Silva JC, Resnikoff S, Ravilla T, Gilbert CE, Foster A, Faal HB (2021) The lancet global health commission on global eye health: vision beyond 2020. Lancet Glob Health 9(4):e489–e551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Quigley HA (1996) Number of people with glaucoma worldwide. Br J Ophthalmol 80(5):389–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jonas JB, Budde WM, Panda-Jonas S (1999) Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol 43(4):293–320

    Article  CAS  PubMed  Google Scholar 

  56. Lambiase A, Aloe L, Centofanti M, Parisi V, Báo SN, Mantelli F, Colafrancesco V, Manni GL, Bucci MG, Bonini S, Levi-Montalcini R (2009) Experimental and clinical evidence of neuroprotection by nerve growth factor eye drops: implications for glaucoma. Proc Natl Acad Sci USA 106(32):13469–13474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tezel G (2021) Multifactorial pathogenic processes of retinal ganglion cell degeneration in glaucoma towards multi-target strategies for broader treatment effects. Cells 10(6):1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McMonnies C (2018) Reactive oxygen species, oxidative stress, glaucoma and hyperbaric oxygen therapy. J Optom 11(1):3–9

    Article  PubMed  Google Scholar 

  59. Jünemann AG, Stopa P, Michalke B, Chaudhri A, Reulbach U, Huchzermeyer C, Schlötzer-Schrehardt U, Kruse FE, Zrenner E, Rejdak R (2013) Levels of aqueous humor trace elements in patients with non-exsudative age-related macular degeneration: a case-control study. PLoS ONE 8(2):e56734

    Article  PubMed  PubMed Central  Google Scholar 

  60. Negoro S, Kunisada K, Tone E, Funamoto M, Oh H, Kishimoto T, Yamauchi-Takihara K (2000) Activation of JAK/STAT pathway transduces cytoprotective signal in rat acute myocardial infarction. Cardiovasc Res 47(4):797–805

    Article  CAS  PubMed  Google Scholar 

  61. Kuehn MH, Fingert JH, Kwon YH (2005) Retinal ganglion cell death in glaucoma: mechanisms and neuroprotective strategies. Ophthalmol Clin N Am 18(3):383–395

    Article  Google Scholar 

  62. Lukasiewicz PD (2005) Synaptic mechanisms that shape visual signaling at the inner retina. Prog Brain Res 147:205–218

    Article  CAS  PubMed  Google Scholar 

  63. Kamińska A, Romano GL, Rejdak R, Zweifel S, Fiedorowicz M, Rejdak M, Bajka A, Amato R, Bucolo C, Avitabile T, Drago F, Toro MD (2021) Influence of trace elements on neurodegenerative diseases of the eye-the glaucoma model. Int J Mol Sci 22(9):4323

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vernazza S, Oddone F, Tirendi S, Bassi AM (2021) Risk factors for retinal ganglion cell distress in glaucoma and neuroprotective potential intervention. Int J Mol Sci 22(15):7994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ramdas WD (2018) The relation between dietary intake and glaucoma: a systematic review. Acta Ophthalmol 96(6):550–556

    Article  PubMed  Google Scholar 

  66. Gospe SM III, Bhatti MT (2018) Orbital anatomy. Int Ophthalmol Clin 58(2):5–23

    Article  PubMed  Google Scholar 

  67. Hayek G, Mercier P, Fournier HD (2006) Anatomy of the orbit and its surgical approach. Adv Tech Stand Neurosurg 31:35–71

    Article  CAS  PubMed  Google Scholar 

  68. Pai SB, Nagarjun MN (2017) A neurosurgical perspective to approaches to the orbit: a cadaveric study. Neurol India 65(5):1094–1101

    Article  PubMed  Google Scholar 

  69. Chan EW, Li X, Tham YC, Liao J, Wong TY, Aung T, Cheng CY (2016) Glaucoma in Asia: regional prevalence variations and future projections. Br J Ophthalmol 100(1):78–85

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

These authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SH analyzed the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Feng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Liu, K., Su, Y. et al. Research progress of ferroptosis in glaucoma and optic nerve damage. Mol Cell Biochem 478, 721–727 (2023). https://doi.org/10.1007/s11010-022-04545-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04545-7

Keywords

Navigation