Skip to main content
Log in

Ferroptosis: mechanisms and advances in ocular diseases

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

As an essential trace element in the body, iron is critical for the maintenance of organismal metabolism. Excessive iron facilitates reactive oxygen species generation and inflicts damage on cells and tissues. Ferroptosis, a newly identified iron-dependent type of programmed cell death, has been implicated in a broad set of metabolic disorders. Ferroptosis is mainly characterized by excess iron accumulation, elevated lipid peroxides and reactive oxygen species, and reduced levels of glutathione and glutathione peroxidase 4. The vast emerging literature on ferroptosis has shown that numerous diseases, such as cancers, neurodegeneration, and autoimmune diseases, are associated with ferroptosis. Meanwhile, recent studies have confirmed the relationship between ferroptosis and eye diseases including keratopathy, cataract, glaucoma, retinal ischemia-reperfusion injury, age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy, and retinoblastoma, indicating the critical role of ferroptosis in ocular diseases. In this article, we introduce the primary signaling pathways of ferroptosis and review current advances in research on ocular diseases involving iron overload and ferroptosis. Furthermore, several unanswered questions in the area are raised. Addressing these unanswered questions promises to provide new insights into preventing, controlling, and treating not only ocular diseases but also a variety of other diseases in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

ROS:

Reactive oxygen species

Fer-1:

Ferrostatin-1

PUFA:

Polyunsaturated fatty acid

PUFA-PL:

Polyunsaturated fatty acid-containing phospholipid

ACSL4:

Acyl‑CoA synthetase long‑chain family member 4

GPX4:

Glutathione peroxidase 4

RTA:

Radical-trapping antioxidant

Fe3+ :

Ferric

Fe2+:

Ferrous

LIP:

Labile iron pool

FT:

Ferritin heavy chain

FTL:

Ferritin light chain

FPN:

Ferroportin

NCOA4:

Nuclear receptor coactivator 4

GSH  Glutathione           PLOOH:

Phospholipid hydroperoxide

LOX:

Lipoxygenase

FSP1:

Ferroptosis suppressor protein 1

SLC7A11:

Solute carrier family 7 member 11

BH4:

Tetrahydrobiopterin

DHODH:

Dihydroorotate dehydrogenase

NRF2:

Nuclear factor E2-related factor 2

CEC:

Corneal epithelial cell

HTP:

Heated tobacco product

CSE:

Cigarette smoke extract

DFO:

Deferoxamine

ARC:

Age-related cataract

LEC:

Lens epithelial cell

RGC:

Retinal ganglion cell

POAG:

Primary open-angle glaucoma

IVT:

Intravitreal

RIRI:

Retinal ischemia–reperfusion injury

AMD:

Age related macular degeneration

tBH:

Tert-butyl hydroperoxide

STGD:

Stargardt disease

atRAL:

All-trans-retinal

FAC:

Ferric ammonium citrate

LAMP 2:

Lysosomal membrane-associated 2 protein

RP:

Retinitis pigmentosa

SOD1:

Superoxide dismutase 1

DR:

Diabetic retinopathy

RB:

Retinoblastoma

References

  1. Eagle H (1959) Amino acid metabolism in mammalian cell cultures. Science (New York, NY) 130:432–437

    Article  CAS  Google Scholar 

  2. Eagle H (1955) The specific amino acid requirements of a human carcinoma cell (Stain HeLa) in tissue culture. J Exp Med 102:37–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eagle H (1955) Nutrition needs of mammalian cells in tissue culture. Science (New York, NY) 122:501–514

    Article  CAS  Google Scholar 

  4. Dolma S, Lessnick SL, Hahn WC, Stockwell BR (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3:285–296

    Article  CAS  PubMed  Google Scholar 

  5. Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15:234–245. https://doi.org/10.1016/j.chembiol.2008.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ, Smith R, Lessnick SL, Sahasrabudhe S, Stockwell BR (2007) RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447:864–868

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331. https://doi.org/10.1016/j.cell.2013.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wolpaw AJ, Shimada K, Skouta R, Welsch ME, Akavia UD, Pe’er D, Shaik F, Bulinski JC, Stockwell BR (2011) Modulatory profiling identifies mechanisms of small molecule-induced cell death. Proc Natl Acad Sci USA 108:E771–E780. https://doi.org/10.1073/pnas.1106149108

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xia X, Fan X, Zhao M, Zhu P (2019) The Relationship between ferroptosis and tumors: a novel landscape for therapeutic approach. Curr Gene Ther 19:117–124. https://doi.org/10.2174/1566523219666190628152137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ye Z, Liu W, Zhuo Q, Hu Q, Liu M, Sun Q, Zhang Z, Fan G, Xu W, Ji S, Yu X, Qin Y, Xu X (2020) Ferroptosis: final destination for cancer? Cell Prolif 53:e12761. https://doi.org/10.1111/cpr.12761

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, Li B (2019) Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol 12:34. https://doi.org/10.1186/s13045-019-0720-y

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nguyen THP, Mahalakshmi B, Velmurugan BK (2020) Functional role of ferroptosis on cancers, activation and deactivation by various therapeutic candidates-an update. Chem Biol Interact 317:108930. https://doi.org/10.1016/j.cbi.2019.108930

    Article  CAS  PubMed  Google Scholar 

  14. Shen Z, Song J, Yung BC, Zhou Z, Wu A, Chen X (2018) Emerging strategies of cancer therapy based on ferroptosis. Advanced mater (Deerfield Beach, Fla) 30:e1704007. https://doi.org/10.1002/adma.201704007

    Article  CAS  Google Scholar 

  15. Ke B, Tian M, Li J, Liu B, He G (2016) Targeting programmed cell death using small-molecule compounds to improve potential cancer therapy. Med Res Rev. https://doi.org/10.1002/med.21398

    Article  PubMed  Google Scholar 

  16. Li J, Cao F, Yin H-L, Huang Z-J, Lin Z-T, Mao N, Sun B, Wang G (2020) Ferroptosis: past, present and future. Cell Death Dis 11:88. https://doi.org/10.1038/s41419-020-2298-2

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gao M, Jiang X (2018) To eat or not to eat-the metabolic flavor of ferroptosis. Curr Opin Cell Biol 51:58–64. https://doi.org/10.1016/j.ceb.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  18. Capelletti MM, Manceau H, Puy H, Peoc’h K (2020) Ferroptosis in liver diseases: an overview. Int J Mol Sci. https://doi.org/10.3390/ijms21144908

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wei Y, Lv H, Shaikh AB, Han W, Hou H, Zhang Z, Wang S, Shang P (2020) Directly targeting glutathione peroxidase 4 may be more effective than disrupting glutathione on ferroptosis-based cancer therapy. Biochim Biophys Acta 1864:129539. https://doi.org/10.1016/j.bbagen.2020.129539

    Article  CAS  Google Scholar 

  20. Liang C, Zhang X, Yang M, Dong X (2019) Recent progress in ferroptosis inducers for cancer therapy. Advanced mater (Deerfield Beach, Fla). 31:e1904197. https://doi.org/10.1002/adma.201904197

    Article  CAS  Google Scholar 

  21. Macías-Rodríguez RU, Inzaugarat ME, Ruiz-Margáin A, Nelson LJ, Trautwein C, Cubero FJ (2020) Reclassifying hepatic cell death during liver damage: ferroptosis-a novel form of non-apoptotic cell death? Int J Mol Sci. https://doi.org/10.3390/ijms21051651

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bertrand RL (2017) Iron accumulation, glutathione depletion, and lipid peroxidation must occur simultaneously during ferroptosis and are mutually amplifying events. Med Hypotheses 101:69–74. https://doi.org/10.1016/j.mehy.2017.02.017

    Article  CAS  PubMed  Google Scholar 

  23. Gao J, Zhou Q, Wu D, Chen L (2021) Mitochondrial iron metabolism and its role in diseases. Clinica chimica acta; int j clin chem 513(6):112. https://doi.org/10.1016/j.cca.2020.12.005

    Article  CAS  Google Scholar 

  24. Brissot P, Pietrangelo A, Adams PC, de Graaff B, McLaren CE, Loréal O (2018) Haemochromatosis. Nat rev Dis prim 4:18016. https://doi.org/10.1038/nrdp.2018.16

    Article  PubMed  Google Scholar 

  25. Muckenthaler MU, Rivella S, Hentze MW, Galy B (2017) A red carpet for iron metabolism. Cell 168:344–361. https://doi.org/10.1016/j.cell.2016.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ng S-W, Norwitz SG, Norwitz ER (2019) The impact of iron overload and ferroptosis on reproductive disorders in humans: implications for preeclampsia. Int J Mol Sci. https://doi.org/10.3390/ijms20133283

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, Liao P, Zhou J, Zhang Q, Dow A, Saripalli AL, Kryczek I, Wei S, Szeliga W, Vatan L, Stone EM, Georgiou G, Cieslik M, Wahl DR, Morgan MA, Chinnaiyan AM, Lawrence TS, Zou W (2019) Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov 9:1673–1685. https://doi.org/10.1158/2159-8290.CD-19-0338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gammella E, Recalcati S, Rybinska I, Buratti P, Cairo G (2015) Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. Oxid Med Cell Longev 2015:230182. https://doi.org/10.1155/2015/230182

    Article  PubMed  PubMed Central  Google Scholar 

  29. Latunde-Dada GO (2017) Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta 1861:1893–1900. https://doi.org/10.1016/j.bbagen.2017.05.019

    Article  CAS  Google Scholar 

  30. Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, Kapralov AA, Amoscato AA, Jiang J, Anthonymuthu T, Mohammadyani D, Yang Q, Proneth B, Klein-Seetharaman J, Watkins S, Bahar I, Greenberger J, Mallampalli RK, Stockwell BR, Tyurina YY, Conrad M, Bayır H (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13:81–90. https://doi.org/10.1038/nchembio.2238

    Article  CAS  PubMed  Google Scholar 

  31. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feng H, Stockwell BR (2018) Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol 16:e2006203. https://doi.org/10.1371/journal.pbio.2006203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaschler MM, Hu F, Feng H, Linkermann A, Min W, Stockwell BR (2018) Determination of the subcellular localization and mechanism of action of ferrostatins in suppressing ferroptosis. ACS Chem Biol 13:1013–1020. https://doi.org/10.1021/acschembio.8b00199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, Prokisch H, Trümbach D, Mao G, Qu F, Bayir H, Füllekrug J, Scheel CH, Wurst W, Schick JA, Kagan VE, Angeli JPF, Conrad M (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13:91–98. https://doi.org/10.1038/nchembio.2239

    Article  CAS  PubMed  Google Scholar 

  35. Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, Wang W, Tseng Y-Y, Deasy R, Kost-Alimova M, Dančík V, Leshchiner ES, Viswanathan VS, Signoretti S, Choueiri TK, Boehm JS, Wagner BK, Doench JG, Clish CB, Clemons PA, Schreiber SL (2019) A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun 10:1617. https://doi.org/10.1038/s41467-019-09277-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim JH, Lewin TM, Coleman RA (2001) Expression and characterization of recombinant rat Acyl-CoA synthetases 1, 4, and 5. Selective inhibition by triacsin C and thiazolidinediones. J Biol Chem 276:24667–24673

    Article  CAS  PubMed  Google Scholar 

  37. Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, Viswanathan SR, Chattopadhyay S, Tamayo P, Yang WS, Rees MG, Chen S, Boskovic ZV, Javaid S, Huang C, Wu X, Tseng Y-Y, Roider EM, Gao D, Cleary JM, Wolpin BM, Mesirov JP, Haber DA, Engelman JA, Boehm JS, Kotz JD, Hon CS, Chen Y, Hahn WC, Levesque MP, Doench JG, Berens ME, Shamji AF, Clemons PA, Stockwell BR, Schreiber SL (2017) Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547:453–457. https://doi.org/10.1038/nature23007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brown CW, Amante JJ, Goel HL, Mercurio AM (2017) The α6β4 integrin promotes resistance to ferroptosis. J Cell Biol 216:4287–4297. https://doi.org/10.1083/jcb.201701136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu J, Minikes AM, Gao M, Bian H, Li Y, Stockwell BR, Chen Z-N, Jiang X (2019) Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature 572:402–406. https://doi.org/10.1038/s41586-019-1426-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D, Liu D, Zhang F, Ning S, Yao J, Tian X (2019) Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ 26:2284–2299. https://doi.org/10.1038/s41418-019-0299-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H, Gan B (2020) The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res 30:146–162. https://doi.org/10.1038/s41422-019-0263-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuhn H, Banthiya S, van Leyen K (2015) Mammalian lipoxygenases and their biological relevance. Biochem Biophys Acta 1851:308–330. https://doi.org/10.1016/j.bbalip.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  43. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR (2016) Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA 113:E4966–E4975. https://doi.org/10.1073/pnas.1603244113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van Leyen K, Kim HY, Lee S-R, Jin G, Arai K, Lo EH (2006) Baicalein and 12/15-lipoxygenase in the ischemic brain. Stroke 37:3014–3018

    Article  PubMed  Google Scholar 

  45. Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, Song S, Tavana O, Gu W (2019) ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol 21:579–591. https://doi.org/10.1038/s41556-019-0305-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Proneth B, Conrad M (2019) Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ 26:14–24. https://doi.org/10.1038/s41418-018-0173-9

    Article  CAS  PubMed  Google Scholar 

  47. Friedmann Angeli JP, Krysko DV, Conrad M (2019) Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer 19:405–414. https://doi.org/10.1038/s41568-019-0149-1

    Article  CAS  PubMed  Google Scholar 

  48. Wenzel SE, Tyurina YY, Zhao J, St Croix CM, Dar HH, Mao G, Tyurin VA, Anthonymuthu TS, Kapralov AA, Amoscato AA, Mikulska-Ruminska K, Shrivastava IH, Kenny EM, Yang Q, Rosenbaum JC, Sparvero LJ, Emlet DR, Wen X, Minami Y, Qu F, Watkins SC, Holman TR, VanDemark AP, Kellum JA, Bahar I, Bayır H, Kagan VE (2017) PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell. https://doi.org/10.1016/j.cell.2017.09.044

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zou Y, Li H, Graham ET, Deik AA, Eaton JK, Wang W, Sandoval-Gomez G, Clish CB, Doench JG, Schreiber SL (2020) Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol 16:302–309. https://doi.org/10.1038/s41589-020-0472-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ghosh MK, Mukhopadhyay M, Chatterjee IB (1997) NADPH-initiated cytochrome P450-dependent free iron-independent microsomal lipid peroxidation: specific prevention by ascorbic acid. Mol Cell Biochem 166:35–44

    Article  CAS  PubMed  Google Scholar 

  51. Ren X, Zou L, Zhang X, Branco V, Wang J, Carvalho C, Holmgren A, Lu J (2017) Redox signaling mediated by thioredoxin and glutathione systems in the central nervous system. Antioxid Redox Signal. https://doi.org/10.1089/ars.2016.6925

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C (1982) Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochem Biophys Acta 710:197–211

    Article  CAS  PubMed  Google Scholar 

  53. Ursini F, Maiorino M, Gregolin C (1985) The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochem Biophys Acta 839:62–70

    Article  CAS  PubMed  Google Scholar 

  54. Maiorino M, Conrad M, Ursini F (2018) GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues. Antioxid Redox Signal 29:61–74. https://doi.org/10.1089/ars.2017.7115

    Article  CAS  PubMed  Google Scholar 

  55. Zheng J, Conrad M (2020) The metabolic underpinnings of ferroptosis. Cell Metab 32:920–937. https://doi.org/10.1016/j.cmet.2020.10.011

    Article  CAS  PubMed  Google Scholar 

  56. Chen L, Li X, Liu L, Yu B, Xue Y, Liu Y (2015) Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function. Oncol Rep 33(1465):1474. https://doi.org/10.3892/or.2015.3712

    Article  CAS  Google Scholar 

  57. Schwarz K, Foltz CM (1999) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration 1951. Nutrition (Burbank, Los Angeles County, Calif) 15:255

    CAS  PubMed  Google Scholar 

  58. Bieri JG (1959) An effect of selenium and cystine on lipide peroxidation in tissues deficient in vitamin E. Nature 184(Suppl 15):1148–1149

    Article  CAS  Google Scholar 

  59. Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M, Shan B, Pan H, Yuan J (2019) Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci USA 116:2996–3005. https://doi.org/10.1073/pnas.1819728116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Florean C, Song S, Dicato M, Diederich M (2019) Redox biology of regulated cell death in cancer: a focus on necroptosis and ferroptosis. Free Radical Biol Med 134:177–189. https://doi.org/10.1016/j.freeradbiomed.2019.01.008

    Article  CAS  Google Scholar 

  61. Lv Q, Niu H, Yue L, Liu J, Yang L, Liu C, Jiang H, Dong S, Shao Z, Xing L, Wang H (2020) Abnormal ferroptosis in myelodysplastic syndrome. Front Oncol 10:1656. https://doi.org/10.3389/fonc.2020.01656

    Article  PubMed  PubMed Central  Google Scholar 

  62. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D, Rådmark O, Kobayashi S, Seibt T, Beck H, Neff F, Esposito I, Wanke R, Förster H, Yefremova O, Heinrichmeyer M, Bornkamm GW, Geissler EK, Thomas SB, Stockwell BR, O’Donnell VB, Kagan VE, Schick JA, Conrad M (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16:1180–1191. https://doi.org/10.1038/ncb3064

    Article  CAS  PubMed  Google Scholar 

  63. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, Bassik MC, Nomura DK, Dixon SJ, Olzmann JA (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575:688–692. https://doi.org/10.1038/s41586-019-1705-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, Mourão A, Buday K, Sato M, Wanninger J, Vignane T, Mohana V, Rehberg M, Flatley A, Schepers A, Kurz A, White D, Sauer M, Sattler M, Tate EW, Schmitz W, Schulze A, O’Donnell V, Proneth B, Popowicz GM, Pratt DA, Angeli JPF, Conrad M (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575:693–698. https://doi.org/10.1038/s41586-019-1707-0

    Article  CAS  PubMed  Google Scholar 

  65. Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, Brandner S, Daniels JD, Schmitt-Kopplin P, Hauck SM, Stockwell BR, Hadian K, Schick JA (2020) GTP Cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci 6:41–53. https://doi.org/10.1021/acscentsci.9b01063

    Article  CAS  PubMed  Google Scholar 

  66. Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, Molina H, Garcia-Bermudez J, Pratt DA, Birsoy K (2020) Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol 16:1351–1360. https://doi.org/10.1038/s41589-020-0613-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Garcia-Bermudez J, Baudrier L, Bayraktar EC, Shen Y, La K, Guarecuco R, Yucel B, Fiore D, Tavora B, Freinkman E, Chan SH, Lewis C, Min W, Inghirami G, Sabatini DM, Birsoy K (2019) Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 567:118–122. https://doi.org/10.1038/s41586-019-0945-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, Poyurovsky MV, Olszewski K, Gan B (2021) DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593:586–590. https://doi.org/10.1038/s41586-021-03539-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang S-J, Li D, Ou Y, Jiang L, Chen Y, Zhao Y, Gu W (2016) Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep 17:366–373. https://doi.org/10.1016/j.celrep.2016.09.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Peng J-J, Song W-T, Yao F, Zhang X, Peng J, Luo X-J, Xia X-B (2020) Involvement of regulated necrosis in blinding diseases: Focus on necroptosis and ferroptosis. Exp Eye Res 191:107922. https://doi.org/10.1016/j.exer.2020.107922

    Article  CAS  PubMed  Google Scholar 

  71. Seibt TM, Proneth B, Conrad M (2019) Role of GPX4 in ferroptosis and its pharmacological implication. Free Radical Biol Med 133:144–152. https://doi.org/10.1016/j.freeradbiomed.2018.09.014

    Article  CAS  Google Scholar 

  72. Jiang L, Kon N, Li T, Wang S-J, Su T, Hibshoosh H, Baer R, Gu W (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62. https://doi.org/10.1038/nature14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J, Zhong M, Yuan H, Zhang L, Billiar TR, Lotze MT, Zeh HJ, Kang R, Kroemer G, Tang D (2017) The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 20:1692–1704. https://doi.org/10.1016/j.celrep.2017.07.055

    Article  CAS  PubMed  Google Scholar 

  74. Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J, Attardi LD, Dixon SJ (2018) p53 Suppresses metabolic stress-Induced ferroptosis in cancer cells. Cell Rep 22:569–575. https://doi.org/10.1016/j.celrep.2017.12.077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Anandhan A, Dodson M, Schmidlin CJ, Liu P, Zhang DD (2020) Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis. Cell Chem Biol 27:436–447. https://doi.org/10.1016/j.chembiol.2020.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV (2016) Iron and cancer: recent insights. Ann N Y Acad Sci 1368:149–161. https://doi.org/10.1111/nyas.13008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Torti SV, Torti FM (2013) Iron and cancer: more ore to be mined. Nat Rev Cancer 13:342–355. https://doi.org/10.1038/nrc3495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rojo de la Vega M, Chapman E, Zhang DD (2018) NRF2 and the hallmarks of cancer. Cancer Cell 34:21–43. https://doi.org/10.1016/j.ccell.2018.03.022

    Article  CAS  PubMed  Google Scholar 

  79. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D (2016) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology (Baltimore, MD) 63:173–184. https://doi.org/10.1002/hep.28251

    Article  CAS  PubMed  Google Scholar 

  80. Sakai O, Uchida T, Imai H, Ueta T (2016) Glutathione peroxidase 4 plays an important role in oxidative homeostasis and wound repair in corneal epithelial cells. FEBS Open Bio 6:1238–1247. https://doi.org/10.1002/2211-5463.12141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Otsu W, Ishida K, Chinen N, Nakamura S, Shimazawa M, Tsusaki H, Hara H (2021) Cigarette smoke extract and heated tobacco products promote ferritin cleavage and iron accumulation in human corneal epithelial cells. Sci Rep 11:18555. https://doi.org/10.1038/s41598-021-97956-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wei Z, Hao C, Huangfu J, Srinivasagan R, Zhang X, Fan X (2021) Aging lens epithelium is susceptible to ferroptosis. Free Radical Biol Med. https://doi.org/10.1016/j.freeradbiomed.2021.02.010

    Article  Google Scholar 

  83. Kasetti RB, Patel PD, Maddineni P, Patil S, Kiehlbauch C, Millar JC, Searby CC, Raghunathan V, Sheffield VC, Zode GS (2020) ATF4 leads to glaucoma by promoting protein synthesis and ER client protein load. Nat Commun 11:5594. https://doi.org/10.1038/s41467-020-19352-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sakamoto K, Suzuki T, Takahashi K, Koguchi T, Hirayama T, Mori A, Nakahara T, Nagasawa H, Ishii K (2018) Iron-chelating agents attenuate NMDA-induced neuronal injury via reduction of oxidative stress in the rat retina. Exp Eye Res 171:30–36. https://doi.org/10.1016/j.exer.2018.03.008

    Article  CAS  PubMed  Google Scholar 

  85. Yao F, Peng J, Zhang E, Ji D, Gao Z, Tang Y, Yao X, Xia X (2022) Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma. Cell Death Differ. https://doi.org/10.1038/s41418-022-01046-4

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zanon-Moreno V, Ciancotti-Olivares L, Asencio J, Sanz P, Ortega-Azorin C, Pinazo-Duran MD, Corella D (2011) Association between a SLC23A2 gene variation, plasma vitamin C levels, and risk of glaucoma in a Mediterranean population. Mol Vis 17:2997–3004

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ramdas WD (2018) The relation between dietary intake and glaucoma: a systematic review. Acta Ophthalmol 96:550–556. https://doi.org/10.1111/aos.13662

    Article  PubMed  Google Scholar 

  88. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59:298–308. https://doi.org/10.1016/j.molcel.2015.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola V-P, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the european society of cardiology (ESC). Developed with the special contribution of the heart failure association (HFA) of the ESC. Eur J Heart Fail 18:891–975. https://doi.org/10.1002/ejhf.592

    Article  PubMed  Google Scholar 

  90. Li Y, Wen Y, Liu X, Li Z, Lin B, Deng C, Yu Z, Zhu Y, Zhao L, Su W, Zhuo Y (2022) Single-cell RNA sequencing reveals a landscape and targeted treatment of ferroptosis in retinal ischemia/reperfusion injury. J Neuroinflammation 19:261. https://doi.org/10.1186/s12974-022-02621-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. von Mässenhausen A, Tonnus W, Linkermann A (2018) Cell death pathways drive necroinflammation during acute kidney injury. Nephron 140:144–147. https://doi.org/10.1159/000490807

    Article  CAS  Google Scholar 

  92. Chou R, Dana T, Bougatsos C, Grusing S, Blazina I (2016) Screening for impaired visual acuity in older adults: updated evidence report and systematic review for the US preventive services task force. JAMA 315:915–933. https://doi.org/10.1001/jama.2016.0783

    Article  CAS  PubMed  Google Scholar 

  93. Hernández-Zimbrón LF, Zamora-Alvarado R, Ochoa-De la Paz L, Velez-Montoya R, Zenteno E, Gulias-Cañizo R, Quiroz-Mercado H, Gonzalez-Salinas R (2018) Age-related macular degeneration: new paradigms for treatment and management of AMD. Oxid Med Cell Longev 2018:8374647. https://doi.org/10.1155/2018/8374647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dunaief JL, Richa C, Franks EP, Schultze RL, Aleman TS, Schenck JF, Zimmerman EA, Brooks DG (2005) Macular degeneration in a patient with aceruloplasminemia, a disease associated with retinal iron overload. Ophthalmology 112:1062–1065

    Article  PubMed  Google Scholar 

  95. Totsuka K, Ueta T, Uchida T, Roggia MF, Nakagawa S, Vavvas DG, Honjo M, Aihara M (2019) Oxidative stress induces ferroptotic cell death in retinal pigment epithelial cells. Exp Eye Res 181:316–324. https://doi.org/10.1016/j.exer.2018.08.019

    Article  CAS  PubMed  Google Scholar 

  96. Song D, Dunaief JL (2013) Retinal iron homeostasis in health and disease. Front aging neurosci 5:24. https://doi.org/10.3389/fnagi.2013.00024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sun Y, Zheng Y, Wang C, Liu Y (2018) Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells. Cell Death Dis 9:753. https://doi.org/10.1038/s41419-018-0794-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gupta U, Ghosh S, Wallace CT, Shang P, Xin Y, Nair AP, Yazdankhah M, Strizhakova A, Ross MA, Liu H, Hose S, Stepicheva NA, Chowdhury O, Nemani M, Maddipatla V, Grebe R, Das M, Lathrop KL, Sahel J-A, Zigler JS, Qian J, Ghosh A, Sergeev Y, Handa JT, St Croix CM, Sinha D (2022) Increased LCN2 (lipocalin 2) in the RPE decreases autophagy and activates inflammasome-ferroptosis processes in a mouse model of dry AMD. Autophagy. https://doi.org/10.1080/15548627.2022.2062887

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kiser PD, Golczak M, Palczewski K (2014) Chemistry of the retinoid (visual) cycle. Chem Rev 114:194–232. https://doi.org/10.1021/cr400107q

    Article  CAS  PubMed  Google Scholar 

  100. Liu X, Chen J, Liu Z, Li J, Yao K, Wu Y (2016) Potential therapeutic agents against retinal diseases caused by aberrant metabolism of retinoids. Invest Ophthalmol Vis Sci 57:1017–1030. https://doi.org/10.1167/iovs.15-18429

    Article  CAS  PubMed  Google Scholar 

  101. Maeda T, Golczak M, Maeda A (2012) Retinal photodamage mediated by all-trans-retinal. Photochem Photobiol 88:1309–1319. https://doi.org/10.1111/j.1751-1097.2012.01143.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Maeda A, Maeda T, Golczak M, Palczewski K (2008) Retinopathy in mice induced by disrupted all-trans-retinal clearance. J Biol Chem 283:26684–26693. https://doi.org/10.1074/jbc.M804505200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen Y, Okano K, Maeda T, Chauhan V, Golczak M, Maeda A, Palczewski K (2012) Mechanism of all-trans-retinal toxicity with implications for stargardt disease and age-related macular degeneration. J Biol Chem 287:5059–5069. https://doi.org/10.1074/jbc.M111.315432

    Article  CAS  PubMed  Google Scholar 

  104. Chen C, Chen J, Wang Y, Liu Z, Wu Y (2021) Ferroptosis drives photoreceptor degeneration in mice with defects in all-trans-retinal clearance. J Biol Chem 296:100187. https://doi.org/10.1074/jbc.RA120.015779

    Article  CAS  PubMed  Google Scholar 

  105. Liu Y, Bell BA, Song Y, Kim HJ, Sterling JK, Kim BJ, Poli M, Guo M, Zhang K, Rao A, Sparrow JR, Su G, Dunaief JL (2021) Intraocular iron injection induces oxidative stress followed by elements of geographic atrophy and sympathetic ophthalmia. Aging Cell 20:e13490. https://doi.org/10.1111/acel.13490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Thompson DA, Constable PA, Liasis A, Walters B, Esteban MT (2016) The physiology of the retinal pigment epithelium in danon disease. Retina (Philadelphia, Pa) 36:629–638. https://doi.org/10.1097/IAE.0000000000000736

    Article  CAS  PubMed  Google Scholar 

  107. He J, Wang Y, Jiang T (2014) Danon disease. A novel mutation in the LAMP-2 gene and ophthalmic abnormality. Herz 39:877–879. https://doi.org/10.1007/s00059-013-3900-5

    Article  CAS  PubMed  Google Scholar 

  108. Lee J-J, Ishihara K, Notomi S, Efstathiou NE, Ueta T, Maidana D, Chen X, Iesato Y, Caligiana A, Vavvas DG (2020) Lysosome-associated membrane protein-2 deficiency increases the risk of reactive oxygen species-induced ferroptosis in retinal pigment epithelial cells. Biochem Biophys Res Commun 521:414–419. https://doi.org/10.1016/j.bbrc.2019.10.138

    Article  CAS  PubMed  Google Scholar 

  109. Obolensky A, Berenshtein E, Lederman M, Bulvik B, Alper-Pinus R, Yaul R, Deleon E, Chowers I, Chevion M, Banin E (2011) Zinc-desferrioxamine attenuates retinal degeneration in the rd10 mouse model of retinitis pigmentosa. Free Radical Biol Med 51:1482–1491. https://doi.org/10.1016/j.freeradbiomed.2011.07.014

    Article  CAS  Google Scholar 

  110. Song D, Song Y, Hadziahmetovic M, Zhong Y, Dunaief JL (2012) Systemic administration of the iron chelator deferiprone protects against light-induced photoreceptor degeneration in the mouse retina. Free Radical Biol Med 53:64–71. https://doi.org/10.1016/j.freeradbiomed.2012.04.020

    Article  CAS  Google Scholar 

  111. Lu L, Oveson BC, Jo Y-J, Lauer TW, Usui S, Komeima K, Xie B, Campochiaro PA (2009) Increased expression of glutathione peroxidase 4 strongly protects retina from oxidative damage. Antioxid Redox Signal 11:715–724. https://doi.org/10.1089/ARS.2008.2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Usui S, Oveson BC, Iwase T, Lu L, Lee SY, Jo Y-J, Wu Z, Choi E-Y, Samulski RJ, Campochiaro PA (2011) Overexpression of SOD in retina: need for increase in H2O2-detoxifying enzyme in same cellular compartment. Free Radical Biol Med 51:1347–1354. https://doi.org/10.1016/j.freeradbiomed.2011.06.010

    Article  CAS  Google Scholar 

  113. Cheloni R, Gandolfi SA, Signorelli C, Odone A (2019) Global prevalence of diabetic retinopathy: protocol for a systematic review and meta-analysis. BMJ Open 9:e022188. https://doi.org/10.1136/bmjopen-2018-022188

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ola MS, Alhomida AS, LaNoue KF (2019) Gabapentin attenuates oxidative stress and apoptosis in the diabetic rat retina. Neurotox Res 36:81–90. https://doi.org/10.1007/s12640-019-00018-w

    Article  CAS  PubMed  Google Scholar 

  115. Oskarsson ME, Paulsson JF, Schultz SW, Ingelsson M, Westermark P, Westermark GT (2015) In vivo seeding and cross-seeding of localized amyloidosis: a molecular link between type 2 diabetes and Alzheimer disease. Am J Pathol 185:834–846. https://doi.org/10.1016/j.ajpath.2014.11.016

    Article  CAS  PubMed  Google Scholar 

  116. Zhang Y-H, Wang D-W, Xu S-F, Zhang S, Fan Y-G, Yang Y-Y, Guo S-Q, Wang S, Guo T, Wang Z-Y, Guo C (2018) α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S tau transgenic mice. Redox Biol 14:535–548. https://doi.org/10.1016/j.redox.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  117. Ning A, Cui J, To E, Ashe KH, Matsubara J (2008) Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Vis Sci 49:5136–5143. https://doi.org/10.1167/iovs.08-1849

    Article  PubMed  Google Scholar 

  118. Yang X, Huo F, Liu B, Liu J, Chen T, Li J, Zhu Z, Lv B (2017) Crocin inhibits oxidative stress and pro-inflammatory response of microglial cells associated with diabetic retinopathy through the activation of PI3K/Akt signaling pathway. J mol neurosci: MN 61:581–589. https://doi.org/10.1007/s12031-017-0899-8

    Article  CAS  PubMed  Google Scholar 

  119. Liu H, Tang J, Du Y, Saadane A, Samuels I, Veenstra A, Kiser JZ, Palczewski K, Kern TS (2019) Transducin1, phototransduction and the development of early diabetic retinopathy. Invest Ophthalmol Vis Sci 60:1538–1546. https://doi.org/10.1167/iovs.18-26433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Millán I, Desco MDC, Torres-Cuevas I, Pérez S, Pulido I, Mena-Mollá S, Mataix J, Asensi M, Ortega ÁL (2019) Pterostilbene prevents early diabetic retinopathy alterations in a rabbit experimental model. Nutrients. https://doi.org/10.3390/nu12010082

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wang W, Zhao H, Chen B (2020) DJ-1 protects retinal pericytes against high glucose-induced oxidative stress through the Nrf2 signaling pathway. Sci Rep. https://doi.org/10.1038/s41598-020-59408-2

    Article  PubMed  PubMed Central  Google Scholar 

  122. Chen N, Li Y, Huang N, Yao J, Luo W-F, Jiang Q (2020) The Nrf2 activator MIND4-17 protects retinal ganglion cells from high glucose-induced oxidative injury. J Cell Physiol 235:7204–7213. https://doi.org/10.1002/jcp.29619

    Article  CAS  PubMed  Google Scholar 

  123. Liu C, Sun W, Zhu T, Shi S, Zhang J, Wang J, Gao F, Ou Q, Jin C, Li J, Xu J-Y, Zhang J, Tian H, Xu G-T, Lu L (2022) Glia maturation factor-β induces ferroptosis by impairing chaperone-mediated autophagic degradation of ACSL4 in early diabetic retinopathy. Redox Biol 52:102292. https://doi.org/10.1016/j.redox.2022.102292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nie J, Lin B, Zhou M, Wu L, Zheng T (2018) Role of ferroptosis in hepatocellular carcinoma. J Cancer Res Clin Oncol 144:2329–2337. https://doi.org/10.1007/s00432-018-2740-3

    Article  CAS  PubMed  Google Scholar 

  125. Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB, Jiang X (2019) Role of mitochondria in ferroptosis. Mol Cell. https://doi.org/10.1016/j.molcel.2018.10.042

    Article  PubMed  PubMed Central  Google Scholar 

  126. Liu K, Huang J, Liu J, Klionsky DJ, Kang R, Tang D (2022) Induction of autophagy-dependent ferroptosis to eliminate drug-tolerant human retinoblastoma cells. Cell Death Dis 13:521. https://doi.org/10.1038/s41419-022-04974-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

KXL: carried out literature searches, wrote the initial draft and edited the paper; HZL: collected the data and edited the paper; FW, YS: conceptualized, reviewed and edited the paper. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Feng Wang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Li, H., Wang, F. et al. Ferroptosis: mechanisms and advances in ocular diseases. Mol Cell Biochem 478, 2081–2095 (2023). https://doi.org/10.1007/s11010-022-04644-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04644-5

Keywords

Navigation