Skip to main content

Advertisement

Log in

Microtubules as a potential platform for energy transfer in biological systems: a target for implementing individualized, dynamic variability patterns to improve organ function

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Variability characterizes the complexity of biological systems and is essential for their function. Microtubules (MTs) play a role in structural integrity, cell motility, material transport, and force generation during mitosis, and dynamic instability exemplifies the variability in the proper function of MTs. MTs are a platform for energy transfer in cells. The dynamic instability of MTs manifests itself by the coexistence of growth and shortening, or polymerization and depolymerization. It results from a balance between attractive and repulsive forces between tubulin dimers. The paper reviews the current data on MTs and their potential roles as energy-transfer cellular structures and presents how variability can improve the function of biological systems in an individualized manner. The paper presents the option for targeting MTs to trigger dynamic improvement in cell plasticity, regulate energy transfer, and possibly control quantum effects in biological systems. The described system quantifies MT-dependent variability patterns combined with additional personalized signatures to improve organ function in a subject-tailored manner. The platform can regulate the use of MT-targeting drugs to improve the response to chronic therapies. Ongoing trials test the effects of this platform on various disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data is included and is part of public domains.

Abbreviations

MTs:

Microtubules

AFs:

Actin filaments

Ifs:

Intermediate filaments

GTP:

Guanosine-5'-triphosphate

MAPs:

Microtubule-associated proteins

PCAF:

P300/CBP-associated factor

EB1:

End binding 1

TIPs:

Plus-end tracking proteins

IFT:

Intraflagellar transport

CP110:

Centriolar coiled coil protein 110

PACRG:

Parkin coregulated gene

ATP:

Adenosine triphosphate

ADP:

Adenosine diphosphate

TTs:

C-terminal tails

VDAC:

Voltage-dependent anion-selective channel

Trp:

Tryptophan

RET:

Resonance energy transfer

ROS:

Reactive oxygen species

CNS:

Central nervous system

CaMKII:

Ca/calmodulin-dependent kinase II

Orch OR:

Orchestrated objective reduction

OR:

Objective reduction

QMT:

Quantum mobility theory

POCD:

Postoperative cognitive dysfunction

CBS:

Colchicine binding site

FMF:

Familial Mediterranean fever

References

  1. Ilan Y (2019) Overcoming randomness does not rule out the importance of inherent randomness for functionality. J Biosci 44:1–12

    Article  Google Scholar 

  2. Ilan Y (2020) Advanced tailored randomness: a novel approach for improving the efficacy of biological systems. J Comput Biol 27:20–29. https://doi.org/10.1089/cmb.2019.0231

    Article  CAS  Google Scholar 

  3. Ilan Y (2019) beta-glycosphingolipids as mediators of both inflammation and immune tolerance: a manifestation of randomness in biological systems. Front Immunol 10:1143. https://doi.org/10.3389/fimmu.2019.01143

    Article  CAS  Google Scholar 

  4. Ilan Y (2019) Generating randomness: making the most out of disordering a false order into a real one. J Transl Med 17:49. https://doi.org/10.1186/s12967-019-1798-2

    Article  Google Scholar 

  5. Kenig A, Ilan Y (2019) A personalized signature and chronotherapy-based platform for improving the efficacy of sepsis treatment. Front Physiol 10:1542. https://doi.org/10.3389/fphys.2019.01542

    Article  Google Scholar 

  6. Khoury T, Ilan Y (2019) introducing patterns of variability for overcoming compensatory adaptation of the immune system to immunomodulatory agents: a novel method for improving clinical response to anti-TNF therapies. Front Immunol 10:2726. https://doi.org/10.3389/fimmu.2019.02726

    Article  CAS  Google Scholar 

  7. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242. https://doi.org/10.1038/312237a0

    Article  CAS  Google Scholar 

  8. Burbank KS, Mitchison TJ (2006) Microtubule dynamic instability. Curr Biol 16:R516–R517. https://doi.org/10.1016/j.cub.2006.06.044

    Article  CAS  Google Scholar 

  9. Ilan Y (2019) Randomness in microtubule dynamics: an error that requires correction or an inherent plasticity required for normal cellular function? Cell Biol Int 43:739–748. https://doi.org/10.1002/cbin.11157

    Article  Google Scholar 

  10. Marais A, Adams B, Ringsmuth AK, Ferretti M, Gruber JM, Hendrikx R, Schuld M, Smith SL, Sinayskiy I, Kruger TPJ, Petruccione F, van Grondelle R (2018) The future of quantum biology. J R Soc Interface. https://doi.org/10.1098/rsif.2018.0640

    Article  Google Scholar 

  11. Brookes JC (2017) Quantum effects in biology: golden rule in enzymes, olfaction, photosynthesis and magnetodetection. Proc Math Phys Eng Sci 473:20160822. https://doi.org/10.1098/rspa.2016.0822

    Article  Google Scholar 

  12. Hameroff S, Penrose R (2014) Consciousness in the universe: a review of the “Orch OR” theory. Phys Life Rev 11:39–78. https://doi.org/10.1016/j.plrev.2013.08.002

    Article  Google Scholar 

  13. Needleman DJ, Ojeda-Lopez MA, Raviv U, Ewert K, Miller HP, Wilson L, Safinya CR (2005) Radial compression of microtubules and the mechanism of action of taxol and associated proteins. Biophys J 89:3410–3423. https://doi.org/10.1529/biophysj.104.057679

    Article  CAS  Google Scholar 

  14. Moujaber O, Stochaj U (2020) The cytoskeleton as regulator of cell signaling pathways. Trends Biochem Sci 45:96–107. https://doi.org/10.1016/j.tibs.2019.11.003

    Article  CAS  Google Scholar 

  15. Ilan-Ber T, Ilan Y (2019) The role of microtubules in the immune system and as potential targets for gut-based immunotherapy. Mol Immunol 111:73–82. https://doi.org/10.1016/j.molimm.2019.04.014

    Article  CAS  Google Scholar 

  16. Hamant O, Inoue D, Bouchez D, Dumais J, Mjolsness E (2019) Are microtubules tension sensors? Nat Commun 10:2360. https://doi.org/10.1038/s41467-019-10207-y

    Article  CAS  Google Scholar 

  17. Ilan Y (2019) Microtubules: from understanding their dynamics to using them as potential therapeutic targets. J Cell Physiol 234:7923–7937. https://doi.org/10.1002/jcp.27978

    Article  CAS  Google Scholar 

  18. Goodson HV, Jonasson EM (2018) Microtubules and microtubule-associated proteins. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a022608

    Article  Google Scholar 

  19. Fischer RS, Fowler VM (2015) Thematic minireview series: the state of the cytoskeleton in 2015. J Biol Chem 290:17133–17136. https://doi.org/10.1074/jbc.R115.663716

    Article  CAS  Google Scholar 

  20. Gildersleeve RF, Cross AR, Cullen KE, Fagen AP, Williams RC Jr (1992) Microtubules grow and shorten at intrinsically variable rates. J Biol Chem 267:7995–8006

    Article  CAS  Google Scholar 

  21. Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117. https://doi.org/10.1146/annurev.cellbio.13.1.83

    Article  CAS  Google Scholar 

  22. Ayoub AT, Staelens M, Prunotto A, Deriu MA, Danani A, Klobukowski M, Tuszynski JA (2017) Explaining the microtubule energy balance: contributions due to dipole moments, charges, van der waals and solvation energy. Int J Mol Sci. https://doi.org/10.3390/ijms18102042

    Article  Google Scholar 

  23. Sept D, Baker NA, McCammon JA (2003) The physical basis of microtubule structure and stability. Protein Sci 12:2257–2261. https://doi.org/10.1110/ps.03187503

    Article  CAS  Google Scholar 

  24. Matov A, Applegate K, Kumar P, Thoma C, Krek W, Danuser G, Wittmann T (2010) Analysis of microtubule dynamic instability using a plus-end growth marker. Nat Methods 7:761–768. https://doi.org/10.1038/nmeth.1493

    Article  CAS  Google Scholar 

  25. Brouhard GJ (2015) Dynamic instability 30 years later: complexities in microtubule growth and catastrophe. Mol Biol Cell 26:1207–1210. https://doi.org/10.1091/mbc.E13-10-0594

    Article  CAS  Google Scholar 

  26. Mitchison T, Kirschner M (1984) Microtubule assembly nucleated by isolated centrosomes. Nature 312:232–237. https://doi.org/10.1038/312232a0

    Article  CAS  Google Scholar 

  27. Mitchison TJ (2014) The engine of microtubule dynamics comes into focus. Cell 157:1008–1010. https://doi.org/10.1016/j.cell.2014.05.001

    Article  CAS  Google Scholar 

  28. Billger MA, Bhattacharjee G, Williams RC Jr (1996) Dynamic instability of microtubules assembled from microtubule-associated protein-free tubulin: neither variability of growth and shortening rates nor “rescue” requires microtubule-associated proteins. Biochemistry 35:13656–13663. https://doi.org/10.1021/bi9616965

    Article  CAS  Google Scholar 

  29. Gasic I, Mitchison TJ (2019) Autoregulation and repair in microtubule homeostasis. Curr Opin Cell Biol 56:80–87. https://doi.org/10.1016/j.ceb.2018.10.003

    Article  CAS  Google Scholar 

  30. Benarroch EE (2016) Dynamics of microtubules and their associated proteins: recent insights and clinical implications. Neurology 86:1911–1920. https://doi.org/10.1212/WNL.0000000000002686

    Article  Google Scholar 

  31. Ward T, Wang M, Liu X, Wang Z, Xia P, Chu Y, Wang X, Liu L, Jiang K, Yu H, Yan M, Wang J, Hill DL, Huang Y, Zhu T, Yao X (2013) Regulation of a dynamic interaction between two microtubule-binding proteins, EB1 and TIP150, by the mitotic p300/CBP-associated factor (PCAF) orchestrates kinetochore microtubule plasticity and chromosome stability during mitosis. J Biol Chem 288:15771–15785. https://doi.org/10.1074/jbc.M112.448886

    Article  CAS  Google Scholar 

  32. Xia P, Wang Z, Liu X, Wu B, Wang J, Ward T, Zhang L, Ding X, Gibbons G, Shi Y, Yao X (2012) EB1 acetylation by P300/CBP-associated factor (PCAF) ensures accurate kinetochore-microtubule interactions in mitosis. Proc Natl Acad Sci USA 109:16564–16569. https://doi.org/10.1073/pnas.1202639109

    Article  Google Scholar 

  33. Kuhlman SJ, Craig LM, Duffy JF (2018) Introduction to chronobiology. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a033613

    Article  Google Scholar 

  34. Qian J, Gelens L, Bollen M (2019) Coordination of timers and sensors in cell signaling. BioEssays 41:e1800217. https://doi.org/10.1002/bies.201800217

    Article  Google Scholar 

  35. Mora-Santos MD, Hervas-Aguilar A, Sewart K, Lancaster TC, Meadows JC, Millar JB (2016) Bub3-Bub1 binding to Spc7/KNL1 toggles the spindle checkpoint switch by licensing the interaction of Bub1 with Mad1-Mad2. Curr Biol 26:2642–2650. https://doi.org/10.1016/j.cub.2016.07.040

    Article  CAS  Google Scholar 

  36. Anderson CA, Eser U, Korndorf T, Borsuk ME, Skotheim JM, Gladfelter AS (2013) Nuclear repulsion enables division autonomy in a single cytoplasm. Curr Biol 23:1999–2010. https://doi.org/10.1016/j.cub.2013.07.076

    Article  CAS  Google Scholar 

  37. Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST (2019) Cellular signalling by primary cilia in development, organ function and disease. Nat Rev Nephrol 15:199–219. https://doi.org/10.1038/s41581-019-0116-9

    Article  Google Scholar 

  38. Lechtreck KF, Van De Weghe JC, Harris JA, Liu P (2017) Protein transport in growing and steady-state cilia. Traffic 18:277–286. https://doi.org/10.1111/tra.12474

    Article  CAS  Google Scholar 

  39. Yadav SP, Sharma NK, Liu C, Dong L, Li T, Swaroop A (2016) Centrosomal protein CP110 controls maturation of the mother centriole during cilia biogenesis. Development 143:1491–1501. https://doi.org/10.1242/dev.130120

    Article  CAS  Google Scholar 

  40. Loucks CM, Bialas NJ, Dekkers MP, Walker DS, Grundy LJ, Li C, Inglis PN, Kida K, Schafer WR, Blacque OE, Jansen G, Leroux MR (2016) PACRG, a protein linked to ciliary motility, mediates cellular signaling. Mol Biol Cell 27:2133–2144. https://doi.org/10.1091/mbc.E15-07-0490

    Article  Google Scholar 

  41. Gasic I, Boswell SA, Mitchison TJ (2019) Tubulin mRNA stability is sensitive to change in microtubule dynamics caused by multiple physiological and toxic cues. PLoS Biol 17:e3000225. https://doi.org/10.1371/journal.pbio.3000225

    Article  CAS  Google Scholar 

  42. Hameroff SR, Craddock TJ, Tuszynski JA (2014) Quantum effects in the understanding of consciousness. J Integr Neurosci 13:229–252. https://doi.org/10.1142/S0219635214400093

    Article  Google Scholar 

  43. Heurs M (2018) Gravitational wave detection using laser interferometry beyond the standard quantum limit. Philos Trans A Math Phys Eng Sci. https://doi.org/10.1098/rsta.2017.0289

    Article  Google Scholar 

  44. Torday JS (2018) Quantum mechanics predicts evolutionary biology. Prog Biophys Mol Biol 135:11–15. https://doi.org/10.1016/j.pbiomolbio.2018.01.003

    Article  CAS  Google Scholar 

  45. Aerts D (2014) Quantum theory and human perception of the macro-world. Front Psychol 5:554. https://doi.org/10.3389/fpsyg.2014.00554

    Article  Google Scholar 

  46. Hameroff SR (2018) Anesthetic action and “quantum consciousness”: a match made in olive oil. Anesthesiology 129:228–231. https://doi.org/10.1097/ALN.0000000000002273

    Article  Google Scholar 

  47. Craddock TJ, Tuszynski JA (2010) A critical assessment of the information processing capabilities of neuronal microtubules using coherent excitations. J Biol Phys 36:53–70. https://doi.org/10.1007/s10867-009-9158-8

    Article  Google Scholar 

  48. Nicosia A, Nikas DN, Castriota F, Reimers B (2009) Diagnosis and management of periprocedural complications of carotid artery stenting. G Ital Cardiol (Rome) 10:718–724

    Google Scholar 

  49. Harney M (2020) The effects of quantum entanglement on chromatin and gene expression. Adv Exp Med Biol 1195:73–76. https://doi.org/10.1007/978-3-030-32633-3_11

    Article  CAS  Google Scholar 

  50. Wen XG (2019) Choreographed entanglement dances: Topological states of quantum matter. Science. https://doi.org/10.1126/science.aal3099

    Article  Google Scholar 

  51. Axelrod S, Brumer P (2019) Multiple time scale open systems: reaction rates and quantum coherence in model retinal photoisomerization under incoherent excitation. J Chem Phys 151:014104. https://doi.org/10.1063/1.5099969

    Article  CAS  Google Scholar 

  52. Majumdar S, Pal S (2017) Bacterial intelligence: imitation games, time-sharing, and long-range quantum coherence. J Cell Commun Signal 11:281–284. https://doi.org/10.1007/s12079-017-0394-6

    Article  Google Scholar 

  53. Badra NK (2019) Revised standard model of physics and origin of biology. J Appl Phys 11:12–40

    Google Scholar 

  54. Frohlich H (1968) Long range coherence and energy storage in biological systems. Int J Quant Chem 2:641–649

    Article  Google Scholar 

  55. Demetrius L (2003) Quantum statistics and alometric scaling of organisms. Physica A 322:477–490

    Article  CAS  Google Scholar 

  56. Davies P, Demetrius LA, Tuszynski JA (2012) Implications of quantum metabolism and natural selection for the origin of cancer cells and tumor progression. AIP Adv 2:11101. https://doi.org/10.1063/1.3697850

    Article  CAS  Google Scholar 

  57. Mailloux RJ (2015) Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol 4:381–398. https://doi.org/10.1016/j.redox.2015.02.001

    Article  CAS  Google Scholar 

  58. Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T, Cheng YC, Blankenship RE, Fleming GR (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–786. https://doi.org/10.1038/nature05678

    Article  CAS  Google Scholar 

  59. Craddock TJ, Friesen D, Mane J, Hameroff S, Tuszynski JA (2014) The feasibility of coherent energy transfer in microtubules. J R Soc Interface 11:20140677. https://doi.org/10.1098/rsif.2014.0677

    Article  CAS  Google Scholar 

  60. Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ, Wu Q (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5:3847–3854. https://doi.org/10.1021/am4005072

    Article  CAS  Google Scholar 

  61. Dudev T, Lim C (2010) Factors governing the Na(+) vs K(+) selectivity in sodium ion channels. J Am Chem Soc 132:2321–2332. https://doi.org/10.1021/ja909280g

    Article  CAS  Google Scholar 

  62. MacKinnon R (2003) Potassium channels. FEBS Lett 555:62–65. https://doi.org/10.1016/s0014-5793(03)01104-9

    Article  CAS  Google Scholar 

  63. Vaziri AP, M.B. (2010) Quantum coherence in ion channels: resonances, transport and verification. New J Phys 12:085001

    Article  Google Scholar 

  64. Schmidt MI, Ruedenberg J, K, (2014) Covalent bonds are created by the drive of electron waves to lower their kinetic energy through expansion. J Chem Phys 28:204104

    Article  Google Scholar 

  65. Albrecht-Buehler G (1998) Altered drug resistance of microtubules in cells exposed to infrared light pulses: are microtubules the “nerves” of cells? Cell Motil Cytoskeleton 40:183–192. https://doi.org/10.1002/(SICI)1097-0169(1998)40:2%3c183::AID-CM7%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  66. Barvitenko N, Lawen A, Aslam M, Pantaleo A, Saldanha C, Skverchinskaya E, Regolini M, Tuszynski JA (2018) Integration of intracellular signaling: biological analogues of wires, processors and memories organized by a centrosome 3D reference system. Biosystems 173:191–206. https://doi.org/10.1016/j.biosystems.2018.08.007

    Article  CAS  Google Scholar 

  67. Santelices IB, Friesen DE, Bell C, Hough CM, Xiao J, Kalra A, Kar P, Freedman H, Rezania V, Lewis JD, Shankar K, Tuszynski JA (2017) Response to alternating electric fields of tubulin dimers and microtubule ensembles in electrolytic solutions. Sci Rep 7:9594. https://doi.org/10.1038/s41598-017-09323-w

    Article  Google Scholar 

  68. Friesen DE, Craddock TJ, Kalra AP, Tuszynski JA (2015) Biological wires, communication systems, and implications for disease. Biosystems 127:14–27. https://doi.org/10.1016/j.biosystems.2014.10.006

    Article  CAS  Google Scholar 

  69. Tuszynski JA, Portet S, Dixon JM, Luxford C, Cantiello HF (2004) Ionic wave propagation along actin filaments. Biophys J 86:1890–1903. https://doi.org/10.1016/S0006-3495(04)74255-1

    Article  CAS  Google Scholar 

  70. Poznanski RR, Cacha LA, Al-Wesabi YMS, Ali J, Bahadoran M, Yupapin PP, Yunus J (2017) Erratum: solitonic conduction of electrotonic signals in neuronal branchlets with polarized microstructure. Sci Rep 7:10675. https://doi.org/10.1038/s41598-017-07626-6

    Article  CAS  Google Scholar 

  71. Kalra AP, Eakins BB, Patel SD, Ciniero G, Rezania V, Shankar K, Tuszynski JA (2020) All wired up: an exploration of the electrical properties of microtubules and tubulin. ACS Nano. https://doi.org/10.1021/acsnano.0c06945

    Article  Google Scholar 

  72. Shen J, Zhang JH, Xiao H, Wu JM, He KM, Lv ZZ, Li ZJ, Xu M, Zhang YY (2018) Mitochondria are transported along microtubules in membrane nanotubes to rescue distressed cardiomyocytes from apoptosis. Cell Death Dis 9:81. https://doi.org/10.1038/s41419-017-0145-x

    Article  CAS  Google Scholar 

  73. Shen C, Guo W (2018) Ion permeability of a microtubule in neuron environment. J Phys Chem Lett 9:2009–2014. https://doi.org/10.1021/acs.jpclett.8b00324

    Article  CAS  Google Scholar 

  74. Cantero MDR, Villa Etchegoyen C, Perez PL, Scarinci N, Cantiello HF (2018) Bundles of brain microtubules generate electrical oscillations. Sci Rep 8:11899. https://doi.org/10.1038/s41598-018-30453-2

    Article  CAS  Google Scholar 

  75. Cantero MDR, Perez PL, Scarinci N, Cantiello HF (2019) Two-dimensional brain microtubule structures behave as memristive devices. Sci Rep 9:12398. https://doi.org/10.1038/s41598-019-48677-1

    Article  CAS  Google Scholar 

  76. Kalra AP, Patel SD, Bhuiyan AF, Preto J, Scheuer KG, Mohammed U, Lewis JD, Rezania V, Shankar K, Tuszynski JA (2020) Investigation of the electrical properties of microtubule ensembles under cell-like conditions. Nanomaterials (Basel). https://doi.org/10.3390/nano10020265

    Article  Google Scholar 

  77. Minoura I, Muto E (2006) Dielectric measurement of individual microtubules using the electroorientation method. Biophys J 90:3739–3748. https://doi.org/10.1529/biophysj.105.071324

    Article  CAS  Google Scholar 

  78. Heimburg T, Jackson AD (2005) On soliton propagation in biomembranes and nerves. Proc Natl Acad Sci USA 102:9790–9795. https://doi.org/10.1073/pnas.0503823102

    Article  CAS  Google Scholar 

  79. Leitner DM (2008) Energy flow in proteins. Annu Rev Phys Chem 59:233–259. https://doi.org/10.1146/annurev.physchem.59.032607.093606

    Article  CAS  Google Scholar 

  80. Pokorny J, Foletti A, Kobilkova J, Jandova A, Vrba J, Vrba J Jr, Nedbalova M, Cocek A, Danani A, Tuszynski JA (2013) Biophysical insights into cancer transformation and treatment. Sci World J 2013:195028. https://doi.org/10.1155/2013/195028

    Article  CAS  Google Scholar 

  81. Priel A, Ramos AJ, Tuszynski JA, Cantiello HF (2006) A biopolymer transistor: electrical amplification by microtubules. Biophys J 90:4639–4643. https://doi.org/10.1529/biophysj.105.078915

    Article  CAS  Google Scholar 

  82. Tuszynski JA (2019) The bioelectric circuitry of the cell. In: Horner S, Noetscher M (eds) Brain and human body modeling Makarov. Springer, Cham, pp 195–208

    Chapter  Google Scholar 

  83. Timmons JJ, Preto J, Tuszynski JA, Wong ET (2018) Tubulin’s response to external electric fields by molecular dynamics simulations. PLoS ONE 13:e0202141. https://doi.org/10.1371/journal.pone.0202141

    Article  CAS  Google Scholar 

  84. Ma W, Korngreen A, Weil S, Cohen EB, Priel A, Kuzin L, Silberberg SD (2006) Pore properties and pharmacological features of the P2X receptor channel in airway ciliated cells. J Physiol 571:503–517. https://doi.org/10.1113/jphysiol.2005.103408

    Article  CAS  Google Scholar 

  85. Uray IP, Uray K (2021) Mechanotransduction at the plasma membrane-cytoskeleton interface. Int J Mol Sci. https://doi.org/10.3390/ijms222111566

    Article  Google Scholar 

  86. Priel A, Ramos AJ, Tuszynski JA, Cantiello HF (2008) Effect of calcium on electrical energy transfer by microtubules. J Biol Phys 34:475–485. https://doi.org/10.1007/s10867-008-9106-z

    Article  CAS  Google Scholar 

  87. Vassilev P, Kanazirska M (1985) The role of cytoskeleton in the mechanisms of electric field effects and information transfer in cellular systems. Med Hypotheses 16:93–96. https://doi.org/10.1016/0306-9877(85)90065-9

    Article  CAS  Google Scholar 

  88. Vassilev P, Kanazirska M, Tien HT (1985) Intermembrane linkage mediated by tubulin. Biochem Biophys Res Commun 126:559–565. https://doi.org/10.1016/0006-291x(85)90642-4

    Article  CAS  Google Scholar 

  89. Kerr JP, Robison P, Shi G, Bogush AI, Kempema AM, Hexum JK, Becerra N, Harki DA, Martin SS, Raiteri R, Prosser BL, Ward CW (2015) Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nat Commun 6:8526. https://doi.org/10.1038/ncomms9526

    Article  CAS  Google Scholar 

  90. Delphin C, Bouvier D, Seggio M, Couriol E, Saoudi Y, Denarier E, Bosc C, Valiron O, Bisbal M, Arnal I, Andrieux A (2012) MAP6-F is a temperature sensor that directly binds to and protects microtubules from cold-induced depolymerization. J Biol Chem 287:35127–35138. https://doi.org/10.1074/jbc.M112.398339

    Article  CAS  Google Scholar 

  91. Lefevre J, Chernov KG, Joshi V, Delga S, Toma F, Pastre D, Curmi PA, Savarin P (2011) The C terminus of tubulin, a versatile partner for cationic molecules: binding of Tau, polyamines, and calcium. J Biol Chem 286:3065–3078. https://doi.org/10.1074/jbc.M110.144089

    Article  CAS  Google Scholar 

  92. Solomon F (1977) Binding sites for calcium on tubulin. Biochemistry 16:358–363. https://doi.org/10.1021/bi00622a003

    Article  CAS  Google Scholar 

  93. Regula CS, Pfeiffer JR, Berlin RD (1981) Microtubule assembly and disassembly at alkaline pH. J Cell Biol 89:45–53. https://doi.org/10.1083/jcb.89.1.45

    Article  CAS  Google Scholar 

  94. Devillard L, Vandroux D, Tissier C, Brochot A, Voisin S, Rochette L, Athias P (2006) Tubulin ligands suggest a microtubule-NADPH oxidase relationship in postischemic cardiomyocytes. Eur J Pharmacol 548:64–73. https://doi.org/10.1016/j.ejphar.2006.08.004

    Article  CAS  Google Scholar 

  95. Loncarek J, Bettencourt-Dias M (2018) Building the right centriole for each cell type. J Cell Biol 217:823–835. https://doi.org/10.1083/jcb.201704093

    Article  CAS  Google Scholar 

  96. Janke C (2014) The tubulin code: molecular components, readout mechanisms, and functions. J Cell Biol 206:461–472. https://doi.org/10.1083/jcb.201406055

    Article  CAS  Google Scholar 

  97. Wloga D, Gaertig J (2010) Post-translational modifications of microtubules. J Cell Sci 123:3447–3455. https://doi.org/10.1242/jcs.063727

    Article  CAS  Google Scholar 

  98. Berling B, Wille H, Roll B, Mandelkow EM, Garner C, Mandelkow E (1994) Phosphorylation of microtubule-associated proteins MAP2a, b and MAP2c at Ser136 by proline-directed kinases in vivo and in vitro. Eur J Cell Biol 64:120–130

    CAS  Google Scholar 

  99. Zhu B, Zhang L, Creighton J, Alexeyev M, Strada SJ, Stevens T (2010) Protein kinase A phosphorylation of tau-serine 214 reorganizes microtubules and disrupts the endothelial cell barrier. Am J Physiol Lung Cell Mol Physiol 299:L493-501. https://doi.org/10.1152/ajplung.00431.2009

    Article  CAS  Google Scholar 

  100. Alfaro-Aco R, Petry S (2015) Building the microtubule cytoskeleton piece by piece. J Biol Chem 290:17154–17162. https://doi.org/10.1074/jbc.R115.638452

    Article  CAS  Google Scholar 

  101. Reed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, Verhey KJ (2006) Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 16:2166–2172. https://doi.org/10.1016/j.cub.2006.09.014

    Article  CAS  Google Scholar 

  102. Arce CA, Casale CH, Barra HS (2008) Submembraneous microtubule cytoskeleton: regulation of ATPases by interaction with acetylated tubulin. FEBS J 275:4664–4674. https://doi.org/10.1111/j.1742-4658.2008.06615.x

    Article  CAS  Google Scholar 

  103. Aguilar A, Becker L, Tedeschi T, Heller S, Iomini C, Nachury MV (2014) Alpha-tubulin K40 acetylation is required for contact inhibition of proliferation and cell-substrate adhesion. Mol Biol Cell 25:1854–1866. https://doi.org/10.1091/mbc.E13-10-0609

    Article  CAS  Google Scholar 

  104. Shah N, Kumar S, Zaman N, Pan CC, Bloodworth JC, Lei W, Streicher JM, Hempel N, Mythreye K, Lee NY (2018) TAK1 activation of alpha-TAT1 and microtubule hyperacetylation control AKT signaling and cell growth. Nat Commun 9:1696. https://doi.org/10.1038/s41467-018-04121-y

    Article  CAS  Google Scholar 

  105. Xu Z, Schaedel L, Portran D, Aguilar A, Gaillard J, Marinkovich MP, Thery M, Nachury MV (2017) Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science 356:328–332. https://doi.org/10.1126/science.aai8764

    Article  CAS  Google Scholar 

  106. Tran AD, Marmo TP, Salam AA, Che S, Finkelstein E, Kabarriti R, Xenias HS, Mazitschek R, Hubbert C, Kawaguchi Y, Sheetz MP, Yao TP, Bulinski JC (2007) HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. J Cell Sci 120:1469–1479. https://doi.org/10.1242/jcs.03431

    Article  CAS  Google Scholar 

  107. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458. https://doi.org/10.1038/417455a

    Article  CAS  Google Scholar 

  108. Matsuyama A, Shimazu T, Sumida Y, Saito A, Yoshimatsu Y, Seigneurin-Berny D, Osada H, Komatsu Y, Nishino N, Khochbin S, Horinouchi S, Yoshida M (2002) In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J 21:6820–6831. https://doi.org/10.1093/emboj/cdf682

    Article  CAS  Google Scholar 

  109. Rai A, Kapoor S, Singh S, Chatterji BP, Panda D (2015) Transcription factor NF-kappaB associates with microtubules and stimulates apoptosis in response to suppression of microtubule dynamics in MCF-7 cells. Biochem Pharmacol 93:277–289. https://doi.org/10.1016/j.bcp.2014.12.007

    Article  CAS  Google Scholar 

  110. Giannakakou P, Sackett DL, Ward Y, Webster KR, Blagosklonny MV, Fojo T (2000) p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat Cell Biol 2:709–717. https://doi.org/10.1038/35036335

    Article  CAS  Google Scholar 

  111. Sunshine H, Iruela-Arispe ML (2017) Membrane lipids and cell signaling. Curr Opin Lipidol 28:408–413. https://doi.org/10.1097/MOL.0000000000000443

    Article  CAS  Google Scholar 

  112. Freedman H, Rezania V, Priel A, Carpenter E, Noskov SY, Tuszynski JA (2010) Model of ionic currents through microtubule nanopores and the lumen. Phys Rev E Stat Nonlin Soft Matter Phys 81:051912. https://doi.org/10.1103/PhysRevE.81.051912

    Article  CAS  Google Scholar 

  113. Kumar S, Boone K, Tuszynski J, Barclay P, Simon C (2016) Possible existence of optical communication channels in the brain. Sci Rep 6:36508. https://doi.org/10.1038/srep36508

    Article  CAS  Google Scholar 

  114. Rahnama M, Tuszynski JA, Bokkon I, Cifra M, Sardar P, Salari V (2011) Emission of mitochondrial biophotons and their effect on electrical activity of membrane via microtubules. J Integr Neurosci 10:65–88. https://doi.org/10.1142/S0219635211002622

    Article  Google Scholar 

  115. Kurian P, Obisesan TO, Craddock TJA (2017) Oxidative species-induced excitonic transport in tubulin aromatic networks: potential implications for neurodegenerative disease. J Photochem Photobiol B 175:109–124. https://doi.org/10.1016/j.jphotobiol.2017.08.033

    Article  CAS  Google Scholar 

  116. Wagenknecht HA, Stemp ED, Barton JK (2000) DNA-Bound peptide radicals generated through DNA-mediated electron transport. Biochemistry 39:5483–5491. https://doi.org/10.1021/bi992897m

    Article  CAS  Google Scholar 

  117. Cohen S, Popp FA (1997) Biophoton emission of the human body. J Photochem Photobiol B 40:187–189. https://doi.org/10.1016/s1011-1344(97)00050-x

    Article  CAS  Google Scholar 

  118. Lin EM, Tierney DK, Stadtmauer EA (1993) Autologous bone marrow transplantation. A review of the principles and complications. Cancer Nurs 16:204–213

    Article  CAS  Google Scholar 

  119. Arsenault ME, Zhao H, Purohit PK, Goldman YE, Bau HH (2007) Confinement and manipulation of actin filaments by electric fields. Biophys J 93:L42–L44. https://doi.org/10.1529/biophysj.107.114538

    Article  CAS  Google Scholar 

  120. Schappi JM, Krbanjevic A, Rasenick MM (2014) Tubulin, actin and heterotrimeric G proteins: coordination of signaling and structure. Biochim Biophys Acta 1838:674–681. https://doi.org/10.1016/j.bbamem.2013.08.026

    Article  CAS  Google Scholar 

  121. Siccardi M, Olagunju A, Simiele M, D’Avolio A, Calcagno A, Di Perri G, Bonora S, Owen A (2015) Class-specific relative genetic contribution for key antiretroviral drugs. J Antimicrob Chemother 70:3074–3079. https://doi.org/10.1093/jac/dkv207

    Article  CAS  Google Scholar 

  122. Adamatzky A (2019) On discovering functions in actin filament automata. R Soc Open Sci 6:181198. https://doi.org/10.1098/rsos.181198

    Article  CAS  Google Scholar 

  123. Priel A, Tuszynski JA, Woolf NJ (2010) Neural cytoskeleton capabilities for learning and memory. J Biol Phys 36:3–21. https://doi.org/10.1007/s10867-009-9153-0

    Article  CAS  Google Scholar 

  124. Tarazi RC, Frohlich ED, Dustan HP (1968) Plasma volume in men with essential hypertension. N Engl J Med 278:762–765. https://doi.org/10.1056/NEJM196804042781404

    Article  CAS  Google Scholar 

  125. Liu Y, Strumpfer J, Freddolino PL, Gruebele M, Schulten K (2012) Structural characterization of lambda-repressor folding from all-atom molecular dynamics simulations. J Phys Chem Lett 3:1117–1123. https://doi.org/10.1021/jz300017c

    Article  CAS  Google Scholar 

  126. Hameroff SR (2004) A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation. Biosystems 77:119–136. https://doi.org/10.1016/j.biosystems.2004.04.006

    Article  Google Scholar 

  127. Jang S, Hoyer S, Fleming G, Whaley KB (2014) Generalized master equation with non-Markovian multichromophoric Forster resonance energy transfer for modular exciton densities. Phys Rev Lett 113:188102. https://doi.org/10.1103/PhysRevLett.113.188102

    Article  CAS  Google Scholar 

  128. Abasto DF, Mohseni M, Lloyd S, Zanardi P (2012) Exciton diffusion length in complex quantum systems: the effects of disorder and environmental fluctuations on symmetry-enhanced supertransfer. Philos Trans A Math Phys Eng Sci 370:3750–3770. https://doi.org/10.1098/rsta.2011.0213

    Article  CAS  Google Scholar 

  129. Craddock TJ, Priel A, Tuszynski JA (2014) Keeping time: could quantum beating in microtubules be the basis for the neural synchrony related to consciousness? J Integr Neurosci 13:293–311. https://doi.org/10.1142/S0219635214400019

    Article  Google Scholar 

  130. Hagan S, Hameroff SR, Tuszynski JA (2002) Quantum computation in brain microtubules: decoherence and biological feasibility. Phys Rev E Stat Nonlin Soft Matter Phys 65:061901. https://doi.org/10.1103/PhysRevE.65.061901

    Article  CAS  Google Scholar 

  131. Craddock TJA, Beuachemin C, Tuszynski JA, and, (2009) Information processing mechanisms in microtubules at physiological temperature: model predictions for experimental tests. Biosystems 97:28–34

    Article  CAS  Google Scholar 

  132. Hameroff S, Nip A, Porter M, Tuszynski J (2002) Conduction pathways in microtubules, biological quantum computation, and consciousness. Biosystems 64:149–168. https://doi.org/10.1016/s0303-2647(01)00183-6

    Article  Google Scholar 

  133. Hackermuller L, Uttenthaler S, Hornberger K, Reiger E, Brezger B, Zeilinger A, Arndt M (2003) Wave nature of biomolecules and fluorofullerenes. Phys Rev Lett 91:090408. https://doi.org/10.1103/PhysRevLett.91.090408

    Article  CAS  Google Scholar 

  134. Ouyang M, Awschalom DD (2003) Coherent spin transfer between molecularly bridged quantum dots. Science 301:1074–1078. https://doi.org/10.1126/science.1086963

    Article  CAS  Google Scholar 

  135. Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R (2003) The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423:42–48. https://doi.org/10.1038/nature01581

    Article  CAS  Google Scholar 

  136. Klein-Seetharaman J, Oikawa M, Grimshaw SB, Wirmer J, Duchardt E, Ueda T, Imoto T, Smith LJ, Dobson CM, Schwalbe H (2002) Long-range interactions within a nonnative protein. Science 295:1719–1722. https://doi.org/10.1126/science.1067680

    Article  CAS  Google Scholar 

  137. Bahloul A, Meury J, Kern R, Garwood J, Guha S, Kohiyama M (1996) Co-ordination between membrane oriC sequestration factors and a chromosome partitioning protein, TolC (MukA). Mol Microbiol 22:275–282. https://doi.org/10.1046/j.1365-2958.1996.00106.x

    Article  CAS  Google Scholar 

  138. Weber G (1970) Radicular pains in shoulder and arm. Schweiz Rundsch Med Prax 59:357–364 (In German)

    CAS  Google Scholar 

  139. Krasylenko Y, Yemets A, Blume Y (2013) Plant microtubules reorganization under the indirect UV-B exposure and during UV-B-induced programmed cell death. Plant Signal Behav 8:e24031. https://doi.org/10.4161/psb.24031

    Article  CAS  Google Scholar 

  140. Calhoun TR, Ginsberg NS, Schlau-Cohen GS, Cheng YC, Ballottari M, Bassi R, Fleming GR (2009) Quantum coherence enabled determination of the energy landscape in light-harvesting complex II. J Phys Chem B 113:16291–16295. https://doi.org/10.1021/jp908300c

    Article  CAS  Google Scholar 

  141. Collini E, Wong CY, Wilk KE, Curmi PM, Brumer P, Scholes GD (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463:644–647. https://doi.org/10.1038/nature08811

    Article  CAS  Google Scholar 

  142. Sardar PS, Maity SS, Das L, Ghosh S (2007) Luminescence studies of perturbation of tryptophan residues of tubulin in the complexes of tubulin with colchicine and colchicine analogues. Biochemistry 46:14544–14556. https://doi.org/10.1021/bi701412k

    Article  CAS  Google Scholar 

  143. Bjork G, Pau S, Jacobson J, Yamamoto Y (1994) Wannier exciton superradiance in a quantum-well microcavity. Phys Rev B Condens Matter 50:17336–17348. https://doi.org/10.1103/physrevb.50.17336

    Article  CAS  Google Scholar 

  144. Ilan Y (2016) Compounds of the sphingomyelin-ceramide-glycosphingolipid pathways as secondary messenger molecules: new targets for novel therapies for fatty liver disease and insulin resistance. Am J Physiol Gastrointest Liver Physiol 310:G1102–G1117. https://doi.org/10.1152/ajpgi.00095.2016

    Article  Google Scholar 

  145. Ilan Y, Maron R, Tukpah AM, Maioli TU, Murugaiyan G, Yang K, Wu HY, Weiner HL (2010) Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc Natl Acad Sci USA 107:9765–9770. https://doi.org/10.1073/pnas.0908771107

    Article  Google Scholar 

  146. Shuvy M, Ben Ya’acov A, Zolotarov L, Lotan C, Ilan Y (2009) Beta glycosphingolipids suppress rank expression and inhibit natural killer T cell and CD8+ accumulation in alleviating aortic valve calcification. Int J Immunopathol Pharmacol 22:911–918. https://doi.org/10.1177/039463200902200406

    Article  CAS  Google Scholar 

  147. Ben Ya’acov A, Lalazar G, Livovsky DM, Kanovich D, Axelrod E, Preston S, Schwarzmann G, Ilan Y (2009) Decreased STAT-1 phosphorylation by a thio analogue of beta-D-glucosylceramide is associated with altered NKT lymphocyte polarization. Mol Immunol 47:526–533. https://doi.org/10.1016/j.molimm.2009.07.030

    Article  CAS  Google Scholar 

  148. Ilan Y (2009) Alpha versus beta: are we on the way to resolve the mystery as to which is the endogenous ligand for natural killer T cells? Clin Exp Immunol 158:300–307. https://doi.org/10.1111/j.1365-2249.2009.04030.x

    Article  CAS  Google Scholar 

  149. Zhang W, Moritoki Y, Tsuneyama K, Yang GX, Ilan Y, Lian ZX, Gershwin ME (2009) Beta-glucosylceramide ameliorates liver inflammation in murine autoimmune cholangitis. Clin Exp Immunol 157:359–364. https://doi.org/10.1111/j.1365-2249.2009.03971.x

    Article  CAS  Google Scholar 

  150. Lalazar G, Ben Ya’acov A, Livovsky DM, El Haj M, Pappo O, Preston S, Zolotarov L, Ilan Y (2009) Beta-glycoglycosphingolipid-induced alterations of the STAT signaling pathways are dependent on CD1d and the lipid raft protein flotillin-2. Am J Pathol 174:1390–1399. https://doi.org/10.2353/ajpath.2009.080841

    Article  CAS  Google Scholar 

  151. Prentice-Mott HV, Meroz Y, Carlson A, Levine MA, Davidson MW, Irimia D, Charras GT, Mahadevan L, Shah JV (2016) Directional memory arises from long-lived cytoskeletal asymmetries in polarized chemotactic cells. Proc Natl Acad Sci USA 113:1267–1272. https://doi.org/10.1073/pnas.1513289113

    Article  CAS  Google Scholar 

  152. Cocchi M, Bernroider G, Rasenick M, Tonello L, Gabrielli F, Tuszynski JA (2017) Document of Trapani on animal consciousness and quantum brain function: a hypothesis. J Integr Neurosci 16:S99–S103. https://doi.org/10.3233/JIN-170070

    Article  Google Scholar 

  153. Jibu MYK (1995) Quantum brain dynamics and consciousness: an introduction, advances in consciousness research. John Benjamins Publishing Company, Philadelphia, p 3

    Book  Google Scholar 

  154. Stuart CI, Takahashi Y, Umezawa H (1978) On the stability and non-local properties of memory. J Theor Biol 71:605–618. https://doi.org/10.1016/0022-5193(78)90327-2

    Article  CAS  Google Scholar 

  155. Keppler J (2013) A new perspective on the functioning of the brain and the mechanisms behind conscious processes. Front Psychol 4:242. https://doi.org/10.3389/fpsyg.2013.00242

    Article  Google Scholar 

  156. Penrose R (1989) The emperor’s new mind. Oxford University Press, Oxford

    Book  Google Scholar 

  157. Penrose R (1994) Shadows of the mind. Oxford University Press, Oxford

    Google Scholar 

  158. Photos E, Busemeyer J (2013) Can quantum probability provide a new direction for cognitive modeling? Behav Brain Sci 36:255–327

    Article  Google Scholar 

  159. Barlow PW (2015) The natural history of consciousness, and the question of whether plants are conscious, in relation to the Hameroff-Penrose quantum-physical “Orch OR” theory of universal consciousness. Commun Integr Biol 8:e1041696. https://doi.org/10.1080/19420889.2015.1041696

    Article  Google Scholar 

  160. Brown JAT (1997) Dipole interactions in axonal microtubules as a mechanism of signal propagation. Phys Rev E 56:5834–5840

    Article  CAS  Google Scholar 

  161. Woolf NJ, Craddock TJA, Friesen DE, Tuszynski JA (2010) Neuropsychiatric illness: a case for impaired neuroplasticity and possible quantum processing derailment in microtubules. Neuroquantology 8:13–28

    Google Scholar 

  162. Tuszynski JA (2014) The need for a physical basis of cognitive process: comment on “Consciousness in the universe. A review of the ‘Orch OR’ theory” by Hameroff and Penrose. Phys Life Rev 11:79–80. https://doi.org/10.1016/j.plrev.2013.10.009 (discussion 94-100)

    Article  Google Scholar 

  163. Engelbrecht J, Peets T, Tamm K (2018) Electromechanical coupling of waves in nerve fibres. Biomech Model Mechanobiol 17:1771–1783. https://doi.org/10.1007/s10237-018-1055-2

    Article  Google Scholar 

  164. Fongang Achu G, Moukam Kakmeni FM, Dikande AM (2018) Breathing pulses in the damped-soliton model for nerves. Phys Rev E 97:012211. https://doi.org/10.1103/PhysRevE.97.012211

    Article  CAS  Google Scholar 

  165. Craddock TJ, Tuszynski JA, Hameroff S (2012) Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation? PLoS Comput Biol 8:e1002421. https://doi.org/10.1371/journal.pcbi.1002421

    Article  CAS  Google Scholar 

  166. Abbott LF, Regehr WG (2004) Synaptic computation. Nature 431:796–803. https://doi.org/10.1038/nature03010

    Article  CAS  Google Scholar 

  167. Craddock TJ, St George M, Freedman H, Barakat KH, Damaraju S, Hameroff S, Tuszynski JA (2012) Computational predictions of volatile anesthetic interactions with the microtubule cytoskeleton: implications for side effects of general anesthesia. PLoS ONE 7:e37251. https://doi.org/10.1371/journal.pone.0037251

    Article  CAS  Google Scholar 

  168. Hameroff S (2012) Quantum brain biology complements neuronal assembly approaches to consciousness: comment on “Consciousness, biology and quantum hypotheses” by Baars and Edelman. Phys Life Rev 9:303–305. https://doi.org/10.1016/j.plrev.2012.07.002 (discussion 306-7)

    Article  Google Scholar 

  169. Hameroff S (2010) The “conscious pilot”-dendritic synchrony moves through the brain to mediate consciousness. J Biol Phys 36:71–93. https://doi.org/10.1007/s10867-009-9148-x

    Article  Google Scholar 

  170. Beer S, Alexandre K, Pecoud S, Ruiz J (2006) Gestational diabetes: what follow-up after delivery? Rev Med Suisse 2:1468–1472

    CAS  Google Scholar 

  171. Isshiki K, Hirase T, Matsuda S, Miyamoto K, Tsuji A, Yuasa K (2015) Death-associated protein kinase 2 mediates nocodazole-induced apoptosis through interaction with tubulin. Biochem Biophys Res Commun 468:113–118. https://doi.org/10.1016/j.bbrc.2015.10.151

    Article  CAS  Google Scholar 

  172. Penrose R (2011) Uncertainty in quantum mechanics: faith or fantasy? Philos Trans A Math Phys Eng Sci 369:4864–4890. https://doi.org/10.1098/rsta.2011.0179

    Article  Google Scholar 

  173. Hameroff S (1998) Anesthesia, consciousness and hydrophobic pockets–a unitary quantum hypothesis of anesthetic action. Toxicol Lett 100–101:31–39. https://doi.org/10.1016/s0378-4274(98)00162-3

    Article  Google Scholar 

  174. Hameroff SR (1998) `Funda-Mentality’: is the conscious mind subtly linked to a basic level of the universe? Trends Cogn Sci 2:119–124. https://doi.org/10.1016/s1364-6613(98)01157-7

    Article  CAS  Google Scholar 

  175. Penrose R, Hameroff SR (1996) Conscious events as orchestrate dspace-time selections. J Conscious Stud 3:36–53

    Google Scholar 

  176. Pan JZ, Xi J, Tobias JW, Eckenhoff MF, Eckenhoff RG (2007) Halothane binding proteome in human brain cortex. J Proteome Res 6:582–592. https://doi.org/10.1021/pr060311u

    Article  CAS  Google Scholar 

  177. Xi J, Liu R, Asbury GR, Eckenhoff MF, Eckenhoff RG (2004) Inhalational anesthetic-binding proteins in rat neuronal membranes. J Biol Chem 279:19628–19633. https://doi.org/10.1074/jbc.M313864200

    Article  CAS  Google Scholar 

  178. Butts CA, Xi J, Brannigan G, Saad AA, Venkatachalan SP, Pearce RA, Klein ML, Eckenhoff RG, Dmochowski IJ (2009) Identification of a fluorescent general anesthetic, 1-aminoanthracene. Proc Natl Acad Sci USA 106:6501–6506. https://doi.org/10.1073/pnas.0810590106

    Article  Google Scholar 

  179. Emerson DJ, Weiser BP, Psonis J, Liao Z, Taratula O, Fiamengo A, Wang X, Sugasawa K, Smith AB 3rd, Eckenhoff RG, Dmochowski IJ (2013) Direct modulation of microtubule stability contributes to anthracene general anesthesia. J Am Chem Soc 135:5389–5398. https://doi.org/10.1021/ja311171u

    Article  CAS  Google Scholar 

  180. Craddock TJ, Hameroff SR, Ayoub AT, Klobukowski M, Tuszynski JA (2015) Anesthetics act in quantum channels in brain microtubules to prevent consciousness. Curr Top Med Chem 15:523–533. https://doi.org/10.2174/1568026615666150225104543

    Article  CAS  Google Scholar 

  181. Meyer H (1901) Theorie Der Alkolnarkose. Zur Naunyn Schmied Arch Exp Path Pharmakol 46:338–346

    Article  Google Scholar 

  182. Overton E (1901) Studien Ueber Die Narkose. Jena, Gustav Fischer (In German)

    Google Scholar 

  183. Craddock TJA, Kurian P, Preto J, Sahu K, Hameroff SR, Klobukowski M, Tuszynski JA (2017) Anesthetic alterations of collective terahertz oscillations in tubulin correlate with clinical potency: implications for anesthetic action and post-operative cognitive dysfunction. Sci Rep 7:9877. https://doi.org/10.1038/s41598-017-09992-7

    Article  Google Scholar 

  184. Allison AC, Nunn JF (1968) Effects of general anaesthetics on microtubules: a possible mechanism of anaesthesia. Lancet 2:1326–1329. https://doi.org/10.1016/s0140-6736(68)91821-7

    Article  CAS  Google Scholar 

  185. Stroppolo ME, Falconi M, Caccuri AM, Desideri A (2001) Superefficient enzymes. Cell Mol Life Sci 58:1451–1460. https://doi.org/10.1007/PL00000788

    Article  CAS  Google Scholar 

  186. Ambrosetti A, Ferri N, DiStasio RA Jr, Tkatchenko A (2016) Wavelike charge density fluctuations and van der Waals interactions at the nanoscale. Science 351:1171–1176. https://doi.org/10.1126/science.aae0509

    Article  CAS  Google Scholar 

  187. Dobson JF (2014) Beyond pairwise additivity in London dispersion interactions. Int J Quantum Chem 114:1157–1161

    Article  CAS  Google Scholar 

  188. Kurian P, Capolupo A, Craddock TJA, Vitiello G (2018) Water-mediated correlations in DNA-enzyme interactions. Phys Lett A 382:33–43. https://doi.org/10.1016/j.physleta.2017.10.038

    Article  CAS  Google Scholar 

  189. Kurian P, Dunston G, Lindesay J (2016) How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases. J Theor Biol 391:102–112. https://doi.org/10.1016/j.jtbi.2015.11.018

    Article  CAS  Google Scholar 

  190. Honore S, Hubert F, Tournus M, White D (2019) A growth-fragmentation approach for modeling microtubule dynamic instability. Bull Math Biol 81:722–758. https://doi.org/10.1007/s11538-018-0531-2

    Article  CAS  Google Scholar 

  191. Florian S, Mitchison TJ (2016) Anti-microtubule drugs. Methods Mol Biol 1413:403–421. https://doi.org/10.1007/978-1-4939-3542-0_25

    Article  CAS  Google Scholar 

  192. McLoughlin EC, O’Boyle NM (2020) Colchicine-binding site inhibitors from chemistry to clinic: a review. Pharmaceuticals (Basel). https://doi.org/10.3390/ph13010008

    Article  Google Scholar 

  193. Schenone AL, Menon V (2018) Colchicine in pericardial disease: from the underlying biology and clinical benefits to the drug-drug interactions in cardiovascular medicine. Curr Cardiol Rep 20:62. https://doi.org/10.1007/s11886-018-1008-5

    Article  Google Scholar 

  194. Robinson KP, Chan JJ (2018) Colchicine in dermatology: a review. Australas J Dermatol 59:278–285. https://doi.org/10.1111/ajd.12795

    Article  Google Scholar 

  195. Pascart T, Richette P (2018) Colchicine in gout: an update. Curr Pharm Des 24:684–689. https://doi.org/10.2174/1381612824999180115103951

    Article  CAS  Google Scholar 

  196. Slobodnick A, Shah B, Krasnokutsky S, Pillinger MH (2018) Update on colchicine, 2017. Rheumatology (Oxford) 57:i4–i11. https://doi.org/10.1093/rheumatology/kex453

    Article  CAS  Google Scholar 

  197. Majcher U, Klejborowska G, Kaik M, Maj E, Wietrzyk J, Moshari M, Preto J, Tuszynski JA, Huczynski A (2018) Synthesis and biological evaluation of novel triple-modified colchicine derivatives as potent tubulin-targeting anticancer agents. Cells. https://doi.org/10.3390/cells7110216

    Article  Google Scholar 

  198. Gigant B, Cormier A, Dorleans A, Ravelli RB, Knossow M (2009) Microtubule-destabilizing agents: structural and mechanistic insights from the interaction of colchicine and vinblastine with tubulin. Top Curr Chem 286:259–278. https://doi.org/10.1007/128_2008_11

    Article  CAS  Google Scholar 

  199. Arnst KE, Wang Y, Lei ZN, Hwang DJ, Kumar G, Ma D, Parke DN, Chen Q, Yang J, White SW, Seagroves TN, Chen ZS, Miller DD, Li W (2019) Colchicine binding site agent DJ95 overcomes drug resistance and exhibits antitumor efficacy. Mol Pharmacol 96:73–89. https://doi.org/10.1124/mol.118.114801

    Article  CAS  Google Scholar 

  200. Erden A, Batu ED, Sari A, Sonmez HE, Armagan B, Demir S, Firat E, Bilginer Y, Bilgen SA, Karadag O, Kalyoncu U, Kiraz S, Ertenli I, Ozen S, Akdogan A (2018) Which definition should be used to determine colchicine resistance among patients with familial Mediterranean fever? Clin Exp Rheumatol 36:97–102

    Google Scholar 

  201. Corsia A, Georgin-Lavialle S, Hentgen V, Hachulla E, Grateau G, Faye A, Quartier P, Rossi-Semerano L, Kone-Paut I (2017) A survey of resistance to colchicine treatment for French patients with familial Mediterranean fever. Orphanet J Rare Dis 12:54. https://doi.org/10.1186/s13023-017-0609-1

    Article  Google Scholar 

  202. Ozen S, Kone-Paut I, Gul A (2017) Colchicine resistance and intolerance in familial mediterranean fever: definition, causes, and alternative treatments. Semin Arthritis Rheum 47:115–120. https://doi.org/10.1016/j.semarthrit.2017.03.006

    Article  CAS  Google Scholar 

  203. Ozer I, Mete T, Turkeli Sezer O, Kolbasi Ozgen G, Kucuk GO, Kaya C, Kilic Kan E, Duman G, Ozturk Kurt HP (2015) Association between colchicine resistance and vitamin D in familial Mediterranean fever. Ren Fail 37:1122–1125. https://doi.org/10.3109/0886022X.2015.1056064

    Article  CAS  Google Scholar 

  204. Spasevska I, Ayoub AT, Winter P, Preto J, Wong GK, Dumontet C, Tuszynski JA (2017) Modeling the colchicum autumnale tubulin and a comparison of its interaction with colchicine to human tubulin. Int J Mol Sci. https://doi.org/10.3390/ijms18081676

    Article  Google Scholar 

  205. Sahakyan H, Abelyan N, Arakelov V, Arakelov G, Nazaryan K (2019) In silico study of colchicine resistance molecular mechanisms caused by tubulin structural polymorphism. PLoS ONE 14:e0221532. https://doi.org/10.1371/journal.pone.0221532

    Article  CAS  Google Scholar 

  206. Omma A, Sandikci SC, Kucuksahin O, Alisik M, Erel O (2017) Can the thiol/disulfide imbalance be a predictor of colchicine resistance in familial mediterranean fever? J Korean Med Sci 32:1588–1594. https://doi.org/10.3346/jkms.2017.32.10.1588

    Article  CAS  Google Scholar 

  207. Rai A, Kapoor S, Naaz A, Kumar Santra M, Panda D (2017) Enhanced stability of microtubules contributes in the development of colchicine resistance in MCF-7 cells. Biochem Pharmacol 132:38–47. https://doi.org/10.1016/j.bcp.2017.02.018

    Article  CAS  Google Scholar 

  208. Gangjee A, Zhao Y, Lin L, Raghavan S, Roberts EG, Risinger AL, Hamel E, Mooberry SL (2010) Synthesis and discovery of water-soluble microtubule targeting agents that bind to the colchicine site on tubulin and circumvent Pgp mediated resistance. J Med Chem 53:8116–8128. https://doi.org/10.1021/jm101010n

    Article  CAS  Google Scholar 

  209. Lin MS, Hong TM, Chou TH, Yang SC, Chung WC, Weng CW, Tsai ML, Cheng TR, Chen JJW, Lee TC, Wong CH, Chein RJ, Yang PC (2019) 4(1H)-quinolone derivatives overcome acquired resistance to anti-microtubule agents by targeting the colchicine site of beta-tubulin. Eur J Med Chem 181:111584. https://doi.org/10.1016/j.ejmech.2019.111584

    Article  CAS  Google Scholar 

  210. Bai Z, Gao M, Zhang H, Guan Q, Xu J, Li Y, Qi H, Li Z, Zuo D, Zhang W, Wu Y (2017) BZML, a novel colchicine binding site inhibitor, overcomes multidrug resistance in A549/Taxol cells by inhibiting P-gp function and inducing mitotic catastrophe. Cancer Lett 402:81–92. https://doi.org/10.1016/j.canlet.2017.05.016

    Article  CAS  Google Scholar 

  211. Arnst KE, Wang Y, Hwang DJ, Xue Y, Costello T, Hamilton D, Chen Q, Yang J, Park F, Dalton JT, Miller DD, Li W (2018) A potent, metabolically stable tubulin inhibitor targets the colchicine binding site and overcomes taxane resistance. Cancer Res 78:265–277. https://doi.org/10.1158/0008-5472.CAN-17-0577

    Article  CAS  Google Scholar 

  212. Kim MS, Cho J (2009) Physics. Teleporting a quantum state to distant matter. Science 323:469–470

    Article  CAS  Google Scholar 

  213. Wiersma DS (2010) Physics. Random quantum networks. Science 327:1333–1334. https://doi.org/10.1126/science.1187084327/5971/1333

    Article  CAS  Google Scholar 

  214. Bernien H, Hensen B, Pfaff W, Koolstra G, Blok MS, Robledo L, Taminiau TH, Markham M, Twitchen DJ, Childress L, Hanson R (2013) Heralded entanglement between solid-state qubits separated by three metres. Nature 497:86–90. https://doi.org/10.1038/nature12016nature12016[pii]

    Article  CAS  Google Scholar 

  215. Ma XS, Herbst T, Scheidl T, Wang D, Kropatschek S, Naylor W, Wittmann B, Mech A, Kofler J, Anisimova E, Makarov V, Jennewein T, Ursin R, Zeilinger A (2012) Quantum teleportation over 143 kilometres using active feed-forward. Nature 489:269–273. https://doi.org/10.1038/nature11472

    Article  CAS  Google Scholar 

  216. Lamas-Linares A, Howell JC, Bouwmeester D (2001) Stimulated emission of polarization-entangled photons. Nature 412:887–890

    Article  CAS  Google Scholar 

  217. Pan JW, Bouwmeester D, Daniell M, Weinfurter H, Zeilinger A (2000) Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature 403:515–519

    Article  CAS  Google Scholar 

  218. Hardy L (1992) Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Phys Rev Lett 68:2981–2984

    Article  CAS  Google Scholar 

  219. Olmschenk S, Matsukevich DN, Maunz P, Hayes D, Duan LM, Monroe C (2009) Quantum teleportation between distant matter qubits. Science 323:486–489

    Article  CAS  Google Scholar 

  220. Sapienza L, Thyrrestrup H, Stobbe S, Garcia PD, Smolka S, Lodahl P (2010) Cavity quantum electrodynamics with Anderson-localized modes. Science 327:1352–1355

    Article  CAS  Google Scholar 

  221. Ilan Y (2018) Mehtos and system for modulating physiological states between biological entities. Patent US 2018/0328917 A1

  222. Shabat Y, Lichtenstein Y, Ilan Y (2021) Short-term cohousing of sick with healthy or treated mice alleviates the inflammatory response and liver damage. Inflammation 44:518–525. https://doi.org/10.1007/s10753-020-01348-0

    Article  CAS  Google Scholar 

  223. Ilan Y (2019) Immune rebalancing by oral immunotherapy: a novel method for getting the immune system back on track. J Leukoc Biol 105:463–472. https://doi.org/10.1002/JLB.5RU0718-276RR

    Article  CAS  Google Scholar 

  224. Ilan Y (2016) Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease. Clin Transl Immunology 5:e60. https://doi.org/10.1038/cti.2015.47

    Article  CAS  Google Scholar 

  225. Ilan Y (2016) Review article: novel methods for the treatment of non-alcoholic steatohepatitis - targeting the gut immune system to decrease the systemic inflammatory response without immune suppression. Aliment Pharmacol Ther 44:1168–1182. https://doi.org/10.1111/apt.13833

    Article  CAS  Google Scholar 

  226. Ilan Y, Shailubhai K, Sanyal A (2018) Immunotherapy with oral administration of humanized anti-CD3 monoclonal antibody: a novel gut-immune system-based therapy for metaflammation and NASH. Clin Exp Immunol 193:275–283. https://doi.org/10.1111/cei.13159

    Article  CAS  Google Scholar 

  227. Almon E, Khoury T, Drori A, Gingis-Velitski S, Alon S, Chertkoff R, Mushkat M, Shaaltiel Y, Ilan Y (2017) An oral administration of a recombinant anti-TNF fusion protein is biologically active in the gut promoting regulatory T cells: results of a phase I clinical trial using a novel oral anti-TNF alpha-based therapy. J Immunol Methods 446:21–29. https://doi.org/10.1016/j.jim.2017.03.023

    Article  CAS  Google Scholar 

  228. Lalazar G, Zigmond E, Weksler-Zangen S, Ya’acov AB, Levy MS, Hemed N, Raz I, Ilan Y (2017) Oral administration of beta-glucosylceramide for the treatment of insulin resistance and nonalcoholic steatohepatitis: results of a double-blind, placebo-controlled trial. J Med Food 20:458–464. https://doi.org/10.1089/jmf.2016.3753

    Article  CAS  Google Scholar 

  229. Ilan Y, Gingis-Velitski S, Ben Ya’aco A, Shabbat Y, Zolotarov L, Almon E, Shaaltiel Y (2017) A plant cell-expressed recombinant anti-TNF fusion protein is biologically active in the gut and alleviates immune-mediated hepatitis and colitis. Immunobiology 222:544–551. https://doi.org/10.1016/j.imbio.2016.11.001

    Article  CAS  Google Scholar 

  230. Ilan Y, Ben Ya’acov A, Shabbat Y, Gingis-Velitski S, Almon E, Shaaltiel Y (2016) Oral administration of a non-absorbable plant cell-expressed recombinant anti-TNF fusion protein induces immunomodulatory effects and alleviates nonalcoholic steatohepatitis. World J Gastroenterol 22:8760–8769. https://doi.org/10.3748/wjg.v22.i39.8760

    Article  CAS  Google Scholar 

  231. Israeli E, Zigmond E, Lalazar G, Klein A, Hemed N, Goldin E, Ilan Y (2015) Oral mixture of autologous colon-extracted proteins for the Crohn’s disease: A double-blind trial. World J Gastroenterol 21:5685–5694. https://doi.org/10.3748/wjg.v21.i18.5685

    Article  Google Scholar 

  232. Lalazar G, Mizrahi M, Turgeman I, Adar T, Ben Ya’acov A, Shabat Y, Nimer A, Hemed N, Zolotarovya L, Lichtenstein Y, Lisovoder N, Samira S, Shalit I, Ellis R, Ilan Y (2015) Oral administration of OKT3 MAb to patients with NASH, promotes regulatory T-cell induction, and alleviates insulin resistance: results of a phase iia blinded placebo-controlled trial. J Clin Immunol 35:399–407. https://doi.org/10.1007/s10875-015-0160-6

    Article  CAS  Google Scholar 

  233. Israeli E, Goldin E, Fishman S, Konikoff F, Lavy A, Chowers Y, Melzer E, Lahat A, Mahamid M, Shirin H, Nussinson E, Segol O, Ya’acov AB, Shabbat Y, Ilan Y (2015) Oral administration of non-absorbable delayed release 6-mercaptopurine is locally active in the gut, exerts a systemic immune effect and alleviates Crohn’s disease with low rate of side effects: results of double blind Phase II clinical trial. Clin Exp Immunol 181:362–372. https://doi.org/10.1111/cei.12640

    Article  CAS  Google Scholar 

  234. Dush MK, Nascone-Yoder NM (2013) Jun N-terminal kinase maintains tissue integrity during cell rearrangement in the gut. Development (Cambridge, England) 140:1457–1466. https://doi.org/10.1242/dev.086850

    Article  CAS  Google Scholar 

  235. Zhou X, Xiao C, Li Y, Shang Y, Yin D, Li S, Xiang B, Lu R, Ji Y, Wu Y, Meng W, Zhu H, Liu J, Hu H, Mo X, Xu H (2018) Mid1ip1b modulates apical reorientation of non-centrosomal microtubule organizing center in epithelial cells. J Genet Genomics = Yi chuan xue bao 45:433–442. https://doi.org/10.1016/j.jgg.2018.08.001

    Article  Google Scholar 

  236. Höfer D, Jöns T, Kraemer J, Drenckhahn D (1998) From cytoskeleton to polarity and chemoreception in the gut epithelium. Ann N Y Acad Sci 859:75–84. https://doi.org/10.1111/j.1749-6632.1998.tb11112.x

    Article  Google Scholar 

  237. Shi C, Li H, Qu X, Huang L, Kong C, Qin H, Sun Z, Yan X (2019) High fat diet exacerbates intestinal barrier dysfunction and changes gut microbiota in intestinal-specific ACF7 knockout mice. Biomed Pharmacother 110:537–545. https://doi.org/10.1016/j.biopha.2018.11.100

    Article  CAS  Google Scholar 

  238. Mimori-Kiyosue Y, Shiina N, Tsukita S (2000) Adenomatous polyposis coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells. J Cell Biol 148:505–518. https://doi.org/10.1083/jcb.148.3.505

    Article  CAS  Google Scholar 

  239. Kilner J, Corfe BM, McAuley MT, Wilkinson SJ (2016) A deterministic oscillatory model of microtubule growth and shrinkage for differential actions of short chain fatty acids. Mol Biosyst 12:93–101. https://doi.org/10.1039/c5mb00211g

    Article  CAS  Google Scholar 

  240. Gerding DN, Johnson S, Rupnik M, Aktories K (2014) Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes 5:15–27. https://doi.org/10.4161/gmic.26854

    Article  Google Scholar 

  241. Lu LF, Kim DH, Lee IH, Hong J, Zhang P, Yoon IN, Hwang JS, Kim H (2016) Potassium acetate blocks clostridium difficile toxin A-induced microtubule disassembly by directly inhibiting histone deacetylase 6, thereby ameliorating inflammatory responses in the gut. J Microbiol Biotechnol 26:693–699. https://doi.org/10.4014/jmb.1511.11063

    Article  CAS  Google Scholar 

  242. Kopecko DJ, Hu L, Zaal KJ (2001) Campylobacter jejuni–microtubule-dependent invasion. Trends Microbiol 9:389–396. https://doi.org/10.1016/s0966-842x(01)02107-2

    Article  CAS  Google Scholar 

  243. Hsu C-R, Pan Y-J, Liu J-Y, Chen C-T, Lin T-L, Wang J-T (2015) Klebsiella pneumoniae translocates across the intestinal epithelium via Rho GTPase- and phosphatidylinositol 3-kinase/Akt-dependent cell invasion. Infect Immun 83:769–779. https://doi.org/10.1128/IAI.02345-14

    Article  CAS  Google Scholar 

  244. Kim J-H, Yamamoto T, Lee J, Yashiro T, Hamada T, Hayashi S, Kadowaki M (2014) CGRP, a neurotransmitter of enteric sensory neurons, contributes to the development of food allergy due to the augmentation of microtubule reorganization in mucosal mast cells. Biomed Res (Tokyo, Japan) 35:285–293. https://doi.org/10.2220/biomedres.35.285

    Article  CAS  Google Scholar 

  245. Nazli A, Wang A, Steen O, Prescott D, Lu J, Perdue MH, Soderholm JD, Sherman PM, McKay DM (2006) Enterocyte cytoskeleton changes are crucial for enhanced translocation of nonpathogenic Escherichia coli across metabolically stressed gut epithelia. Infect Immun 74:192–201. https://doi.org/10.1128/IAI.74.1.192-201.2006

    Article  CAS  Google Scholar 

  246. Ilan YBI T (2019) A subject sepcific system and method for prevention of body adapatation for chronic treatment of disease. WO 2019/008571 Al. https://patents.google.com/patent/WO2019008571A1/en

  247. Tonello L, Gashi B, Scuotto A, Cappello G, Cocchi M, Gabrielli F, Tuszynski JA (2018) The gastrointestinal-brain axis in humans as an evolutionary advance of the root-leaf axis in plants: a hypothesis linking quantum effects of light on serotonin and auxin. J Integr Neurosci 17:177–183. https://doi.org/10.31083/JIN-170048

    Article  Google Scholar 

  248. Azmitia EC (2007) Serotonin and brain: evolution, neuroplasticity, and homeostasis. Int Rev Neurobiol 77:31–56. https://doi.org/10.1016/S0074-7742(06)77002-7

    Article  CAS  Google Scholar 

  249. Baluska F, Mancuso S (2016) Vision in plants via plant-specific ocelli? Trends Plant Sci 21:727–730. https://doi.org/10.1016/j.tplants.2016.07.008

    Article  CAS  Google Scholar 

  250. Grass F, Klima H, Kasper S (2004) Biophotons, microtubules and CNS, is our brain a “holographic computer”? Med Hypotheses 62:169–172. https://doi.org/10.1016/S0306-9877(03)00308-6

    Article  CAS  Google Scholar 

  251. Tonello L, Cocchi M, Gabrielli F, Tuszynski JA (2015) On the possible quantum role of serotonin in consciousness. J Integr Neurosci 14:295–308. https://doi.org/10.1142/S021963521550017X

    Article  Google Scholar 

  252. Franklin KA, Whitelam GC (2007) Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat Genet 39:1410–1413. https://doi.org/10.1038/ng.2007.3

    Article  CAS  Google Scholar 

  253. Halliday KJ, Martinez-Garcia JF, Josse EM (2009) Integration of light and auxin signaling. Cold Spring Harb Perspect Biol 1:a001586. https://doi.org/10.1101/cshperspect.a001586

    Article  CAS  Google Scholar 

  254. Fidalgo S, Ivanov DK, Wood SH (2013) Serotonin: from top to bottom. Biogerontology 14:21–45. https://doi.org/10.1007/s10522-012-9406-3

    Article  CAS  Google Scholar 

  255. De Vadder F, Grasset E, Manneras Holm L, Karsenty G, Macpherson AJ, Olofsson LE, Backhed F (2018) Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc Natl Acad Sci USA 115:6458–6463. https://doi.org/10.1073/pnas.1720017115

    Article  CAS  Google Scholar 

  256. Greig CJ, Gandotra N, Tackett JJ, Bamdad MC, Cowles RA (2016) Enhanced serotonin signaling increases intestinal neuroplasticity. J Surg Res 206:151–158. https://doi.org/10.1016/j.jss.2016.07.021

    Article  CAS  Google Scholar 

  257. Fernandez SP, Muzerelle A, Scotto-Lomassese S, Barik J, Gruart A, Delgado-Garcia JM, Gaspar P (2017) Constitutive and acquired serotonin deficiency alters memory and hippocampal synaptic plasticity. Neuropsychopharmacology 42:512–523. https://doi.org/10.1038/npp.2016.134

    Article  CAS  Google Scholar 

  258. Ge X, Pan J, Liu Y, Wang H, Zhou W, Wang X (2018) Intestinal crosstalk between microbiota and serotonin and its impact on gut motility. Curr Pharm Biotechnol 19:190–195. https://doi.org/10.2174/1389201019666180528094202

    Article  CAS  Google Scholar 

  259. Smith TK, Koh SD (2017) A model of the enteric neural circuitry underlying the generation of rhythmic motor patterns in the colon: the role of serotonin. Am J Physiol Gastrointest Liver Physiol 312:G1–G14. https://doi.org/10.1152/ajpgi.00337.2016

    Article  Google Scholar 

  260. Stasi C, Sadalla S, Milani S (2019) The relationship between the serotonin metabolism, gut-microbiota and the gut-brain axis. Curr Drug Metab 20:646–655. https://doi.org/10.2174/1389200220666190725115503

    Article  CAS  Google Scholar 

  261. Dong Y, Han Y, Wang Z, Qin Z, Yang C, Cao J, Chen Y (2017) Role of serotonin on the intestinal mucosal immune response to stress-induced diarrhea in weaning mice. BMC Gastroenterol 17:82. https://doi.org/10.1186/s12876-017-0634-5

    Article  CAS  Google Scholar 

  262. Wirth A, Holst K, Ponimaskin E (2017) How serotonin receptors regulate morphogenic signalling in neurons. Prog Neurobiol 151:35–56. https://doi.org/10.1016/j.pneurobio.2016.03.007

    Article  CAS  Google Scholar 

  263. Vinuelas J, Kaneko G, Coulon A, Beslon G, Gandrillon O (2012) Towards experimental manipulation of stochasticity in gene expression. Prog Biophys Mol Biol 110:44–53. https://doi.org/10.1016/j.pbiomolbio.2012.04.010

    Article  CAS  Google Scholar 

  264. Boettiger AN (2013) Analytic approaches to stochastic gene expression in multicellular systems. Biophys J 105:2629–2640. https://doi.org/10.1016/j.bpj.2013.10.033

    Article  CAS  Google Scholar 

  265. Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467:167–173. https://doi.org/10.1038/nature09326

    Article  CAS  Google Scholar 

  266. Phillips NE, Manning C, Papalopulu N, Rattray M (2017) Identifying stochastic oscillations in single-cell live imaging time series using Gaussian processes. PLoS Comput Biol 13:e1005479. https://doi.org/10.1371/journal.pcbi.1005479

    Article  CAS  Google Scholar 

  267. Wang G, Sun S, Zhang Z (2016) Randomness in sequence evolution increases over time. PLoS ONE 11:e0155935. https://doi.org/10.1371/journal.pone.0155935

    Article  CAS  Google Scholar 

  268. Streit A, Sommer RJ (2010) Genetics: random expression goes binary. Nature 463:891–892. https://doi.org/10.1038/463891a

    Article  CAS  Google Scholar 

  269. Raj A, Rifkin SA, Andersen E, van Oudenaarden A (2010) Variability in gene expression underlies incomplete penetrance. Nature 463:913–918. https://doi.org/10.1038/nature08781

    Article  CAS  Google Scholar 

  270. Ilan Y (2020) Overcoming compensatory mechanisms toward chronic drug administration to ensure long-term, sustainable beneficial effects. Mol Ther Methods Clin Dev 18:335–344. https://doi.org/10.1016/j.omtm.2020.06.006

    Article  CAS  Google Scholar 

  271. Gilpin WSBM, Prakash M (2020) The multiscale physics of cilia and flagella. Nat Rev Phys. https://doi.org/10.1038/s42254-019-0129-0

    Article  Google Scholar 

  272. Han J, Peskin CS (2018) Spontaneous oscillation and fluid-structure interaction of cilia. Proc Natl Acad Sci USA 115:4417–4422. https://doi.org/10.1073/pnas.1712042115

    Article  CAS  Google Scholar 

  273. Ilan Y (2020) Order through disorder: the characteristic variability of systems. Front Cell Dev Biol 8:186. https://doi.org/10.3389/fcell.2020.00186

    Article  Google Scholar 

  274. Smith DJ, Gaffney EA, Blake JR (2007) A viscoelastic traction layer model of muco-ciliary transport. Bull Math Biol 69:289–327. https://doi.org/10.1007/s11538-005-9036-x

    Article  CAS  Google Scholar 

  275. Clifford JC, Rapicavoli JN, Roper MC (2013) A rhamnose-rich O-antigen mediates adhesion, virulence, and host colonization for the xylem-limited phytopathogen Xylella fastidiosa. Mol Plant Microbe Interact 26:676–685. https://doi.org/10.1094/MPMI-12-12-0283-R

    Article  CAS  Google Scholar 

  276. Orme BA, Otto SR, Blake JR (2001) Enhanced efficiency of feeding and mixing due to chaotic flow patterns around choanoflagellates. IMA J Math Appl Med Biol 18:293–325

    Article  CAS  Google Scholar 

  277. Kirkegaard JB, Marron AO, Goldstein RE (2016) Motility of colonial choanoflagellates and the statistics of aggregate random walkers. Phys Rev Lett 116:038102. https://doi.org/10.1103/PhysRevLett.116.038102

    Article  CAS  Google Scholar 

  278. El-Haj M, Kanovitch D, Ilan Y (2019) Personalized inherent randomness of the immune system is manifested by an individualized response to immune triggers and immunomodulatory therapies: a novel platform for designing personalized immunotherapies. Immunol Res 67:337–347. https://doi.org/10.1007/s12026-019-09101-y

    Article  CAS  Google Scholar 

  279. Ilan Y (2019) Why targeting the microbiome is not so successful: can randomness overcome the adaptation that occurs following gut manipulation? Clin Exp Gastroenterol 12:209–217. https://doi.org/10.2147/CEG.S203823

    Article  CAS  Google Scholar 

  280. Ilan Y, Spigelman Z (2020) Establishing patient-tailored variability-based paradigms for anti-cancer therapy: using the inherent trajectories which underlie cancer for overcoming drug resistance. Cancer Treat Res Commun 25:100240. https://doi.org/10.1016/j.ctarc.2020.100240

    Article  Google Scholar 

  281. Kessler A, Weksler-Zangen S, Ilan Y (2020) Role of the immune system and the circadian rhythm in the pathogenesis of chronic pancreatitis: establishing a personalized signature for improving the effect of immunotherapies for chronic pancreatitis. Pancreas 49:1024–1032. https://doi.org/10.1097/MPA.0000000000001626

    Article  CAS  Google Scholar 

  282. Kolben Y, Weksler-Zangen S, Ilan Y (2021) Adropin as a potential mediator of the metabolic system-autonomic nervous system-chronobiology axis: implementing a personalized signature-based platform for chronotherapy. Obes Rev 22:e13108. https://doi.org/10.1111/obr.13108

    Article  CAS  Google Scholar 

  283. Potruch A, Khoury ST, Ilan Y (2020) The role of chronobiology in drug-resistance epilepsy: the potential use of a variability and chronotherapy-based individualized platform for improving the response to anti-seizure drugs. Seizure 80:201–211. https://doi.org/10.1016/j.seizure.2020.06.032

    Article  Google Scholar 

  284. Forkosh E, Kenig A, Ilan Y (2020) Introducing variability in targeting the microtubules: review of current mechanisms and future directions in colchicine therapy. Pharmacol Res Perspect 8:e00616. https://doi.org/10.1002/prp2.616

    Article  CAS  Google Scholar 

  285. Gelman R, Bayatra A, Kessler A, Schwartz A, Ilan Y (2020) Targeting SARS-CoV-2 receptors as a means for reducing infectivity and improving antiviral and immune response: an algorithm-based method for overcoming resistance to antiviral agents. Emerg Microbes Infect 9:1397–1406. https://doi.org/10.1080/22221751.2020.1776161

    Article  CAS  Google Scholar 

  286. Kenig A, Kolben Y, Asleh R, Amir O, Ilan Y (2021) Improving diuretic response in heart failure by implementing a patient-tailored variability and chronotherapy-guided algorithm. Front Cardiovasc Med 8:695547. https://doi.org/10.3389/fcvm.2021.695547

    Article  Google Scholar 

  287. Ishay Y, Kolben Y, Kessler A, Ilan Y (2021) Role of circadian rhythm and autonomic nervous system in liver function: a hypothetical basis for improving the management of hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol 321:G400–G412. https://doi.org/10.1152/ajpgi.00186.2021

    Article  CAS  Google Scholar 

  288. Hurvitz N, Azmanov H, Kesler A, Ilan Y (2021) Establishing a second-generation artificial intelligence-based system for improving diagnosis, treatment, and monitoring of patients with rare diseases. Eur J Hum Genet. https://doi.org/10.1038/s41431-021-00928-4

    Article  Google Scholar 

  289. Azmanov H, Ross EL, Ilan Y (2021) Establishment of an individualized chronotherapy, autonomic nervous system, and variability-based dynamic platform for overcoming the loss of response to analgesics. Pain Phys 24:243–252

    Google Scholar 

  290. Khoury T, Ilan Y (2021) Platform introducing individually tailored variability in nerve stimulations and dietary regimen to prevent weight regain following weight loss in patients with obesity. Obes Res Clin Pract 15:114–123. https://doi.org/10.1016/j.orcp.2021.02.003

    Article  Google Scholar 

  291. Ilan Y (2021) Improving global healthcare and reducing costs using second-generation artificial intelligence-based digital pills: a market disruptor. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph18020811

    Article  Google Scholar 

  292. Isahy Y, Ilan Y (2021) Improving the long-term response to antidepressants by establishing an individualized platform based on variability and chronotherapy. Int J Clin Pharmacol Ther 59:768–774. https://doi.org/10.5414/CP204000

    Article  CAS  Google Scholar 

  293. Ishay Y, Potruch A, Schwartz A, Berg M, Jamil K, Agus S, Ilan Y (2021) A digital health platform for assisting the diagnosis and monitoring of COVID-19 progression: an adjuvant approach for augmenting the antiviral response and mitigating the immune-mediated target organ damage. Biomed Pharmacother 143:112228. https://doi.org/10.1016/j.biopha.2021.112228

    Article  CAS  Google Scholar 

  294. Hurvitz N, Azmanov H, Kesler A, Ilan Y (2021) Establishing a second-generation artificial intelligence-based system for improving diagnosis, treatment, and monitoring of patients with rare diseases. Eur J Hum Genet 29:1485–1490. https://doi.org/10.1038/s41431-021-00928-4

    Article  Google Scholar 

  295. Ilan Y (2021) Digital medical cannabis as market differentiator: second-generation artificial intelligence systems to improve response. Front Med (Lausanne) 8:788777. https://doi.org/10.3389/fmed.2021.788777

    Article  Google Scholar 

  296. Gelman R, Berg M, Ilan Y (2022) A subject-tailored variability-based platform for overcoming the plateau effect in sports training: a narrative review. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph19031722

    Article  Google Scholar 

  297. Azmanov H, Bayatra A, Ilan Y (2022) Digital analgesic comprising a second-generation digital health system: increasing effectiveness by optimizing the dosing and minimizing side effects. J Pain Res 15:1051–1060. https://doi.org/10.2147/JPR.S356319

    Article  CAS  Google Scholar 

  298. Ilan Y (2020) Second-generation digital health platforms: placing the patient at the center and focusing on clinically meaningful endpoints title: second-generation artificial intelligence algorithms. Front Dig Health. https://doi.org/10.3389/fdgth.2020.569178

    Article  Google Scholar 

Download references

Acknowledgements

NA.

Funding

NA.

Author information

Authors and Affiliations

Authors

Contributions

YI wrote the manuscript.

Corresponding author

Correspondence to Yaron Ilan.

Ethics declarations

Conflict of interest

YI is the founder of Oberon Sciences.

Ethical approval

NA.

Consent to participate

NA.

Consent for publication

The author provides consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilan, Y. Microtubules as a potential platform for energy transfer in biological systems: a target for implementing individualized, dynamic variability patterns to improve organ function. Mol Cell Biochem 478, 375–392 (2023). https://doi.org/10.1007/s11010-022-04513-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04513-1

Keywords

Navigation