Skip to main content
Log in

Monoamine oxidase is a source of cardiac oxidative stress in obese rats: the beneficial role of metformin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Diet-induced metabolic diseases, such as obesity, metabolic syndrome, and type 2 diabetes (T2DM) are the global threatening epidemics that share cardiovascular oxidative stress as common denominator. Monoamine oxidase (MAO) has recently emerged as a constant source of reactive oxygen species (ROS) in DM. Metformin, the first-line drug in T2DM, elicits cardiovascular protection via pleiotropic effects. The present study was aimed to assess the contribution of MAO to the early cardiac oxidative stress in a rat model of high-calorie junk food (HCJF) diet-induced obesity and prediabetes and whether metformin can alleviate it. After 6 months of HCJF, rats developed obesity and hyperglycemia. Hearts were isolated and used for the evaluation of MAO expression and ROS production. Experiments were performed in the presence vs absence of metformin (10 µM) and MAO-A and B inhibitors (clorgyline and selegiline, 10 µM), respectively. Both MAO isoforms were overexpressed and led to increased ROS generation in cardiac samples harvested from the obese animals. Acute treatment with metformin and MAO inhibitors was able to mitigate oxidative stress. More important, metformin downregulated MAO expression in the diseased samples. In conclusion, MAO contributes to oxidative stress in experimental obesity and can be targeted with metformin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Heydemann A (2016) An overview of murine high fat diet as a model for type 2 diabetes mellitus. J Diabetes Res 2016:2902351. https://doi.org/10.1155/2016/2902351

    Article  CAS  Google Scholar 

  2. Wali JA, Jarzebska N, Raubenheimer D, Simpson SJ, Rodionov RN, O’Sullivan JF (2020) Cardio-metabolic effects of high-fat diets and their underlying mechanisms—a narrative review. Nutrients. https://doi.org/10.3390/nu12051505

    Article  Google Scholar 

  3. Wilson LF, Baade PD, Green AC, Jordan SJ, Kendall BJ, Neale RE, Olsen CM, Youlden DR, Webb PM, Whiteman DC (2019) The impact of changing the prevalence of overweight/obesity and physical inactivity in Australia: an estimate of the proportion of potentially avoidable cancers 2013–2037. Int J Cancer 144:2088–2098. https://doi.org/10.1002/ijc.31943

    Article  CAS  Google Scholar 

  4. Izzo C, Vitillo P, Di Pietro P, Visco V, Strianese A, Virtuoso N, Ciccarelli M, Galasso G, Carrizzo A, Vecchione C (2021) The role of oxidative stress in cardiovascular aging and cardiovascular diseases. Life (Basel). https://doi.org/10.3390/life11010060

    Article  Google Scholar 

  5. Lau ES, Paniagua SM, Zarbafian S, Hoffman U, Long MT, Hwang SJ, Courchesne P, Yao C, Ma J, Larson MG, Levy D, Shah RV, Ho JE (2021) Cardiovascular biomarkers of obesity and overlap with cardiometabolic dysfunction. J Am Heart Assoc 10:e020215. https://doi.org/10.1161/jaha.120.020215

    Article  CAS  Google Scholar 

  6. Wu H, Ballantyne CM (2020) Metabolic inflammation and insulin resistance in obesity. Circ Res 126:1549–1564. https://doi.org/10.1161/circresaha.119.315896

    Article  CAS  Google Scholar 

  7. Tipton KF (2018) 90 years of monoamine oxidase: some progress and some confusion. J Neural Transm (Vienna) 125:1519–1551. https://doi.org/10.1007/s00702-018-1881-5

    Article  CAS  Google Scholar 

  8. Youdim MB, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295–309. https://doi.org/10.1038/nrn1883

    Article  CAS  Google Scholar 

  9. Schwartz TL (2013) A neuroscientific update on monoamine oxidase and its inhibitors. CNS Spectr 18 Suppl 1:25–32; quiz 33. https://doi.org/10.1017/s1092852913000734

  10. Tripathi RKP, Ayyannan SR (2019) Monoamine oxidase-B inhibitors as potential neurotherapeutic agents: an overview and update. Med Res Rev 39:1603–1706. https://doi.org/10.1002/med.21561

    Article  CAS  Google Scholar 

  11. Sturza A, Leisegang MS, Babelova A, Schröder K, Benkhoff S, Loot AE, Fleming I, Schulz R, Muntean DM, Brandes RP (2013) Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta. Hypertension 62:140–146. https://doi.org/10.1161/hypertensionaha.113.01314

    Article  CAS  Google Scholar 

  12. Sturza A, Duicu OM, Vaduva A, Dănilă MD, Noveanu L, Varró A, Muntean DM (2015) Monoamine oxidases are novel sources of cardiovascular oxidative stress in experimental diabetes. Can J Physiol Pharmacol 93:555–561. https://doi.org/10.1139/cjpp-2014-0544

    Article  CAS  Google Scholar 

  13. Ionică LN, Gaiță L, Bînă AM, Soşdean R, Lighezan R, Sima A, Malița D, Crețu OM, Burlacu O, Muntean DM, Sturza A (2021) Metformin alleviates monoamine oxidase-related vascular oxidative stress and endothelial dysfunction in rats with diet-induced obesity. Mol Cell Biochem. https://doi.org/10.1007/s11010-021-04194-2

    Article  Google Scholar 

  14. Lighezan R, Sturza A, Duicu OM, Ceausu RA, Vaduva A, Gaspar M, Feier H, Vaida M, Ivan V, Lighezan D, Muntean DM, Mornos C (2016) Monoamine oxidase inhibition improves vascular function in mammary arteries from nondiabetic and diabetic patients with coronary heart disease. Can J Physiol Pharmacol 94:1040–1047. https://doi.org/10.1139/cjpp-2015-0580

    Article  CAS  Google Scholar 

  15. Kaludercic N, Takimoto E, Nagayama T, Feng N, Lai EW, Bedja D, Chen K, Gabrielson KL, Blakely RD, Shih JC, Pacak K, Kass DA, Di Lisa F, Paolocci N (2010) Monoamine oxidase A-mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res 106:193–202. https://doi.org/10.1161/circresaha.109.198366

    Article  CAS  Google Scholar 

  16. Kaludercic N, Carpi A, Nagayama T, Sivakumaran V, Zhu G, Lai EW, Bedja D, De Mario A, Chen K, Gabrielson KL, Lindsey ML, Pacak K, Takimoto E, Shih JC, Kass DA, Di Lisa F, Paolocci N (2014) Monoamine oxidase B prompts mitochondrial and cardiac dysfunction in pressure overloaded hearts. Antioxid Redox Signal 20:267–280. https://doi.org/10.1089/ars.2012.4616

    Article  CAS  Google Scholar 

  17. Deshwal S, Forkink M, Hu CH, Buonincontri G, Antonucci S, Di Sante M, Murphy MP, Paolocci N, Mochly-Rosen D, Krieg T, Di Lisa F, Kaludercic N (2018) Monoamine oxidase-dependent endoplasmic reticulum-mitochondria dysfunction and mast cell degranulation lead to adverse cardiac remodeling in diabetes. Cell Death Differ 25:1671–1685. https://doi.org/10.1038/s41418-018-0071-1

    Article  CAS  Google Scholar 

  18. Manni ME, Rigacci S, Borchi E, Bargelli V, Miceli C, Giordano C, Raimondi L, Nediani C (2016) Monoamine oxidase is overactivated in left and right ventricles from ischemic hearts: an intriguing therapeutic target. Oxid Med Cell Longev 2016:4375418. https://doi.org/10.1155/2016/4375418

    Article  CAS  Google Scholar 

  19. Duicu OM, Lighezan R, Sturza A, Balica R, Vaduva A, Feier H, Gaspar M, Ionac A, Noveanu L, Borza C, Muntean DM, Mornos C (2016) Assessment of mitochondrial dysfunction and monoamine oxidase contribution to oxidative stress in human diabetic hearts. Oxid Med Cell Longev 2016:8470394. https://doi.org/10.1155/2016/8470394

    Article  CAS  Google Scholar 

  20. Ren J, Wu NN, Wang S, Sowers JR, Zhang Y (2021) Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiol Rev 101:1745–1807. https://doi.org/10.1152/physrev.00030.2020

    Article  CAS  Google Scholar 

  21. Forouzandeh F, Salazar G, Patrushev N, Xiong S, Hilenski L, Fei B, Alexander RW (2014) Metformin beyond diabetes: pleiotropic benefits of metformin in attenuation of atherosclerosis. J Am Heart Assoc 3:e001202. https://doi.org/10.1161/jaha.114.001202

    Article  Google Scholar 

  22. (2021) 3. prevention or delay of type 2 diabetes: standards of medical care in diabetes-2021. Diabetes Care 44:S34-s39. https://doi.org/10.2337/dc21-S003

  23. Tulipano G (2021) Integrated or independent actions of metformin in target tissues underlying its current use and new possible applications in the endocrine and metabolic disorder area. Int J Mol Sci. https://doi.org/10.3390/ijms222313068

    Article  Google Scholar 

  24. Yerevanian A, Soukas AA (2019) Metformin: mechanisms in human obesity and weight loss. Curr Obes Rep 8:156–164. https://doi.org/10.1007/s13679-019-00335-3

    Article  Google Scholar 

  25. Sturza A, Duicu OM, Vaduva A, Danila MD, Noveanu L, Varro A, Muntean DM (2015) Monoamine oxidases are novel sources of cardiovascular oxidative stress in experimental diabetes. Can J Physiol Pharmacol 93:555–561. https://doi.org/10.1139/cjpp-2014-0544

    Article  CAS  Google Scholar 

  26. Sturza A, Muntean DM, Crețu OM (2021) Monoamine oxidase, obesity and related comorbidities: discovering bonds. In: Tappia PS, Ramjiawan B, Dhalla NS (eds) Cellular and biochemical mechanisms of obesity. Springer International Publishing, Cham, pp 199–213

    Chapter  Google Scholar 

  27. Sorato E, Menazza S, Zulian A, Sabatelli P, Gualandi F, Merlini L, Bonaldo P, Canton M, Bernardi P, Di Lisa F (2014) Monoamine oxidase inhibition prevents mitochondrial dysfunction and apoptosis in myoblasts from patients with collagen VI myopathies. Free Radic Biol Med 75:40–47. https://doi.org/10.1016/j.freeradbiomed.2014.07.006

    Article  CAS  Google Scholar 

  28. Mialet-Perez J, Parini A (2020) Cardiac monoamine oxidases: at the heart of mitochondrial dysfunction. Cell Death Dis 11:54. https://doi.org/10.1038/s41419-020-2251-4

    Article  Google Scholar 

  29. Chen L, Guo L, Sun Z, Yang G, Guo J, Chen K, Xiao R, Yang X, Sheng L (2020) Monoamine Oxidase A is a Major Mediator of Mitochondrial Homeostasis and Glycolysis in Gastric Cancer Progression. Cancer Manag Res 12:8023–8035. https://doi.org/10.2147/cmar.s257848

    Article  CAS  Google Scholar 

  30. Umbarkar P, Singh S, Arkat S, Bodhankar SL, Lohidasan S, Sitasawad SL (2015) Monoamine oxidase-A is an important source of oxidative stress and promotes cardiac dysfunction, apoptosis, and fibrosis in diabetic cardiomyopathy. Free Radic Biol Med 87:263–273. https://doi.org/10.1016/j.freeradbiomed.2015.06.025

    Article  CAS  Google Scholar 

  31. Costiniti V, Spera I, Menabò R, Palmieri EM, Menga A, Scarcia P, Porcelli V, Gissi R, Castegna A, Canton M (2018) Monoamine oxidase-dependent histamine catabolism accounts for post-ischemic cardiac redox imbalance and injury. Biochim Biophys Acta Mol Basis Dis 1864:3050–3059. https://doi.org/10.1016/j.bbadis.2018.06.018

    Article  CAS  Google Scholar 

  32. Bianchi P, Kunduzova O, Masini E, Cambon C, Bani D, Raimondi L, Seguelas MH, Nistri S, Colucci W, Leducq N, Parini A (2005) Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury. Circulation 112:3297–3305. https://doi.org/10.1161/circulationaha.104.528133

    Article  CAS  Google Scholar 

  33. Kunduzova OR, Bianchi P, Parini A, Cambon C (2002) Hydrogen peroxide production by monoamine oxidase during ischemia/reperfusion. Eur J Pharmacol 448:225–230. https://doi.org/10.1016/s0014-2999(02)01913-1

    Article  CAS  Google Scholar 

  34. Inagaki T, Akiyama T, Du CK, Zhan DY, Yoshimoto M, Shirai M (2016) Monoamine oxidase-induced hydroxyl radical production and cardiomyocyte injury during myocardial ischemia-reperfusion in rats. Free Radic Res 50:645–653. https://doi.org/10.3109/10715762.2016.1162300

    Article  CAS  Google Scholar 

  35. Deshwal S, Di Sante M, Di Lisa F, Kaludercic N (2017) Emerging role of monoamine oxidase as a therapeutic target for cardiovascular disease. Curr Opin Pharmacol 33:64–69. https://doi.org/10.1016/j.coph.2017.04.003

    Article  CAS  Google Scholar 

  36. Shao W, Shu S, Liu R, Jiang Y, Zhang W, Men H (2019) Monoamine oxidase inhibitors protect against coronary heart disease in rodent rat models: a pilot study. Pak J Pharm Sci 32:371–375

    CAS  Google Scholar 

  37. Pino R, Failli P, Mazzetti L, Buffoni F (1997) Monoamine oxidase and semicarbazide-sensitive amine oxidase activities in isolated cardiomyocytes of spontaneously hypertensive rats. Biochem Mol Med 62:188–196. https://doi.org/10.1006/bmme.1997.2633

    Article  CAS  Google Scholar 

  38. Mialet-Perez J, Bianchi P, Kunduzova O, Parini A (2007) New insights on receptor-dependent and monoamine oxidase-dependent effects of serotonin in the heart. J Neural Transm (Vienna) 114:823–827. https://doi.org/10.1007/s00702-007-0695-7

    Article  CAS  Google Scholar 

  39. Santin Y, Sicard P, Vigneron F, Guilbeau-Frugier C, Dutaur M, Lairez O, Couderc B, Manni D, Korolchuk VI, Lezoualc’h F, Parini A, Mialet-Perez J (2016) Oxidative stress by monoamine oxidase-A impairs transcription factor EB activation and autophagosome clearance, leading to cardiomyocyte necrosis and heart failure. Antioxid Redox Signal 25:10–27. https://doi.org/10.1089/ars.2015.6522

    Article  CAS  Google Scholar 

  40. Mialet-Perez J, Santin Y, Parini A (2018) Monoamine oxidase-A, serotonin and norepinephrine: synergistic players in cardiac physiology and pathology. J Neural Transm (Vienna) 125:1627–1634. https://doi.org/10.1007/s00702-018-1908-y

    Article  Google Scholar 

  41. Manni ME, Zazzeri M, Musilli C, Bigagli E, Lodovici M, Raimondi L (2013) Exposure of cardiomyocytes to angiotensin II induces over-activation of monoamine oxidase type A: implications in heart failure. Eur J Pharmacol 718:271–276. https://doi.org/10.1016/j.ejphar.2013.08.022

    Article  CAS  Google Scholar 

  42. Kaludercic N, Mialet-Perez J, Paolocci N, Parini A, Di Lisa F (2014) Monoamine oxidases as sources of oxidants in the heart. J Mol Cell Cardiol 73:34–42. https://doi.org/10.1016/j.yjmcc.2013.12.032

    Article  CAS  Google Scholar 

  43. Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N (2011) Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta 1813:1323–1332. https://doi.org/10.1016/j.bbamcr.2010.09.010

    Article  CAS  Google Scholar 

  44. Deftereos SN, Dodou E, Andronis C, Persidis A (2012) From depression to neurodegeneration and heart failure: re-examining the potential of MAO inhibitors. Expert Rev Clin Pharmacol 5:413–425. https://doi.org/10.1586/ecp.12.29

    Article  CAS  Google Scholar 

  45. Corbineau S, Breton M, Mialet-Perez J, Costemale-Lacoste JF (2017) Major depression and heart failure: interest of monoamine oxidase inhibitors. Int J Cardiol 247:1–6. https://doi.org/10.1016/j.ijcard.2017.07.005

    Article  Google Scholar 

  46. Sturza A, Noveanu L, Duicu O, Muntean D (2014) P172Monoamine oxidase inhibition corrects endothelial dysfunction in experimental diabetes. Cardiovasc Res 103:S30–S30. https://doi.org/10.1093/cvr/cvu082.108

    Article  Google Scholar 

  47. Jingying Qiu CL, Dong Z, Wang J (2020) Anti-diabetic effect of a monoamine oxidase inhibitor (tranylcypromine) in rats with poorly-controlled blood glucose levels: a potential and novel therapeutic option for diabetes. Trop J Pharm Res 19:1249–1254. https://doi.org/10.4314/tjpr.v19i6.20

    Article  CAS  Google Scholar 

  48. Emory H, Mizrahi N (2017) Glycaemic control by monoamine oxidase inhibition in a patient with type 1 diabetes. Diab Vasc Dis Res 14:163–165. https://doi.org/10.1177/1479164116675492

    Article  Google Scholar 

  49. Sturza A, Popoiu CM, Ionică M, Duicu OM, Olariu S, Muntean DM, Boia ES (2019) Monoamine oxidase-related vascular oxidative stress in diseases associated with inflammatory burden. Oxid Med Cell Longev 2019:8954201. https://doi.org/10.1155/2019/8954201

    Article  CAS  Google Scholar 

  50. Battineni G, Sagaro GG, Chintalapudi N, Amenta F, Tomassoni D, Tayebati SK (2021) Impact of obesity-induced inflammation on cardiovascular diseases (CVD). Int J Mol Sci. https://doi.org/10.3390/ijms22094798

    Article  Google Scholar 

  51. Cameron AR, Morrison VL, Levin D, Mohan M, Forteath C, Beall C, McNeilly AD, Balfour DJ, Savinko T, Wong AK, Viollet B, Sakamoto K, Fagerholm SC, Foretz M, Lang CC, Rena G (2016) Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res 119:652–665. https://doi.org/10.1161/circresaha.116.308445

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the university internal grant code 6POSTDOC/1871/12.02.2020 (A.S.).

Funding

Funding was provided by “Victor Babes” University of Medicine and Pharmacy, Timişoara, Romania (6POSTDOC/1871/12.02.2020).

Author information

Authors and Affiliations

Authors

Contributions

APM: investigation, formal analysis LNI: investigation, original draft preparation, formal analysis; AMB: methodology, investigation; SP: visualization, supervision; RL: investigation visualization; LP: supervision; CB: visualization, supervision; A.S.: data curation, writing—review and editing; DMM: conceptualization, writing—review and editing; OMC: project administration, funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Adrian Sturza or Danina M. Muntean.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merce, A.P., Ionică, L.N., Bînă, A.M. et al. Monoamine oxidase is a source of cardiac oxidative stress in obese rats: the beneficial role of metformin. Mol Cell Biochem 478, 59–67 (2023). https://doi.org/10.1007/s11010-022-04490-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04490-5

Keywords

Navigation