Skip to main content

Advertisement

Log in

Effect of IL-10 in the pathogenesis of HIV/AIDS patients with cryptococcal meningitis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study aimed to explore the role of IL-10 in the pathogenesis of HIV/AIDS patients with cryptococcal meningitis (CM).Patients were assigned into 4 groups (n = 40/group): group A (HIV/AIDS with CM), group B (HIV/AIDS with tuberculosis), group C (HIV/AIDS), and group D (CM). The levels of IL-10 and associated indicators were measured and the correlations were analyzed by Pearson correlation and partial correlation method. In plasma and cerebrospinal fluid (CSF), no significant difference was observed on IL-10 level between group A and other groups (P > 0.050). R values for IL-10 and relevant indicators in blood were as follows (P < 0.050): group A, IFN-γ (−0.377), IL-12 (0.743), IL-4 (0.881), and IL-6 (0.843); group B, IL-12 (0.740), IL-4 (0.573), and IL-6 (0.900); group C, IL-12 (0.402) and IL-4 (0.896); group D, IL-12 (0.575), IL-4 (0.852), and CD8 (0.325). R values for IL-10 and related indicators in CSF were as follows (P < 0.050): group A, TNF-α (0.664), IL-4 (0.852), white blood cells (WBCs, 0.321) and total protein (TP, 0.330); group B, TNF-α (0.566), IL-4 (0.702), and lactate dehydrogenase (LDH, 0.382); group D, IFN-γ (0.807) and IL-4 (0.441). IL-10 level was positively correlated with IL-4, IL-6, IL-12, TNF-α, WBC, and TP in blood or CSF, and negatively correlated with IFN-γ in blood, suggesting that IL-10 affected both pro-inflammatory and anti-inflammatory activities in the pathogenesis of HIV/AIDS with CM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Spec A, Powderly WG (2018) Cryptococcal meningitis in AIDS. Handb Clin Neurol 152:139–150

    Article  Google Scholar 

  2. Temfack E, Boyer-Chammard T, Lawrence D, Delliere S, Loyse A, Lanternier F, Alanio A, Lortholary O (2019) New insights into Cryptococcus spp. biology and cryptococcal meningitis. Curr Neurol Neurosci Rep 19(10):81

    Article  Google Scholar 

  3. McKenney J, Bauman S, Neary B, Detels R, French A, Margolick J, Doherty B, Klausner JD (2015) Prevalence, correlates, and outcomes of cryptococcal antigen positivity among patients with AIDS, United States, 1986–2012. Clin Infect Dis 60(6):959–965

    Article  Google Scholar 

  4. Molloy SF, Kanyama C, Heyderman RS, Loyse A, Kouanfack C, Chanda D, Mfinanga S, Temfack E, Lakhi S, Lesikari S et al (2018) Antifungal combinations for treatment of cryptococcal meningitis in Africa. N Engl J Med 378(11):1004–1017

    Article  CAS  Google Scholar 

  5. Li A, Zhu W, Yin J, Huang X, Sun L, Hua W, Wang W, Zhang T, Dai L, Wu H (2021) A preliminary study on the characteristics of Th1/Th2 immune response in cerebrospinal fluid of AIDS patients with cryptococcal meningitis. BMC Infect Dis 21(1):500

    Article  CAS  Google Scholar 

  6. Slavoski LA, Tunkel AR (1995) Therapy of fungal meningitis. Clin Neuropharmacol 18(2):95–112

    Article  CAS  Google Scholar 

  7. Williamson PR, Jarvis JN, Panackal AA, Fisher MC, Molloy SF, Loyse A, Harrison TS (2017) Cryptococcal meningitis: epidemiology, immunology, diagnosis and therapy. Nat Rev Neurol 13(1):13–24

    Article  CAS  Google Scholar 

  8. Lawrence DS, Boyer-Chammard T, Jarvis JN (2019) Emerging concepts in HIV-associated cryptococcal meningitis. Curr Opin Infect Dis 32(1):16–23

    Article  Google Scholar 

  9. Williamson PR (2017) The relentless march of cryptococcal meningitis. Lancet Infect Dis 17(8):790–791

    Article  Google Scholar 

  10. Tenforde MW, Scriven JE, Harrison TS, Jarvis JN (2017) Immune correlates of HIV-associated cryptococcal meningitis. PLoS Pathog 13(3):e1006207

    Article  Google Scholar 

  11. Antachopoulos C, Walsh TJ (2012) Immunotherapy of cryptococcus infections. Clin microbiol infect 18(2):126–133

    Article  CAS  Google Scholar 

  12. Pirofski LA, Casadevall A (2017) Immune-mediated damage completes the parabola: Cryptococcus neoformans pathogenesis can reflect the outcome of a weak or strong immune response. mBio. https://doi.org/10.1128/mBio.02063-17

    Article  Google Scholar 

  13. Neal LM, Xing E, Xu J, Kolbe JL, Osterholzer JJ, Segal BM, Williamson PR, Olszewski MA (2017) CD4(+) T cells orchestrate lethal immune pathology despite fungal clearance during Cryptococcus neoformans meningoencephalitis. mBio. https://doi.org/10.1128/mBio.01415-17

    Article  Google Scholar 

  14. Mora DJ, Fortunato LR, Andrade-Silva LE, Ferreira-Paim K, Rocha IH, Vasconcelos RR, Silva-Teixeira DN, Nascentes GA, Silva-Vergara ML (2015) Cytokine profiles at admission can be related to outcome in AIDS patients with cryptococcal meningitis. PLoS ONE 10(3):e0120297

    Article  Google Scholar 

  15. Xu L, Guo Y, Zhao Y, Xu Y, Peng X, Yang Z, Tao R, Huang Y, Xu Y, Chen Y et al (2019) Chemokine and cytokine cascade caused by skewing of the Th1-Th2 balance is associated with high intracranial pressure in HIV-associated cryptococcal meningitis. Med Inflamm 2019:2053958

    Article  Google Scholar 

  16. Carvalho A, Cunha C, Bozza S, Moretti S, Massi-Benedetti C, Bistoni F, Aversa F, Romani L (2012) Immunity and tolerance to fungi in hematopoietic transplantation: principles and perspectives. Front Immunol 3:156

    Article  CAS  Google Scholar 

  17. Romani L (2011) Immunity to fungal infections. Nat Rev Immunol 11(4):275–288

    Article  CAS  Google Scholar 

  18. Rohatgi S, Pirofski LA (2015) Host immunity to cryptococcus neoformans. Future Microbiol 10(4):565–581

    Article  CAS  Google Scholar 

  19. Sabiiti W, May RC (2012) Mechanisms of infection by the human fungal pathogen cryptococcus neoformans. Future Microbiol 7(11):1297–1313

    Article  CAS  Google Scholar 

  20. Wang J, Zeng Y, Luo W, Xie X, Li S (2015) The role of cryptococcus in the immune system of pulmonary cryptococcosis patients. PLoS ONE 10(12):e0144427

    Article  Google Scholar 

  21. Jarvis JN, Meintjes G, Bicanic T, Buffa V, Hogan L, Mo S, Tomlinson G, Kropf P, Noursadeghi M, Harrison TS (2015) Cerebrospinal fluid cytokine profiles predict risk of early mortality and immune reconstitution inflammatory syndrome in HIV-associated cryptococcal meningitis. PLoS Pathog 11(4):e1004754

    Article  Google Scholar 

  22. Murdock BJ, Huffnagle GB, Olszewski MA, Osterholzer JJ (2014) Interleukin-17A enhances host defense against cryptococcal lung infection through effects mediated by leukocyte recruitment, activation, and gamma interferon production. Infect Immun 82(3):937–948

    Article  Google Scholar 

  23. Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383(6603):787–793

    Article  CAS  Google Scholar 

  24. Clerici M, Shearer GM (1994) The Th1-Th2 hypothesis of HIV infection: new insights. Immunol Today 15(12):575–581

    Article  CAS  Google Scholar 

  25. Wei H, Li B, Sun A, Guo F (2019) Interleukin-10 family cytokines immunobiology and structure. Adv Exp Med Biol 1172:79–96

    Article  CAS  Google Scholar 

  26. Liu QQ, Zhong D, Zhang X, Li GZ (2018) IL-10 targets Th1/Th2 balance in vascular dementia. Eur Rev Med Pharmacol Sci 22(17):5614–5619

    Google Scholar 

  27. Xia R, Hu Z, Sun Y, Chen S, Gu M, Zhou Y, Han Z, Zhong R, Deng A, Wen H (2010) Overexpression of beta-arrestin 2 in peripheral blood mononuclear cells of patients with cryptococcal meningitis. J interf & cytokine res 30(3):155–162

    Article  CAS  Google Scholar 

  28. Andrade RM, Lima PG, Filho RG, Hygino J, Milczanowski SF, Andrade AF, Lauria C, Brindeiro R, Tanuri A, Bento CA (2007) Interleukin-10-secreting CD4 cells from aged patients with AIDS decrease in-vitro HIV replication and tumour necrosis factor alpha production. AIDS 21(13):1763–1770

    Article  CAS  Google Scholar 

  29. Greene G, Lawrence DS, Jordan A, Chiller T, Jarvis JN (2021) Cryptococcal meningitis: a review of cryptococcal antigen screening programs in Africa. Expert Rev Anti Infect Ther 19(2):233–244

    Article  CAS  Google Scholar 

  30. Christensen A, Eikenaes E (1999) Cryptococcal meningitis in a patient without known predisposing disease. Tidsskr Nor Laegeforen 119(21):3132–3134

    CAS  Google Scholar 

  31. Shourian M, Qureshi ST (2019) Resistance and tolerance to cryptococcal infection: an intricate balance that controls the development of disease. Front Immunol 10:66

    Article  CAS  Google Scholar 

  32. Infante-Duarte C, Kamradt T (1999) Th1/Th2 balance in infection. Springer Semin Immunopathol 21(3):317–338

    Article  CAS  Google Scholar 

  33. Matsuzaki J, Tsuji T, Imazeki I, Ikeda H, Nishimura T (2005) Immunosteroid as a regulator for Th1/Th2 balance: its possible role in autoimmune diseases. Autoimmunity 38(5):369–375

    Article  CAS  Google Scholar 

  34. Horiuchi Y, Hanazawa A, Nakajima Y, Nariai Y, Asanuma H, Kuwabara M, Yukawa M, Ito H (2007) T-helper (Th)1/Th2 imbalance in the peripheral blood of dogs with malignant tumor. Microbiol Immunol 51(11):1135–1138

    Article  CAS  Google Scholar 

  35. Wu HP, Chu CM, Kao KC, Huang SH, Chuang DY (2017) High interleukin-10 expression in type 2 T helper cells in septic patients. Immunol Invest 46(4):385–394

    Article  CAS  Google Scholar 

  36. Wen C, Gan N, Zeng T, Lv M, Zhang N, Zhou H, Zhang A, Wang X (2020) Regulation of Il-10 gene expression by Il-6 via Stat3 in grass carp head kidney leucocytes. Gene 741:144579

    Article  CAS  Google Scholar 

  37. Stylianou E, Aukrust P, Kvale D, Muller F, Froland SS (1999) IL-10 in HIV infection: increasing serum IL-10 levels with disease progression–down-regulatory effect of potent anti-retroviral therapy. Clin Exp Immunol 116(1):115–120

    Article  CAS  Google Scholar 

  38. Scriven JE, Graham LM, Schutz C, Scriba TJ, Wilkinson KA, Wilkinson RJ, Boulware DR, Urban BC, Lalloo DG, Meintjes G (2016) A glucuronoxylomannan-associated immune signature, characterized by monocyte deactivation and an increased interleukin 10 level, Is a predictor of death in cryptococcal meningitis. J Infect Dis 213(11):1725–1734

    Article  CAS  Google Scholar 

  39. Marshall JD, Secrist H, DeKruyff RH, Wolf SF, Umetsu DT (1995) IL-12 inhibits the production of IL-4 and IL-10 in allergen-specific human CD4+ T lymphocytes. J Immunol 155(1):111–117

    Article  CAS  Google Scholar 

  40. Salgame P, Guan MX, Agahtehrani A, Henderson EE (1998) Infection of T cell subsets by HIV-1 and the effects of interleukin-12. J Interferon Cytokine Res 18(7):521–528

    Article  CAS  Google Scholar 

  41. Han J, Mu W, Zhao H, Hao Y, Song C, Zhou H, Sun X, Li G, Dai G, Zhang Y et al (2020) HIV-1 low-level viremia affects T cell activation rather than T cell development in school-age children, adolescents, and young adults during antiretroviral therapy. Int J Infect Dis 91:210–217

    Article  CAS  Google Scholar 

  42. Yin J, Dai A, Kutzler MA, Shen A, Lecureux J, Lewis MG, Waldmann T, Weiner DB, Boyer JD (2008) Sustained suppression of SHIV89.6P replication in macaques by vaccine-induced CD8+ memory T cells. AIDS 22(14):1739–1748

    Article  CAS  Google Scholar 

  43. Jiao Y, Hua W, Zhang T, Zhang Y, Ji Y, Zhang H, Wu H (2011) Characteristics of CD8+ T cell subsets in Chinese patients with chronic HIV infection during initial ART. AIDS Res Ther 8:15

    Article  CAS  Google Scholar 

  44. Brockman MA, Kwon DS, Tighe DP, Pavlik DF, Rosato PC, Sela J, Porichis F, Le Gall S, Waring MT, Moss K et al (2009) IL-10 is up-regulated in multiple cell types during viremic HIV infection and reversibly inhibits virus-specific T cells. Blood 114(2):346–356

    Article  CAS  Google Scholar 

  45. Bocchino M, Ledru E, Debord T, Gougeon ML (2001) Increased priming for interleukin-12 and tumour necrosis factor alpha in CD64 monocytes in HIV infection: modulation by cytokines and therapy. AIDS 15(10):1213–1223

    Article  CAS  Google Scholar 

  46. Kretschmer B, Luthje K, Guse AH, Ehrlich S, Koch-Nolte F, Haag F, Fleischer B, Breloer M (2007) CD83 modulates B cell function in vitro: increased IL-10 and reduced Ig secretion by CD83Tg B cells. PLoS ONE 2(8):e755

    Article  Google Scholar 

  47. Heine G, Drozdenko G, Grun JR, Chang HD, Radbruch A, Worm M (2014) Autocrine IL-10 promotes human B-cell differentiation into IgM- or IgG-secreting plasmablasts. Eur J Immunol 44(6):1615–1621

    Article  CAS  Google Scholar 

  48. Lee HS, Kim CK (2013) Interleukin-10 down-regulates cathepsin B expression in fetal rat alveolar type II cells exposed to hyperoxia. Yonsei Med J 54(2):445–452

    Article  CAS  Google Scholar 

  49. Ciledag A, Kaya A, Erol S, Sen E, Celik G, Cesur S, Fidan Y, Kinikli S (2010) The comparison of pleural fluid TNF-alpha and IL-10 levels with ADA in tuberculous pleural effusion. Curr Med Chem 17(19):2096–2100

    Article  CAS  Google Scholar 

  50. Walker J, Jijon HB, Churchill T, Kulka M, Madsen KL (2003) Activation of AMP-activated protein kinase reduces cAMP-mediated epithelial chloride secretion. Am J Physiol Gastrointest Liver Physiol 285(5):G850-860

    Article  CAS  Google Scholar 

  51. Uicker WC, Doyle HA, McCracken JP, Langlois M, Buchanan KL (2005) Cytokine and chemokine expression in the central nervous system associated with protective cell-mediated immunity against cryptococcus neoformans. Med Mycol 43(1):27–38

    Article  Google Scholar 

  52. Green JA, Dholakia S, Janczar K, Ong CW, Moores R, Fry J, Elkington PT, Roncaroli F, Friedland JS (2011) Mycobacterium tuberculosis-infected human monocytes down-regulate microglial MMP-2 secretion in CNS tuberculosis via TNFalpha, NFkappaB, p38 and caspase 8 dependent pathways. J Neuroinflamm 8:46

    Article  CAS  Google Scholar 

  53. Chang CC, Omarjee S, Lim A, Spelman T, Gosnell BI, Carr WH, Elliott JH, Moosa MY, Ndung’u T, French MA et al (2013) Chemokine levels and chemokine receptor expression in the blood and the cerebrospinal fluid of HIV-infected patients with cryptococcal meningitis and cryptococcosis-associated immune reconstitution inflammatory syndrome. J Infect Dis 208(10):1604–1612

    Article  CAS  Google Scholar 

  54. Doi A, Hasuike T, Shindo T, Nishioka H (2020) Elevation of CSF adenosine deaminase in HIV patient with meningitis from retroviral rebound syndrome, a case report. Int J Infect Dis 98:297–298

    Article  CAS  Google Scholar 

  55. Abd El-Wahab EW, Farrag T, Metwally M (2020) A clinical rule for the prediction of meningitis in HIV patients in the era of combination antiretroviral therapy. Trans R Soc Trop Med Hyg 114(4):264–275

    Article  Google Scholar 

Download references

Funding

This research was supported by the self-funded scientific research project of Guangxi Health Commission (Grant No. Z2016067) and the key research and developmental project of Nanning science and technology bureau (Grant No. 20193008-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolu Luo or Chuanmin Tao.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, L., Su, G., Su, H. et al. Effect of IL-10 in the pathogenesis of HIV/AIDS patients with cryptococcal meningitis. Mol Cell Biochem 478, 1–11 (2023). https://doi.org/10.1007/s11010-022-04488-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04488-z

Keywords

Navigation