Skip to main content

Advertisement

Log in

Novel antigens for targeted radioimmunotherapy in hepatocellular carcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Liver cancer is the sixth common cancer and forth cause of cancer-related death worldwide. Based on usually advanced stages of hepatocellular carcinoma (HCC) at the time of diagnosis, therapeutic options are limited and, in many cases, not effective, and typically result in the tumor recurrence with a poor prognosis. Radioimmunotherapy (RIT) offers a selective internal radiation therapy approach using beta or alpha emitting radionuclides conjugated with tumor-specific monoclonal antibodies (mAbs), or specific selective peptides. When compared to chemotherapy or radiotherapy, radiolabeled mAbs against cancer-associated antigens could provide a high therapeutic and exclusive radiation dose for cancerous cells while decreasing the exposure-induced side effects to healthy tissues. The recent advances in cancer immunotherapy, such as blockade of immune-checkpoint inhibitors (ICIs), has changed the landscape of cancer therapy, and the efficacy of different classes of immunotherapy has been tested in many clinical trials. Taking into account the use of ICIs in the liver tumor microenvironment, combined therapies with different approaches may enhance the outcome in the future clinical studies. With the development of novel immunotherapy treatment options in the recent years, there has been a great deal of information about combining the diverse treatment modalities to boost the effectiveness of immunomodulatory drugs. In this opinion review, we will discuss the recent advancements in RIT. The current status of immunotherapy and internal radiotherapy will be updated, and we will propose novel approaches for the combination of both techniques.

Graphical abstract

Potential target antigens for radioimmunotherapy in Hepatocellular carcinoma (HCC). HCC radioimmunotherapy target antigens are the most specific and commonly accessible antigens on the surface of HCC cells. CTLA-4 ligand and receptor, TAMs, PD-1/PD-L, TIM-3, specific IEXs/TEXs, ROBO1, and cluster of differentiation antigens CD105, CD147 could all be used in HCC radioimmunotherapy. Abbreviations: TAMs, tumor-associated macrophages; CTLA-4, cytotoxic T-lymphocyte associated antigen-4; PD-1, Programmed cell death protein 1; PD-L, programmed death-ligand1; TIM-3, T-cell immunoglobulin (Ig) and mucin-domain containing protein-3; IEXs, immune cell-derived exosomes; TEXs, tumor-derived exosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 68(6):394–424

    Google Scholar 

  2. Shokoohian B, Negahdari B, Aboulkheyr Es H, Abedi-Valugerdi M, Baghaei K, Agarwal T et al (2021) Advanced therapeutic modalities in hepatocellular carcinoma: novel insights. J Cell Mol Med 25(18):8602–8614

    Article  CAS  Google Scholar 

  3. Kang-Da L, Zhao-You T, Yan-Ming B, Ji-Zhen L, Feng Q, Ai-Na Y et al (1989) Radioimmunotherapy for hepatocellular carcinoma (HCC) using 131I-anti HCC isoferritin IgG: preliminary results of experimental and clinical studies. Int J Radiat Oncol* Biol* Phys 16(2):319–323

    Article  Google Scholar 

  4. Larson SM, Carrasquillo JA (2015) Cheung N-KV, Press OWJNRC. Radioimmunother Hum Tumours 15(6):347

    CAS  Google Scholar 

  5. Sahlin M, Bauden MP, Andersson R, Ansari DJTB (2015) Radioimmunotherapy—a potential novel tool for pancreatic cancer therapy? Tumor Biol 36(6):4053–4062

    Article  CAS  Google Scholar 

  6. Wu L, Yang Y-F, Ge N-J, Shen S-Q, Liang J, Wang Y et al (2010) Hepatic arterial Iodine-131–labeled metuximab injection combined with chemoembolization for unresectable hepatocellular carcinoma: interim safety and survival data from 110 patients. Cancer Biother Radiopharm 25(6):657–663

    CAS  Google Scholar 

  7. Tartarone A, Lapadula V, Di Micco C, Rossi G, Ottanelli C, Marini A et al (2021) Beyond conventional: the new horizon of targeted therapy for the treatment of advanced non small cell lung cancer. Front Oncol 11:632256

    Article  Google Scholar 

  8. Tartarone A, Roviello G, Lerose R, Roudi R, Aieta M, Zoppoli P (2019) Anti-PD-1 versus anti-PD-L1 therapy in patients with pretreated advanced non-small-cell lung cancer: a meta-analysis. Future Oncol 15(20):2423–2433

    Article  CAS  Google Scholar 

  9. Lee HW, Cho KJ, Park JY (2020) Current status and future direction of immunotherapy in hepatocellular carcinoma: what do the data suggest? Immune Netw 20(1):e11-e

    Article  Google Scholar 

  10. Bourke JM, O’Sullivan M, Khattak MA (2016) Management of adverse events related to new cancer immunotherapy (immune checkpoint inhibitors). Med J Aust 205(9):418–424

    Article  Google Scholar 

  11. Zongyi Y, Xiaowu L (2020) Immunotherapy for hepatocellular carcinoma. Cancer Lett 470:8–17

    Article  Google Scholar 

  12. Llovet JM, Real MI, Montaña X, Planas R, Coll S, Aponte J et al (2002) Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. The Lancet 359(9319):1734–1739

    Article  Google Scholar 

  13. Wang T-H, Huang P-I, Hu Y-W, Lin K-H, Liu C-S, Lin Y-Y et al (2018) Combined Yttrium-90 microsphere selective internal radiation therapy and external beam radiotherapy in patients with hepatocellular carcinoma: from clinical aspects to dosimetry. PLoS ONE 13(1):e0190098

    Article  Google Scholar 

  14. Asadian S, Piryaei A, Gheibi N, Aziz Kalantari B, Reza Davarpanah M, Azad M et al (2022) Rhenium Perrhenate ((188)ReO(4)) induced apoptosis and reduced cancerous phenotype in liver cancer cells. Cells 11(2):305

    Article  CAS  Google Scholar 

  15. Sigmund P (2014) Particle penetration and radiation effects volume 2. Springer Series in Solid-State Sciences, vol 179. Springer, Berlin

  16. Kim Y-S, Brechbiel MW (2012) An overview of targeted alpha therapy. Tumor Biol 33(3):573–590

    Article  CAS  Google Scholar 

  17. Asadian S, Mirzaei H, Kalantari BA, Davarpanah MR, Mohamadi M, Shpichka A et al (2020) β-radiating radionuclides in cancer treatment, novel insight into promising approach. Pharmacol Res 160:105070

    Article  CAS  Google Scholar 

  18. Kawashima H (2014) Radioimmunotherapy: a specific treatment protocol for cancer by cytotoxic radioisotopes conjugated to antibodies. Sci World J. https://doi.org/10.1155/2014/492061

    Article  Google Scholar 

  19. Heymann F, Tacke F (2016) Immunology in the liver—from homeostasis to disease. Nat Rev Gastroenterol Hepatol 13(2):88

    Article  CAS  Google Scholar 

  20. Trivedi PJ, Adams DH (2016) Gut–liver immunity. J Hepatol 64(5):1187–1189

    Article  CAS  Google Scholar 

  21. Horst AK, Neumann K, Diehl L, Tiegs G (2016) Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol Immunol 13(3):277–292

    Article  CAS  Google Scholar 

  22. Jenne CN, Kubes P (2013) Immune surveillance by the liver. Nat Immunol 14(10):996–1006

    Article  CAS  Google Scholar 

  23. Chen D-P, Ning W-R, Jiang Z-Z, Peng Z-P, Zhu L-Y, Zhuang S-M et al (2019) Glycolytic activation of peritumoral monocytes fosters immune privilege via the PFKFB3-PD-L1 axis in human hepatocellular carcinoma. J Hepatol 71(2):333–343

    Article  CAS  Google Scholar 

  24. Nguyen LT, Ohashi PS (2015) Clinical blockade of PD1 and LAG3—potential mechanisms of action. Nat Rev Immunol 15(1):45

    Article  CAS  Google Scholar 

  25. Wang B-J, Bao J-J, Wang J-Z, Wang Y, Jiang M, Xing M-Y et al (2011) Immunostaining of PD-1/PD-Ls in liver tissues of patients with hepatitis and hepatocellular carcinoma. WJG 17(28):3322

    Article  Google Scholar 

  26. Jung HI, Jeong D, Ji S, Ahn TS, Bae SH, Chin S et al (2017) Overexpression of PD-L1 and PD-L2 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res treat 49(1):246

    Article  CAS  Google Scholar 

  27. Gao Q, Wang X-Y, Qiu S-J, Yamato I, Sho M, Nakajima Y et al (2009) Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res 15(3):971–979

    Article  CAS  Google Scholar 

  28. Okusaka T, Ikeda M (2018) Immunotherapy for hepatocellular carcinoma: current status and future perspectives. ESMO open 3(Suppl 1):e000455

    Article  Google Scholar 

  29. Adcock CS, Puneky LV, Campbell GS (2019) Favorable response of metastatic hepatocellular carcinoma to treatment with trans-arterial radioembolization followed by Sorafenib and Nivolumab. Cureus. https://doi.org/10.7759/cureus.4083

    Article  Google Scholar 

  30. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C et al (2017) Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. The Lancet 389(10088):2492–2502

    Article  CAS  Google Scholar 

  31. Merck (2019) Merck provides update on KEYNOTE‐240, a phase 3 study of KEYTRUDA®(pembrolizumab) in previously treated patients with advanced hepatocellular carcinoma [press release]

  32. Yan W, Liu X, Ma H, Zhang H, Song X, Gao L et al (2015) Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages. Gut 64(10):1593–1604

    Article  CAS  Google Scholar 

  33. Liu F, Zeng G, Zhou S, He X, Sun N, Zhu X et al (2018) Blocking Tim-3 or/and PD-1 reverses dysfunction of tumor-infiltrating lymphocytes in HBV-related hepatocellular carcinoma. Bull Cancer 105(5):493–501

    Article  Google Scholar 

  34. Farzaneh Z, Vosough M, Agarwal T, Farzaneh M (2021) Critical signaling pathways governing hepatocellular carcinoma behavior; small molecule-based approaches. Cancer Cell Int 21(1):1–15

    Article  Google Scholar 

  35. Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG et al (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 7(1):1–9

    Article  Google Scholar 

  36. Wolf Y, Anderson AC, Kuchroo VK (2020) TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol 20(3):173–185

    Article  CAS  Google Scholar 

  37. Zhang H, Song Y, Yang H, Liu Z, Gao L, Liang X et al (2018) Tumor cell-intrinsic Tim-3 promotes liver cancer via NF-κB/IL-6/STAT3 axis. Oncogene 37(18):2456–2468

    Article  CAS  Google Scholar 

  38. Sobhani N, Tardiel-Cyril DR, Davtyan A, Generali D, Roudi R, Li Y (2021) CTLA-4 in regulatory T cells for cancer immunotherapy. Cancers 13(6):1440

    Article  CAS  Google Scholar 

  39. Han Y, Chen Z, Yang Y, Jiang Z, Gu Y, Liu Y et al (2014) Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2, 3-dioxygenase production in hepatocellular carcinoma. Hepatology 59(2):567–579

    Article  CAS  Google Scholar 

  40. Sangro B, Gomez-Martin C, de la Mata M, Iñarrairaegui M, Garralda E, Barrera P et al (2013) A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol 59(1):81–88

    Article  CAS  Google Scholar 

  41. Yau T, Kang Y-K, Kim T-Y, El-Khoueiry AB, Santoro A, Sangro B et al (2019) Nivolumab (NIVO)+ ipilimumab (IPI) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC): results from CheckMate 040. Am Soc Clin Oncol. https://doi.org/10.1200/JCO.2019.37.15_suppl.4012

    Article  Google Scholar 

  42. Duffy AG, Ulahannan SV, Makorova-Rusher O, Rahma O, Wedemeyer H, Pratt D et al (2017) Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol 66(3):545–551

    Article  CAS  Google Scholar 

  43. Lu M, Wu J, Hao ZW, Shang YK, Xu J, Nan G et al (2018) Basolateral CD147 induces hepatocyte polarity loss by E-cadherin ubiquitination and degradation in hepatocellular carcinoma progress. Hepatology 68(1):317–332

    Article  CAS  Google Scholar 

  44. Wu J, Ru N, Zhang Y, Li Y, Wei D, Ren Z et al (2011) HAb18G/CD147 promotes epithelial–mesenchymal transition through TGF-β signaling and is transcriptionally regulated by Slug. Oncogene 30(43):4410

    Article  CAS  Google Scholar 

  45. Huang Q, Li J, Xing J, Li W, Li H, Ke X et al (2014) CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the p53-dependent signaling pathway. J Hepatol 61(4):859–866

    Article  CAS  Google Scholar 

  46. Li J, Huang Q, Long X, Zhang J, Huang X, Aa J et al (2015) CD147 reprograms fatty acid metabolism in hepatocellular carcinoma cells through Akt/mTOR/SREBP1c and P38/PPARα pathways. J Hepatol 63(6):1378–1389

    Article  CAS  Google Scholar 

  47. Felmlee DJ, Baumert TF (2016) CD147 handles lipid: a new role for anti-cancer target. Transl Cancer Res 5(3):238–240

    Article  Google Scholar 

  48. Ju H-L, Ro SW (2016) Making cancer fat: reprogramming of lipid metabolism by CD147 in hepatocellular carcinoma. Chin J Cancer Res 28(3):380

    Article  CAS  Google Scholar 

  49. Xiao W, Zhao S, Shen F, Liang J, Chen J (2017) Overexpression of CD147 is associated with poor prognosis, tumor cell migration and ERK signaling pathway activation in hepatocellular carcinoma. Exp Ther Med 14(3):2637–2642

    Article  CAS  Google Scholar 

  50. Bian H, Zheng J-S, Nan G, Li R, Chen C, Hu C-X et al (2014) Randomized trial of [131I] metuximab in treatment of hepatocellular carcinoma after percutaneous radiofrequency ablation. J Natl Cancer Inst 106(9):dju239

    Article  Google Scholar 

  51. Wang Y, Yuan L, Yang X-M, Wei D, Wang B, Sun X-X et al (2015) A chimeric antibody targeting CD147 inhibits hepatocellular carcinoma cell motility via FAK-PI3K-Akt-Girdin signaling pathway. Clin Exp Metastasis 32(1):39–53

    Article  Google Scholar 

  52. Duan C, Li Y, Yang W, Zhang C (2018) Combination of 131I-anti-endoglin monoclonal antibody and 5-fluorouracil may be a promising combined-modality radioimmunotherapy strategy for the treatment of hepatocellular carcinoma. Biotechnol Biotechnol Equip 32(4):974–981

    Article  CAS  Google Scholar 

  53. Kasprzak A, Adamek A (2018) Role of Endoglin (CD105) in the progression of hepatocellular carcinoma and anti-angiogenic therapy. Int J Mol Sci 9(12):3887

    Article  Google Scholar 

  54. Liu Q, Zhang R-Z, Li D, Cheng S, Yang Y-H, Tian T et al (2016) Muse cells, a new type of pluripotent stem cell derived from human fibroblasts. Cell Reprogram 18(2):67–77

    Article  Google Scholar 

  55. El-Kehdy H, Sargiacomo C, Fayyad-Kazan M, Fayyad-Kazan H, Lombard C, Lagneaux L et al (2017) Immunoprofiling of adult-derived human liver stem/progenitor cells: impact of hepatogenic differentiation and inflammation. Stem Cells Int. https://doi.org/10.1155/2017/2679518

    Article  Google Scholar 

  56. Fu Y, Deng J, Jiang Q, Wang Y, Zhang Y, Yao Y et al (2016) Rapid generation of functional hepatocyte-like cells from human adipose-derived stem cells. Stem cell Res Ther 7(1):1–12

    Article  CAS  Google Scholar 

  57. Shenoy PS, Bose B (2018) Hepatic perivascular mesenchymal stem cells with myogenic properties. J Tissue Eng Regener Med 12(3):e1297–e1310

    Article  Google Scholar 

  58. Li Y, Zhai Z, Liu D, Zhong X, Meng X, Yang Q et al (2015) CD105 promotes hepatocarcinoma cell invasion and metastasis through VEGF. Tumor Biol 36(2):737–745

    Article  CAS  Google Scholar 

  59. Lin Y, Huang Y, Wu M, Wu S, Chi H, Liao C et al (2013) Thyroid hormone suppresses cell proliferation through endoglin-mediated promotion of p21 stability. Oncogene 32(33):3904–3914

    Article  CAS  Google Scholar 

  60. Muñoz R, Arias Y, Ferreras JM, Jiménez P, Langa C, Rojo MA et al (2013) In vitro and in vivo effects of an anti-mouse endoglin (CD105)–immunotoxin on the early stages of mouse B16MEL4A5 melanoma tumours. Cancer Immunol Immunother 62(3):541–551

    Article  Google Scholar 

  61. Tansi FL, Rüger R, Kollmeier AM, Rabenhold M, Steiniger F, Kontermann RE et al (2018) Endoglin based in vivo near-infrared fluorescence imaging of tumor models in mice using activatable liposomes. Biochim Biophys Acta 1862(6):1389–1400

    Article  CAS  Google Scholar 

  62. Mehlen P, Delloye-Bourgeois C, Chédotal A (2011) Novel roles for Slits and netrins: axon guidance cues as anticancer targets? Nat Rev Cancer 11(3):188–197

    Article  CAS  Google Scholar 

  63. Ao J-Y, Chai Z-T, Zhang Y-Y, Zhu X-D, Kong L-Q, Zhang N et al (2015) ROBO1 promotes angiogenesis in hepatocellular carcinoma through the Rho family of guanosine triphosphatases’ signaling pathway. Tumor Biol 36(11):8413–8424

    Article  CAS  Google Scholar 

  64. Zheng F, Liao Y-J, Cai M-Y, Liu T-H, Chen S-P, Wu P-H et al (2015) Systemic delivery of microRNA-101 potently inhibits hepatocellular carcinoma in vivo by repressing multiple targets. PLoS Genet 11(2):e1004873

    Article  Google Scholar 

  65. Fujiwara K, Koyama K, Suga K, Ikemura M, Saito Y, Hino A et al (2014) A 90 Y-labelled anti-ROBO1 monoclonal antibody exhibits antitumour activity against hepatocellular carcinoma xenografts during ROBO1-targeted radioimmunotherapy. EJNMMI Res 4(1):1–10

    Article  CAS  Google Scholar 

  66. Rai V, Abdo J, Alsuwaidan AN, Agrawal S, Sharma P, Agrawal DK et al (2018) Cellular and molecular targets for the immunotherapy of hepatocellular carcinoma. Mol Cell Biochem 437(1–2):13–36

    Article  CAS  Google Scholar 

  67. Zhou J, Hu P, Si Z, Tan H, Qiu L, Zhang H et al (2019) Treatment of hepatocellular carcinoma by intratumoral injection of 125I-AA98 mAb and its efficacy assessments by molecular imaging. Front Bioeng Biotechnol 7:319

    Article  Google Scholar 

  68. Duan C-L, Hou G-H, Liu Y-P, Liang T, Song J, Han J-K et al (2014) Tumor vascular homing endgolin-targeted radioimmunotherapy in hepatocellular carcinoma. Tumor Biol 35(12):12205–12215

    Article  CAS  Google Scholar 

  69. Sitohy B, Nagy JA, Dvorak HF (2012) Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res 72(8):1909–1914

    Article  CAS  Google Scholar 

  70. Ghavimi S, Apfel T, Azimi H, Persaud A, Pyrsopoulos NT (2020) Management and treatment of hepatocellular carcinoma with immunotherapy: a review of current and future options. J Clin Transl Hepatol 8(2):168

    Article  Google Scholar 

  71. Han Q, Zhao H, Jiang Y, Yin C, Zhang J (2019) HCC-derived exosomes: critical player and target for cancer immune escape. Cells 8(6):558

    Article  CAS  Google Scholar 

  72. Dai W, Wang Y, Yang T, Wang J, Wu W, Gu J et al (2019) Downregulation of exosomal CLEC3B in hepatocellular carcinoma promotes metastasis and angiogenesis via AMPK and VEGF signals. Cell Commun Signal 17(1):113

    Article  Google Scholar 

  73. Xie F, Xu M, Lu J, Mao L, Wang S (2019) The role of exosomal PD-L1 in tumor progression and immunotherapy. Mol Cancer 18(1):146

    Article  Google Scholar 

  74. Chen W, Jiang J, Xia W, Huang J (2017) Tumor-related exosomes contribute to tumor-promoting microenvironment: an immunological perspective. J Immunol Res. https://doi.org/10.1155/2017/1073947

    Article  Google Scholar 

  75. Olejarz W, Dominiak A, Żołnierzak A, Kubiak-Tomaszewska G, Lorenc T (2020) Tumor-derived exosomes in immunosuppression and immunotherapy. J Immunol Res. https://doi.org/10.1155/2020/6272498

    Article  Google Scholar 

  76. Shi S, Rao Q, Zhang C, Zhang X, Qin Y, Niu Z (2018) Dendritic cells pulsed with exosomes in combination with PD-1 antibody increase the efficacy of Sorafenib in hepatocellular carcinoma model. Transl Oncol 11(2):250–258

    Article  Google Scholar 

  77. Rao Q, Zuo B, Lu Z, Gao X, You A, Wu C et al (2016) Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro. Hepatology 64(2):456–472

    Article  CAS  Google Scholar 

  78. Liu H, Gao W, Yuan J, Wu C, Yao K, Zhang L et al (2016) Exosomes derived from dendritic cells improve cardiac function via activation of CD4+ T lymphocytes after myocardial infarction. J Mol Cell Cardiol 91:123–133

    Article  CAS  Google Scholar 

  79. Herbst RS, Soria J-C, Kowanetz M, Fine GD, Hamid O, Gordon MS et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567

    Article  CAS  Google Scholar 

  80. Sasaki R, Kanda T, Yokosuka O, Kato N, Matsuoka S, Moriyama M (2019) Exosomes and hepatocellular carcinoma: from bench to bedside. Int J Mol Sci 20(6):1406

    Article  CAS  Google Scholar 

  81. Liu J, Fan L, Yu H, Zhang J, He Y, Feng D et al (2019) Endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and up-regulate programmed death ligand 1 expression in macrophages. Hepatology 70(1):241–258

    CAS  Google Scholar 

  82. Cheng L, Liu J, Liu Q, Liu Y, Fan L, Wang F et al (2017) Exosomes from melatonin treated hepatocellularcarcinoma cells alter the immunosupression status through STAT3 pathway in macrophages. Int J Biol Sci 13(6):723–734

    Article  CAS  Google Scholar 

  83. Sideras K, Robert A, Harrington SM, Polak WG, Zhou G, Schutz HM et al (2019) Circulating levels of PD-L1 and Galectin-9 are associated with patient survival in surgically treated Hepatocellular Carcinoma independent of their intra-tumoral expression levels. Sci Rep 9(1):1–10

    Article  CAS  Google Scholar 

  84. Lu Z, Zuo B, Jing R, Gao X, Rao Q, Liu Z et al (2017) Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J Hepatol 67(4):739–748

    Article  CAS  Google Scholar 

  85. Qu Z, Feng J, Pan H, Jiang Y, Duan Y, Fa ZJO et al (2019) Exosomes derived from HCC cells with different invasion characteristics mediated EMT through TGF-β/Smad signaling pathway. OncoTargets Ther 12:6897

    Article  CAS  Google Scholar 

  86. Ge Y, Mu W, Ba Q, Li J, Jiang Y, Xia Q et al (2020) Hepatocellular carcinoma-derived exosomes in organotropic metastasis, recurrence and early diagnosis application. Cancer Lett 477:41–48

    Article  CAS  Google Scholar 

  87. Vella L (2014) The emerging role of exosomes in epithelial–mesenchymal-transition in cancer. Front Oncol 4:361

    Article  Google Scholar 

  88. Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R et al (2015) Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32(6):2003–2014

    Article  CAS  Google Scholar 

  89. Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin 6(4):287–296

    Article  Google Scholar 

  90. Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M (2014) A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 1846(1):75–87

    CAS  Google Scholar 

  91. Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM (2018) Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology 67(3):940–954

    Article  CAS  Google Scholar 

  92. Lou G, Song X, Yang F, Wu S, Wang J, Chen Z et al (2015) Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol 8(1):1–11

    Article  Google Scholar 

  93. Lou G, Chen L, Xia C, Wang W, Qi J, Li A et al (2020) MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway. J Exp Clin Cancer Res 39(1):4

    Article  CAS  Google Scholar 

  94. Bonnet M, Maisonial-Besset A, Zhu Y, Witkowski T, Roche G, Boucheix C et al (2019) Targeting the tetraspanins with monoclonal antibodies in oncology: focus on Tspan8/Co-029. Cancers 11(2):179

    Article  CAS  Google Scholar 

  95. Fang T, Lin J, Wang Y, Chen G, Huang J, Chen J et al (2016) Tetraspanin-8 promotes hepatocellular carcinoma metastasis by increasing ADAM12m expression. Oncotarget 7(26):40630

    Article  Google Scholar 

  96. Huang M-Y, Wang H-M, Chang H-J, Hsiao C-P, Wang J-Y, Lin S-RJD et al (2012) Overexpression of S100B, TM4SF4, and OLFM4 genes is correlated with liver metastasis in Taiwanese colorectal cancer patients. DNA Cell Biol 31(1):43–49

    Article  Google Scholar 

  97. Yue S, Mu W, Erb U, Zöller M (2015) The tetraspanins CD151 and Tspan8 are essential exosome components for the crosstalk between cancer initiating cells and their surrounding. Oncotarget 6(4):2366

    Article  Google Scholar 

  98. Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, Andaloussi SE et al (2020) Extracellular vesicles as drug delivery systems: why and how? Adv Drug Deliv Rev 159:332–343

    Article  CAS  Google Scholar 

  99. Herrmann IK, Wood MJA, Fuhrmann G (2021) Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol 16(7):748–759

    Article  CAS  Google Scholar 

  100. Mir B, Goettsch C (2020) Extracellular vesicles as delivery vehicles of specific cellular cargo. Cells 9(7):1601

    Article  CAS  Google Scholar 

  101. Forner A, Reig M, Bruix J (2018) Hepatocellular carcinoma 391(10127):1301–1314

  102. Vilgrain V, Pereira H, Assenat E, Guiu B, Ilonca AD, Pageaux G-P et al (2017) Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol 18(12):1624–1636

    Article  CAS  Google Scholar 

  103. Nishida N, Kudo M (2018) Immune checkpoint blockade for the treatment of human hepatocellular carcinoma. Hepatol Res 48(8):622–634

    Article  CAS  Google Scholar 

  104. Bruix J, Takayama T, Mazzaferro V, Chau G-Y, Yang J, Kudo M et al (2015) Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol 16(13):1344–1354

    Article  CAS  Google Scholar 

  105. Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W et al (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560(7718):382–386

    Article  CAS  Google Scholar 

  106. Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M et al (2016) Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol 34(23):2698

    Article  CAS  Google Scholar 

  107. Morris VK, Salem ME, Nimeiri H, Iqbal S, Singh P, Ciombor K et al (2017) Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): a multicentre, single-arm, phase 2 study. Lancet Oncol 18(4):446–453

    Article  CAS  Google Scholar 

  108. Kudo M (2017) Immune checkpoint blockade in hepatocellular carcinoma: 2017 update. Liver Cancer 6(1):1–12

    Article  Google Scholar 

  109. Singh P, Toom S, Avula A, Kumar V, Rahma OE (2020) The immune modulation effect of locoregional therapies and its potential synergy with immunotherapy in hepatocellular carcinoma. J Hepatocell Carcinoma 7:11

    Article  CAS  Google Scholar 

  110. Longo V, Brunetti O, Gnoni A, Licchetta A, Delcuratolo S, Memeo R et al (2019) Emerging role of immune checkpoint inhibitors in hepatocellular carcinoma. Medicina 55(10):698

    Article  Google Scholar 

  111. Xu J, Zhang Y, Jia R, Yue C, Chang L, Liu R et al (2019) Anti-PD-1 antibody SHR-1210 combined with apatinib for advanced hepatocellular carcinoma, gastric, or esophagogastric junction cancer: an open-label, dose escalation and expansion study. Clin Cancer Res 25(2):515–523

    Article  CAS  Google Scholar 

  112. Kudo M (2018) Combination cancer immunotherapy in hepatocellular carcinoma. Liver Cancer 7(1):20

    Article  Google Scholar 

  113. Duffy AG, Ulahannan SV, Fioravanti S, Walker M, Figg WD, Compton K et al (2014) A pilot study of tremelimumab, a monoclonal antibody against CTLA-4, in combination with either transcatheter arterial chemoembolization (TACE) or radiofrequency ablation (RFA) in patients with hepatocellular carcinoma (HCC). Am Soc Clin Oncol

  114. Di Maria Jiang AF, Nguyen LT, Neel BG, Sacher A, Rottapel R, Wang BX et al (2019) Phase I study of local radiation and tremelimumab in patients with inoperable locally recurrent or metastatic breast cancer. Oncotarget 10(31):2947

    Article  Google Scholar 

  115. Li J, Xing J, Yang Y, Liu J, Wang W, Xia Y et al (2018) Adjuvant 131 I-Metuximab for hepatocellular carcinoma after liver resection: an open-label, randomised, Phase 2 Trial

  116. Li J, Xing J, Yang Y, Liu J, Wang W, Xia Y et al (2020) Adjuvant 131I-metuximab for hepatocellular carcinoma after liver resection: a randomised, controlled, multicentre, open-label, phase 2 trial. Lancet Gastroenterol Hepatol 5(6):548–560

    Article  Google Scholar 

  117. Zhang J-C, Tian Y-Y, Yang C, Ma J-P, Jiang F-Q, Yang J et al (2018) Effect of licartin combined with pirarubicin TACE on apoptosis and epithelial-mesenchymal transition in unresectable liver cancer tissue. J Hainan Med Univ 24(2):111–114

    Google Scholar 

  118. Karzai FH, Apolo AB, Cao L, Madan RA, Adelberg DE, Parnes H et al (2015) A phase I study of TRC 105 anti-endoglin (CD 105) antibody in metastatic castration-resistant prostate cancer. BJU Int 116(4):546–555

    Article  CAS  Google Scholar 

  119. Gordon MS, Robert F, Matei D, Mendelson DS, Goldman JW, Chiorean EG et al (2014) An open-label phase Ib dose-escalation study of TRC105 (anti-endoglin antibody) with bevacizumab in patients with advanced cancer. Clin Cancer Res 20(23):5918–5926

    Article  CAS  Google Scholar 

  120. Duffy A, Ulahannan S, Cao L, Rahma O, Makarova-Rusher O, Kleiner D et al (2015) A phase II study of TRC105 in patients with hepatocellular carcinoma who have progressed on sorafenib. U Eur Gastroenterol J 3(5):453–461

    Article  CAS  Google Scholar 

  121. Raghav KPS, Mody K, Greten TF, Paluri RK, Lee RT, Simpson BE et al (2018) An open label phase 1b/2 trial of TRC105 and sorafenib in patient with advanced/metastatic hepatocellular carcinoma (HCC)(NCT01806064). Am Soc Clin Oncol

  122. Roudi R, D’Angelo A, Sirico M, Sobhani N (2021) Immunotherapeutic treatments in hepatocellular carcinoma; achievements, challenges and future prospects. Int Immunopharmacol 101:108322

    Article  CAS  Google Scholar 

  123. Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D et al (2018) Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 19(7):940–952

    Article  Google Scholar 

  124. Li B, Yan C, Zhu J, Chen X, Fu Q, Zhang H et al (2020) Anti–PD-1/PD-L1 blockade immunotherapy employed in treating hepatitis B virus infection–related advanced hepatocellular carcinoma: a literature review. Front Immunol 11:1037

    Article  CAS  Google Scholar 

  125. Pfister D, Núñez NG, Pinyol R, Govaere O, Pinter M, Szydlowska M et al (2021) NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592(7854):450–456

    Article  CAS  Google Scholar 

  126. Lee S, Loecher M, Iyer R (2018) Immunomodulation in hepatocellular cancer. J Gastrointest Oncol 9(1):208

    Article  Google Scholar 

  127. Lu C, Rong D, Zhang B, Zheng W, Wang X, Chen Z et al (2019) Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Mol Cancer 18(1):1–12

    Article  Google Scholar 

  128. Choi C, Yoo GS, Cho WK, Park HC (2019) Optimizing radiotherapy with immune checkpoint blockade in hepatocellular carcinoma. World J Gastroenterol 25(20):2416

    Article  CAS  Google Scholar 

  129. Kon E, Benhar I (2019) Immune checkpoint inhibitor combinations: current efforts and important aspects for success. Drug Resist Updates 45:13–29

    Article  Google Scholar 

  130. Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A et al (2019) Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol 30(1):44–56

    Article  CAS  Google Scholar 

  131. Bernicker E (2016) Next-generation sequencing and immunotherapy biomarkers: a medical oncology perspective. Arch Pathol Lab Med 140(3):245–248

    Article  CAS  Google Scholar 

  132. Pinter M, Trauner M, Peck-Radosavljevic M, Sieghart W (2016) Cancer and liver cirrhosis: implications on prognosis and management. ESMO Open 1(2):e000042-e

    Article  Google Scholar 

  133. Schuch A, Hoh A, Thimme R (2014) The role of natural killer cells and CD8+ T cells in hepatitis B virus infection. Front Immunol 5:258

    Article  Google Scholar 

  134. Moawad AW, Szklaruk J, Lall C, Blair KJ, Kaseb AO, Kamath A et al (2020) Angiogenesis in hepatocellular carcinoma; pathophysiology, targeted therapy, and role of imaging. J Hepatocell Carcinoma 7:77

    Article  CAS  Google Scholar 

  135. Liu X, Qin S (2019) Immune checkpoint inhibitors in hepatocellular carcinoma: opportunities and challenges. Oncologist 24(Suppl 1):S3

    Article  Google Scholar 

  136. Kudo M (2017) Molecular targeted agents for hepatocellular carcinoma: current status and future perspectives. Liver Cancer 6(2):101–112

    Article  CAS  Google Scholar 

  137. Kudo M, Finn RS, Qin S, Han K-H, Ikeda K, Piscaglia F et al (2018) Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. The Lancet 391(10126):1163–1173

    Article  CAS  Google Scholar 

  138. Cheng A-L, Finn RS, Qin S, Han K-H, Ikeda K, Piscaglia F et al (2017) Phase III trial of lenvatinib (LEN) vs sorafenib (SOR) in first-line treatment of patients (pts) with unresectable hepatocellular carcinoma (uHCC). Am Soc Clin Oncol

  139. Personeni N, Pressiani T, Santoro A, Rimassa L (2018) Regorafenib in hepatocellular carcinoma: latest evidence and clinical implications. Drugs Context 7:212533

    Article  Google Scholar 

  140. Zhu AX, Kang Y-K, Yen C-J, Finn RS, Galle PR, Llovet JM et al (2019) Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 20(2):282–296

    Article  CAS  Google Scholar 

  141. Medavaram S, Zhang Y (2018) Emerging therapies in advanced hepatocellular carcinoma. Exp Hematol Oncol 7(1):17

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to express their gratitude to their colleagues in Royan institute for their support.

Funding

The authors would like to thank the Royan Institute, Tehran, Iran, for supporting this study. The study was partly supported by “National Cancer Control Charity Foundation”, to MV, registration number 41476, Tehran, IRAN. AS and PT were supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of World-Class Research Centers “Digital biodesign and personalized healthcare” (No 075-15-2020-926).

Author information

Authors and Affiliations

Authors

Contributions

MP, SA, and MV outlined the manuscript. SA and MP drafted the manuscript with primary editing and revision support from HM, PM, AM, ES, AS, HAE, PT, MH, and MV. PT, MH, and MV critically revised the manuscript for all content and coordinated the manuscript preparation and submission. All authors read and approved the final version.

Corresponding authors

Correspondence to Peter Timashev or Massoud Vosough.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding the publication of this paper.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourhamzeh, M., Asadian, S., Mirzaei, H. et al. Novel antigens for targeted radioimmunotherapy in hepatocellular carcinoma. Mol Cell Biochem 478, 23–37 (2023). https://doi.org/10.1007/s11010-022-04483-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04483-4

Keywords

Navigation