Skip to main content
Log in

TRIM46 upregulates Wnt/β-catenin signaling by inhibiting Axin1 to mediate hypoxia-induced epithelial–mesenchymal transition in HK2 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hypoxia can cause Epithelial–mesenchymal transition (EMT) in renal tubular cells, and in turn, renal fibrosis. We tested the expression of TRIM46, a member of tripartite motif-containing (TRIM) family proteins, and mesenchymal markers under hypoxia. Our results showed that hypoxia significantly enhanced expression of TRIM46 in HK2 human renal proximal tubular epithelial cells. Our data further showed that hypoxia led to upregulated expression of mesenchymal markers including α-smooth muscle actin, vimentin, and Snail, and downregulated expression of epithelial marker E-cadherin, coupled with an increased abundance of nuclear β-catenin. However, such effects were reversed when TRIM46 expression was knocked down. TRIM46 overexpression had similar effects as hypoxia exposure, and such effects were reversed when cells were treated with XAV-939, a selective inhibitor for β-catenin. Furthermore, we found that TRIM46 promoted ubiquitination and proteasomal degradation of Axin1 protein, a robust negative regulator of Wnt/β-catenin signaling activity. Finally, increased TRIM46 coupled with decreased Axin1 was observed in a rat renal fibrosis model. These data suggest a novel mechanism contributing to EMT that mediates hypoxia-induced renal fibrosis. Our results suggest that selectively inhibiting this pathway that activates fibrosis in human kidney may lead to development of a novel therapeutic approach for managing this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Liu M, Ning X, Li R, Yang Z, Yang X, Sun S, Qian Q (2017) Signalling pathways involved in hypoxia-induced renal fibrosis. J Cell Mol Med 21:1248–1259. https://doi.org/10.1111/jcmm.13060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Nangaku M (2006) Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 17:17–25. https://doi.org/10.1681/ASN.2005070757

    Article  PubMed  CAS  Google Scholar 

  3. Tanaka T, Kato H, Kojima I, Ohse T, Son D, Tawakami T, Yatagawa T, Inagi R, Fujita T, Nangaku M (2006) Hypoxia and expression of hypoxia-inducible factor in the aging kidney. J Gerontol A 61:795–805. https://doi.org/10.1093/gerona/61.8.795

    Article  Google Scholar 

  4. Tanaka T (2016) Expanding roles of the hypoxia-response network in chronic kidney disease. Clin Exp Nephrol 20:835–844. https://doi.org/10.1007/s10157-016-1241-4

    Article  PubMed  CAS  Google Scholar 

  5. Tanaka T, Nangaku M (2010) The role of hypoxia, increased oxygen consumption, and hypoxia-inducible factor-1 alpha in progression of chronic kidney disease. Curr Opin Nephrol Hypertens 19:43–50. https://doi.org/10.1097/MNH.0b013e3283328eed

    Article  PubMed  CAS  Google Scholar 

  6. Yang T, Chen M, Sun T (2013) Simvastatin attenuates TGF-beta1-induced Epithelial–mesenchymal transition in human alveolar epithelial cells. Cell Physiol Biochem 31:863–874. https://doi.org/10.1159/000350104

    Article  PubMed  CAS  Google Scholar 

  7. Zhao XL, Sun T, Che N, Sun D, Zhao N, Dong XY, Gu Q, Yao Z, Sun BC (2011) Promotion of hepatocellular carcinoma metastasis through matrix metalloproteinase activation by Epithelial–mesenchymal transition regulator twist1. J Cell Mol Med 15:691–700. https://doi.org/10.1111/j.1582-4934.2010.01052.x

    Article  PubMed  CAS  Google Scholar 

  8. Friedman SL, Sheppard D, Duffield JS, Violette S (2013) Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3004700

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7:684–696. https://doi.org/10.1038/nrneph.2011.149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Eddy AA (2014) Overview of the cellular and molecular basis of kidney fibrosis. Kidney Int Suppl 4:2–8. https://doi.org/10.1038/kisup.2014.2

    Article  CAS  Google Scholar 

  11. Palm F, Nordquist L (2011) Renal tubulointerstitial hypoxia: cause and consequence of kidney dysfunction. Clin Exp Pharmacol Physiol 38:474–480. https://doi.org/10.1111/j.1440-1681.2011.05532.x

    Article  PubMed  CAS  Google Scholar 

  12. Zhu T, Yang J, Liu X, Zhang L, Zhang J, Wang Y, Ma H, Ren Z (2015) Hypoxiainducible Adrenomedullin ameliorates the epithelial-to-mesenchymal transition in human proximal tubular epithelial cells. Mol Med Rep 11:3760–3766. https://doi.org/10.3892/mmr.2015.3189

    Article  PubMed  CAS  Google Scholar 

  13. Wang Y, Shi J, Chai K, Ying X, Zhou BP (2013) The role of snail in EMT and Tumorigenesis. Curr Cancer Drug Targets 13:963–972. https://doi.org/10.2174/15680096113136660102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zuo Y, Liu Y (2018) New insights into the role and mechanism of Wnt/β-catenin signalling in kidney fibrosis. Nephrology 23:38–43

    Article  PubMed  CAS  Google Scholar 

  15. Perugorria MJ, Olaizola P, Labiano I, Esparza-Baquer A, Marzioni M, Marin JJ, Bujanda L, Banales JM (2019) Wnt–β-catenin signalling in liver development, health and disease. Nat rev Gastroenterol hepatol 16:121–136

    Article  PubMed  CAS  Google Scholar 

  16. Huang P, Yan R, Zhang X, Wang L, Ke X, Qu Y (2019) Activating Wnt/β-catenin signaling pathway for disease therapy: challenges and opportunities. Pharmacol Ther 196:79–90

    Article  PubMed  CAS  Google Scholar 

  17. Feng S, Cai X, Li Y, Jian X, Zhang L, Li B (2019) Tripartite motif-containing 14 (TRIM14) promotes Epithelial–mesenchymal transition via ZEB2 in glioblastoma cells. J Exp Clin Cancer Res 38:57. https://doi.org/10.1186/s13046-019-1070-x

    Article  PubMed  PubMed Central  Google Scholar 

  18. Di Rienzo M, Romagnoli A, Antonioli M, Piacentini M, Fimia GM (2020) TRIM proteins in autophagy: selective sensors in cell damage and innate immune responses. Cell Death Differ 27:887–902

    Article  PubMed  PubMed Central  Google Scholar 

  19. Watanabe M, Hatakeyama S (2017) TRIM proteins and diseases. J Biochem 161:135–144. https://doi.org/10.1093/jb/mvw087

    Article  PubMed  CAS  Google Scholar 

  20. Hatakeyama S (2017) TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci 42:297–311. https://doi.org/10.1016/j.tibs.2017.01.002

    Article  PubMed  CAS  Google Scholar 

  21. Lee HJ (2018) The role of tripartite motif family proteins in TGF-β signaling pathway and cancer. J Cancer Prev 23:162–169. https://doi.org/10.15430/jcp.2018.23.4.162

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang YF, Zhang MF, Tian QH, Zhang CZ (2017) TRIM65 triggers β-catenin signaling via ubiquitylation of Axin1 to promote hepatocellular carcinoma. J Cell Sci 130:3108–3115. https://doi.org/10.1242/jcs.206623

    Article  PubMed  CAS  Google Scholar 

  23. Zhang L, Li X, Dong W, Sun C, Guo D, Zhang L (2016) Mmu-miR-1894-3p inhibits cell proliferation and migration of breast cancer cells by targeting Trim46. Int J Mol Sci. https://doi.org/10.3390/ijms17040609

    Article  PubMed  PubMed Central  Google Scholar 

  24. Harterink M, Vocking K, Pan X, Soriano Jerez EM, Slenders L, Freal A, Tas RP, van de Wetering WJ, Timmer K, Motshagen J, van Beuningen SFB, Kapitein LC, Geerts WJC, Post JA, Hoogenraad CC (2019) TRIM46 organizes microtubule fasciculation in the axon initial segment. J Neurosci 39:4864–4873. https://doi.org/10.1523/JNEUROSCI.3105-18.2019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics tissue-based map of the human proteome. Science. https://doi.org/10.1126/science.1260419

    Article  PubMed  Google Scholar 

  26. Zaza G, Masola V, Granata S, Bellin G, Dalla Gassa A, Onisto M, Gambaro G, Lupo A (2015) Sulodexide alone or in combination with low doses of everolimus inhibits the hypoxia-mediated epithelial to mesenchymal transition in human renal proximal tubular cells. J Nephrol 28:431–440. https://doi.org/10.1007/s40620-015-0216-y

    Article  PubMed  CAS  Google Scholar 

  27. Zhao G, Tu L, Li X, Yang S, Chen C, Xu X, Wang P, Wang DW (2012) Delivery of AAV2-CYP2J2 protects remnant kidney in the 5/6-nephrectomized rat via inhibition of apoptosis and fibrosis. Hum Gene Ther 23:688–699. https://doi.org/10.1089/hum.2011.135

    Article  PubMed  CAS  Google Scholar 

  28. Tian XH, Hou WJ, Fang Y, Fan J, Tong H, Bai SL, Chen Q, Xu H, Li Y (2013) XAV939, a tankyrase 1 inhibitior, promotes cell apoptosis in neuroblastoma cell lines by inhibiting Wnt/beta-catenin signaling pathway. J Exp Clin Cancer Res 32:100. https://doi.org/10.1186/1756-9966-32-100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hou Y, Ding M, Wang C, Yang X, Ye T, Yu H (2020) TRIM11 promotes lymphomas by activating the β-catenin signaling and axin1 ubiquitination degradation. Exp Cell Res 387:111750

    Article  PubMed  CAS  Google Scholar 

  30. Li Y, Xie P, Lu L, Wang J, Diao L, Liu Z, Guo F, He Y, Liu Y, Huang Q, Liang H, Li D, He F (2017) An integrated bioinformatics platform for investigating the human E3 ubiquitin ligase-substrate interaction network. Nat Commun 8:347. https://doi.org/10.1038/s41467-017-00299-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yoshida T, Shiraishi T, Nakata S, Horinaka M, Wakada M, Mizutani Y, Miki T, Sakai T (2005) Proteasome inhibitor MG132 induces death receptor 5 through CCAAT/enhancer-binding protein homologous protein. Cancer Res 65:5662–5667. https://doi.org/10.1158/0008-5472.CAN-05-0693

    Article  PubMed  CAS  Google Scholar 

  32. Nogueira A, Pires MJ, Oliveira PA (2017) Pathophysiological mechanisms of renal fibrosis: a review of animal models and therapeutic strategies. In Vivo 31:1–22. https://doi.org/10.21873/invivo.11019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gobe GC, Coombes JS, Fassett RG, Endre ZH (2015) Biomarkers of drug-induced acute kidney injury in the adult. Expert Opin Drug Metab Toxicol 11:1683–1694. https://doi.org/10.1517/17425255.2015.1083011

    Article  PubMed  CAS  Google Scholar 

  34. Lokmic Z, Musyoka J, Hewitson TD, Darby IA (2012) Hypoxia and hypoxia signaling in tissue repair and fibrosis. Int Rev Cell Mol Biol 296:139–185. https://doi.org/10.1016/B978-0-12-394307-1.00003-5

    Article  PubMed  CAS  Google Scholar 

  35. Darby IA, Hewitson TD (2016) Hypoxia in tissue repair and fibrosis. Cell Tissue Res 365:553–562. https://doi.org/10.1007/s00441-016-2461-3

    Article  PubMed  CAS  Google Scholar 

  36. Kuo YL, Jou IM, Jeng SF, Chu CH, Huang JS, Hsu TI, Chang LR, Huang PW, Chen JA, Chou TM (2019) Hypoxia-induced Epithelial–mesenchymal transition and fibrosis for the development of breast capsular contracture. Sci Rep 9:10269. https://doi.org/10.1038/s41598-019-46439-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chilosi M, Poletti V, Zamo A, Lestani M, Montagna L, Piccoli P, Pedron S, Bertaso M, Scarpa A, Murer B, Cancellieri A, Maestro R, Semenzato G, Doglioni C (2003) Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 162:1495–1502. https://doi.org/10.1016/s0002-9440(10)64282-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Eberhart CG, Argani P (2001) Wnt signaling in human development: beta-catenin nuclear translocation in fetal lung, kidney, placenta, capillaries, adrenal, and cartilage. Pediatr Dev Pathol 4:351–357. https://doi.org/10.1007/s10024001-0037-y

    Article  PubMed  CAS  Google Scholar 

  39. Li Y, Xu S, Xu Q, Chen Y (2020) Clostridium difficile toxin B induces colonic inflammation through the TRIM46/DUSP1/MAPKs and NF-κB signalling pathway. Artif Cells, Nanomed, Biotechnol 48:452–462

    Article  Google Scholar 

  40. Noutsou M, Duarte AM, Anvarian Z, Didenko T, Minde DP, Kuper I, de Ridder I, Oikonomou C, Friedler A, Boelens R, Rudiger SG, Maurice MM (2011) Critical scaffolding regions of the tumor suppressor axin1 are natively unfolded. J Mol Biol 405:773–786. https://doi.org/10.1016/j.jmb.2010.11.013

    Article  PubMed  CAS  Google Scholar 

  41. Mazzoni SM, Fearon ER (2014) AXIN1 and AXIN2 variants in gastrointestinal cancers. Cancer Lett 355:1–8. https://doi.org/10.1016/j.canlet.2014.09.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was supported by Summit Discipline of Clinical Traditional Chinese Medicine in Pudong New Area of Shanghai (PDZY-2018-0601) and National Natural Science Foundation of China (82074261).

Author information

Authors and Affiliations

Authors

Contributions

JC and JL contributed to the study conception and design. Material preparation, data collection, and analysis were performed by LL, L D, YG, BZ, QX, CZ, WL, WL, ZL, and JH. The first draft of the manuscript was written by LL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jie Chen or Jianrao Lu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Animal Care Committee of Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, L., Duan, L., Guo, Y. et al. TRIM46 upregulates Wnt/β-catenin signaling by inhibiting Axin1 to mediate hypoxia-induced epithelial–mesenchymal transition in HK2 cells. Mol Cell Biochem 477, 2829–2839 (2022). https://doi.org/10.1007/s11010-022-04467-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04467-4

Keywords

Navigation