Skip to main content

Advertisement

Log in

NDRG2 knockdown promotes fibrosis in renal tubular epithelial cells through TGF-β1/Smad3 pathway

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Renal fibrosis is a common pathological pathway of various chronic kidney diseases progressing to end-stage renal disease and is characterized by tubular atrophy, fibroblast/myofibroblast activation and excessive deposition of extracellular matrix (ECM). N-Myc downstream-regulated gene-2 (NDRG2) is reported to be associated with liver fibrosis in rats. However, the biological function of NDRG2 in renal fibrosis remains unclear. Therefore, we investigate the effect of NDRG2 on renal fibrosis and the underlying mechanism of NDRG2 in TGF-β1-induced renal tubular epithelial cells (HK-2). Our results show that TGF-β1 down-regulates NDRG2 mRNA and protein expression in HK-2 cells. Moreover, NDRG2 knockdown dramatically reduces the TGF-β1-induced protein and mRNA of E-cadherin and increases the TGF-β1-induced protein and mRNA expression level of α-SMA, Vimentin, Snail, Col-I, Col-III and FN; this is reversed by NDRG2 overexpression. Furthermore, NDRG2 silencing significantly increases the phosphorylation level of Smad3 (p-Smad3), which is decreased by NDRG2 overexpression, although these have no effect on the protein expression of p-Smad2 and Smad7. In addition, SIS3, a specific inhibitor of Smad3 phosphorylation, partly reverses the effect of NDRG2 knockdown on the protein and mRNA expression of epithelial-mesenchymal transition (EMT) markers and ECM components in TGF-β1-induced HK-2 cells. Taken together, our results indicate that NDRG2 knockdown promotes renal fibrosis through its effect on the protein and mRNA expression of EMT markers and ECM components by regulating the downstream Smad3 signaling pathway in renal tubular epithelial cells. Modulation of NDRG2 expression might provide a new therapy for renal fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Campanholle G, Ligresti G, Gharib SA, Duffield JS (2013) Cellular mechanisms of tissue fibrosis. 3. Novel mechanisms of kidney fibrosis. Am J Physiol Cell Physiol 304:C591–C603

    Article  PubMed  PubMed Central  Google Scholar 

  • Carew RM, Wang B, Kantharidis P (2012) The role of EMT in renal fibrosis. Cell Tissue Res 347:103–116

    Article  CAS  PubMed  Google Scholar 

  • Chen WQ, Hoeger H, Diao WF, Pollak A, Lubec G (2007) Mass spectrometrical characterization of NDRG2 protein (N-myc-downstream regulated gene 2) and description of two novel phosphorylation sites. Neurochem Res 32:1969–1977

    Article  CAS  PubMed  Google Scholar 

  • Chung AC, Zhang H, Kong YZ, Tan JJ, Huang XR, Kopp JB, Lan HY (2010) Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling. J Am Soc Nephrol 21:249–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farris AB, Colvin RB (2012) Renal interstitial fibrosis: mechanisms and evaluation. Curr Opin Nephrol Hypertens 21:289–300

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng XH, Derynck R (2005) Specificity and versatility in Tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 21:659–693

    Article  CAS  PubMed  Google Scholar 

  • Gu CH, Tian FY, Pu JR, Zheng LD, Mei H, Zeng FQ, Yang JJ, Kan QC, Tong QS (2014) Over-expression of testis-specific expressed gene 1 attenuates the proliferation and induces apoptosis of GC-1spg cells. J Huazhong Univ Sci Technolog Med Sci 34:535–541

    Article  CAS  PubMed  Google Scholar 

  • Hills CE, Squires PE (2011) The role of TGF-beta and epithelial-to mesenchymal transition in diabetic nephropathy. Cytokine Growth Factor Rev 22:131–139

    CAS  PubMed  Google Scholar 

  • Hu XL, Liu XP, Deng YC, Lin SX, Wu L, Zhang J, Wang LF, Wang XB, Li X, Shen L, Zhang YQ, Yao LB (2006) Expression analysis of the NDRG2 gene in mouse embryonic and adult tissues. Cell Tissue Res 325:67–76

    Article  CAS  PubMed  Google Scholar 

  • Jia L, Ma X, Gui B, Ge H, Wang L, Ou Y, Tian L, Chen Z, Duan Z, Han J, Fu R (2015) Sorafenib ameliorates renal fibrosis through inhibition of TGF-beta-induced epithelial-mesenchymal transition. PLoS One 10:e0117757

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim D, Lee AS, Jung YJ, Yang KH, Lee S, Park SK, Kim W, Kang KP (2014) Tamoxifen ameliorates renal tubulointerstitial fibrosis by modulation of estrogen receptor alpha-mediated transforming growth factor-beta1/Smad signaling pathway. Nephrol Dial Transplant 29:2043–2053

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Lim J, Yang Y, Lee MS, Lim JS (2014) N-myc downstream-regulated gene 2 (NDRG2) suppresses the epithelial-mesenchymal transition (EMT) in breast cancer cells via STAT3/Snail signaling. Cancer Lett 354:33–42

    Article  CAS  PubMed  Google Scholar 

  • Lan HY (2011) Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation. Int J Biol Sci 7:1056–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DG, Lee SH, Kim JS, Park J, Cho YL, Kim KS, Jo DY, Song IC, Kim N, Yun HJ, Park YJ, Lee SJ, Lee HG, Bae KH, Lee SC, Shim S, Kim YM, Kwon YG, Kim JM, Lee HJ, Min JK (2015) Loss of NDRG2 promotes epithelial-mesenchymal transition of gallbladder carcinoma cells through MMP-19-mediated slug expression. J Hepatol 63:1429–1439

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Liu X, Wang B, Nie Y, Wen J, Wang Q, Gu C (2016) Pirfenidone suppresses MAPK signaling pathway to reverse epithelial-mesenchymal transition and renal fibrosis. Nephrology (Carlton) (in press)

  • Liu N, Wang L, Liu X, Yang Q, Zhang J, Zhang W, Wu Y, Shen L, Zhang Y, Yang A, Han H, Zhang J, Yao L (2007) Promoter methylation, mutation, and genomic deletion are involved in the decreased NDRG2 expression levels in several cancer cell lines. Biochem Biophys Res Commun 358:164–169

    Article  CAS  PubMed  Google Scholar 

  • Liu Y (2010) New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol 21:212–222

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Jin H, Wang H, Yuan J, Bao T, Jiang X, Zhang W, Zhao H, Yao L (2008) Expression of NDRG2 in clear cell renal cell carcinoma. Biol Pharm Bull 31:1316–1320

    Article  CAS  PubMed  Google Scholar 

  • Ma JJ, Liao CG, Jiang X, Zhao HD, Yao LB, Bao TY (2010) NDRG2 suppresses the proliferation of clear cell renal cell carcinoma cell A-498. J Exp Clin Cancer Res 29:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    Article  CAS  PubMed  Google Scholar 

  • Melotte V, Qu X, Ongenaert M, Criekinge W van, Bruine AP de, Baldwin HS, Engeland M van (2010) The N-myc downstream regulated gene (NDRG) family: diverse functions, multiple applications. FASEB J 24:4153–4166

  • Meng XM, Huang XR, Chung AC, Qin W, Shao X, Igarashi P, Ju W, Bottinger EP, Lan HY (2010) Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis. J Am Soc Nephrol 21:1477–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menon MC, Ross MJ (2016) Epithelial-to-mesenchymal transition of tubular epithelial cells in renal fibrosis: a new twist on an old tale. Kidney Int 89:263–266

    Article  PubMed  Google Scholar 

  • Ming-liang L, Jie D, Bo DY (2013) Research progress oi molecular mechanism of renal fibrosis. Medical Recapitulate 19:3275–3278

    Google Scholar 

  • Nangaku M (2004) Mechanisms of tubulointerstitial injury in the kidney: final common pathways to end-stage renal failure. Intern Med 43:9–17

    Article  CAS  PubMed  Google Scholar 

  • Oliveira FA, Moraes AC, Paiva AP, Schinzel V, Correa-Costa M, Semedo P, Castoldi A, Cenedeze MA, Oliveira RS, Bastos MG, Camara NO, Sanders-Pinheiro H (2012) Low-level laser therapy decreases renal interstitial fibrosis. Photomed Laser Surg 30:705–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastaldi MP (2006) Epithelial-mesenchymal transition and its implications for the development of renal tubulointerstitial fibrosis. J Nephrol 19:407–412

    CAS  PubMed  Google Scholar 

  • Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A (2003) Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 112:1486–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan G, Zhou XJ, Xia Y, Qian HJ (2016) Astragalus membranaceus ameliorates renal interstitial fibrosis by inhibiting tubular epithelial-mesenchymal transition in vivo and in vitro. Exp Ther Med 11:1611–1616

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen L, Qu X, Ma Y, Zheng J, Chu D, Liu B, Li X, Wang M, Xu C, Liu N, Yao L, Zhang J (2014) Tumor suppressor NDRG2 tips the balance of oncogenic TGF-beta via EMT inhibition in colorectal cancer. Oncogene 3:e86

    Article  CAS  Google Scholar 

  • Shen Y, Miao NJ, Xu JL, Gan XX, Xu D, Zhou L, Xue H, Zhang W, Lu LM (2016) N-acetylcysteine alleviates angiotensin II-mediated renal fibrosis in mouse obstructed kidneys. Acta Pharmacol Sin 37:637–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Li N, Li S, Chen C, Wang W, Xu C, Zhang J, Jin H, Zhang H, Zhao H, Song W, Feng Q, Feng X, Shen X, Yao L, Zhao Q (2010) Expression of NDRG2 in esophageal squamous cell carcinoma. Cancer Sci 101:1292–1299

    Article  CAS  PubMed  Google Scholar 

  • Ucero AC, Benito-Martin A, Izquierdo MC, Sanchez-Nino MD, Sanz AB, Ramos AM, Berzal S, Ruiz-Ortega M, Egido J, Ortiz A (2014) Unilateral ureteral obstruction: beyond obstruction. Int Urol Nephrol 46:765–776

    Article  PubMed  Google Scholar 

  • Wang Y, Wang B, Du F, Su X, Sun G, Zhou G, Bian X, Liu N (2015) Epigallocatechin-3-gallate attenuates unilateral ureteral obstruction-induced renal interstitial fibrosis in mice. J Histochem Cytochem 63:270–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao HB, Liu RH, Ling GH, Xiao L, Xia YC, Liu FY, Li J, Liu YH, Chen QK, Lv JL, Zhan M, Yang SK, Kanwar YS, Sun L (2012) HSP47 regulates ECM accumulation in renal proximal tubular cells induced by TGF-beta1 through ERK1/2 and JNK MAPK pathways. Am J Physiol Renal Physiol 303:F757–F765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Z, Zhang J, Peng X, Dong Y, Jia L, Li H, Du J (2014) The notch gamma-secretase inhibitor ameliorates kidney fibrosis via inhibition of TGF-beta/Smad2/3 signaling pathway activation. Int J Biochem Cell Biol 55:65–71

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Chung AC, Huang XR, Lan HY (2009) Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Hypertension 54:877–884

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zheng J, Wu L, Shi M, Zhang H, Wang X, Xia N, Wang D, Liu X, Yao L, Li Y, Dou K (2011) NDRG2 ameliorates hepatic fibrosis by inhibiting the TGF-beta1/Smad pathway and altering the MMP2/TIMP2 ratio in rats. PLoS One 6:e27710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Ma X, Cheng T, Liu T, Wu L, Sun W, Joseph MP (2013) Effect of tangnaikang on TGF-beta1-induced transdifferentiation of human renal tubular epithelial HK-2 cells. J Tradit Chin Med 33:388–393

    Article  PubMed  Google Scholar 

  • Yeh YC, Wei WC, Wang YK, Lin SC, Sung JM, Tang MJ (2010) Transforming growth factor-{beta}1 induces Smad3-dependent {beta}1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis. Am J Pathol 177:1743–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeisberg M, Duffield JS (2010) Resolved: EMT produces fibroblasts in the kidney. J Am Soc Nephrol 21:1247–1253

    Article  PubMed  Google Scholar 

  • Zhang W, Wang W, Yu H, Zhang Y, Dai Y, Ning C, Tao L, Sun H, Kellems RE, Blackburn MR, Xia Y (2012) Interleukin 6 underlies angiotensin II-induced hypertension and chronic renal damage. Hypertension 59:136–144

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Liang D, Guo L, Liang W, Jiang Y, Li H, Zhao Y, Lu S, Chi ZH (2015) Curcumin protects renal tubular epithelial cells from high glucose-induced epithelial-to-mesenchymal transition through Nrf2-mediated upregulation of heme oxygenase-1. Mol Med Rep 12:1347–1355

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos. 81570685, 81100464, and 81200883), the Youth Foundation of the First Affiliated Hospital of Zhengzhou University for Doctor of Medicine, a General Financial Grant from the China Postdoctoral Science Foundation (no. 2012 M521410), the General Scientific and Technological project of Henan Province (201702031, 201702015), the Foundation of Henan Educational Committee (12A320061, 14A320097), and the Scientific and Technological Innovation Project of Zhengzhou City (131PCXTD627).

Author information

Authors and Affiliations

Authors

Contributions

Zhibo Jin and Chaohui Gu performed the experiments, analyzed the data and drafted the manuscript. Fengyan Tian assisted with cell culture, plasmid construction and transfections. Zhankui Jia assisted with gene and protein detection. Jinjian Yang conceived and designed the study and revised the manuscript.

Corresponding author

Correspondence to Jinjian Yang.

Ethics declarations

Disclosure

All authors declare no competing interests.

Additional information

Zhibo Jin and Chaohui Gu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Z., Gu, C., Tian, F. et al. NDRG2 knockdown promotes fibrosis in renal tubular epithelial cells through TGF-β1/Smad3 pathway. Cell Tissue Res 369, 603–610 (2017). https://doi.org/10.1007/s00441-017-2643-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2643-7

Keywords

Navigation