Skip to main content
Log in

Lithium chloride sensitivity connects the activity of PEX11 and RIM20 to the translation of PGM2 and other mRNAs with structured 5’-UTRs

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Lithium chloride (LiCl) is a widely used and extensively researched drug for the treatment of bipolar disorder (BD). As a result, LiCl has been the subject of research studying its toxicity, mode of action, and downstream cellular responses. LiCl has been shown to influence cell signaling and signaling transduction pathways through protein kinase C and glycogen synthase kinase-3 in mammalian cells. LiCl's significant downstream effects on the translational pathway necessitate further investigation. In yeast, LiCl is found to lower the activity and alter the expression of PGM2, a gene encoding a sugar-metabolism enzyme phosphoglucomutase. When phosphoglucomutase activity is reduced in the presence of galactose, intermediates of galactose metabolism aggregate, causing cell sensitivity to LiCl. In this study, we identified that deleting the genes PEX11 and RIM20 increases yeast LiCl sensitivity. We further show that PEX11 and RIM20 regulate the expression of PGM2 mRNA at the translation level. The observed alteration of translation seems to target the structured 5′-untranslated region (5′-UTR) of the PGM2 mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated and/or analyzed during this study are included in this research article and/or its Supplementary Material Files).

References

  1. Yan P, Xu D, Ji Y et al (2019) LiCl pretreatment ameliorates adolescent methamphetamine exposure-induced long-term alterations in behavior and hippocampal ultrastructure in adulthood in mice. Int J Neuropsychopharmacol 22:303–316. https://doi.org/10.1093/ijnp/pyz001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Machado-Vieira R, Manji HK, Zarate CA Jr (2009) The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord 11(Suppl 2):92–109. https://doi.org/10.1111/j.1399-5618.2009.00714.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rowe MK, Chuang D-M (2004) Lithium neuroprotection: molecular mechanisms and clinical implications. Expert Rev Mol Med 6:1–18. https://doi.org/10.1017/S1462399404008385

    Article  PubMed  Google Scholar 

  4. Fornai F, Longone P, Cafaro L et al (2008) Lithium delays progression of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 105:2052. https://doi.org/10.1073/pnas.0708022105

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stambolic V, Ruel L, Woodgett JR (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics Wingless signalling in intact cells. Curr Biol 6:1664–1669. https://doi.org/10.1016/S0960-9822(02)70790-2

    Article  CAS  PubMed  Google Scholar 

  6. Wang H-Y, Johnson GP, Friedman E (2001) Lithium treatment inhibits protein kinase C translocation in rat brain cortex. Psychopharmacology 158:80–86. https://doi.org/10.1007/s002130100834

    Article  CAS  PubMed  Google Scholar 

  7. Castillo-Quan JI, Li L, Kinghorn KJ et al (2016) Lithium promotes longevityl through GSK3/NRF2-dependent hormesis. Cell Rep 15:638–650. https://doi.org/10.1016/j.celrep.2016.03.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lenox RH, Wang L (2003) Molecular basis of lithium action: integration of lithium-responsive signaling and gene expression networks. Mol Psychiatry 8:135–144. https://doi.org/10.1038/sj.mp.4001306

    Article  CAS  PubMed  Google Scholar 

  9. Bathina S, Das UN (2015) Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 11:1164–1178. https://doi.org/10.5114/aoms.2015.56342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang Y, Yang J, Liu R et al (2011) Accumulation of β-catenin by lithium chloride in porcine myoblast cultures accelerates cell differentiation. Mol Biol Rep 38:2043–2049. https://doi.org/10.1007/s11033-010-0328-3

    Article  CAS  PubMed  Google Scholar 

  11. Jing-Jing L, Guo-Chang Z, Iok KI et al (2021) A mutation in PGM2 causing inefficient galactose metabolism in the probiotic yeast Saccharomyces boulardii. Appl Environ Microbiol 84:e02858-e2917. https://doi.org/10.1128/AEM.02858-17

    Article  Google Scholar 

  12. Masuda CA, Xavier MA, Mattos KA et al (2001) Phosphoglucomutase is an in vivo lithium target in yeast. J Biol Chem 276:37794–37801. https://doi.org/10.1074/jbc.M101451200

    Article  CAS  PubMed  Google Scholar 

  13. Jackson RJ, Hellen CUT, Pestova T (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127. https://doi.org/10.1038/nrm2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Montero-Lomelı́ M, Morais BLB, Figueiredo DL et al (2002) The Initiation factor eIF4A is involved in the response to lithium stress in Saccharomyces cerevisiae. J Biol Chem 277:21542–21548. https://doi.org/10.1074/jbc.M201977200

    Article  CAS  Google Scholar 

  15. Hajikarimlou M, Hunt K, Kirby G et al (2020) Lithium chloride sensitivity in yeast and regulation of translation. Int J Mol Sci 21:5730. https://doi.org/10.3390/ijms21165730

    Article  CAS  PubMed Central  Google Scholar 

  16. Hajikarimlou M, Moteshareie H, Omidi K et al (2020) Sensitivity of yeast to lithium chloride connects the activity of YTA6 and YPR096C to translation of structured mRNAs. PLoS ONE 15:e0235033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Roermund CW, Tabak HF, van den Berg M et al (2000) Pex11p plays a primary role in medium-chain fatty acid oxidation, a process that affects peroxisome number and size in Saccharomyces cerevisiae. J Cell Biol 150:489–498. https://doi.org/10.1083/jcb.150.3.489

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xu W, Smith FJ Jr, Subaran R, Mitchell AP (2004) Multivesicular body-ESCRT components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans. Mol Biol Cell 15:5528–5537. https://doi.org/10.1091/mbc.e04-08-0666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu W, Mitchell AP (2001) Yeast PalA/AIP1/Alix homolog Rim20p associates with a PEST-like region and is required for its proteolytic cleavage. J Bacteriol 183:6917–6923. https://doi.org/10.1128/JB.183.23.6917-6923.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Winzeler EA, Shoemaker DD, Astromoff A et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901

    Article  CAS  PubMed  Google Scholar 

  21. Karlsson-Rosenthal C, Millar JBA (2006) Cdc25: mechanisms of checkpoint inhibition and recovery. Trends Cell Biol 16:285–292. https://doi.org/10.1016/j.tcb.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  22. Samanfar B, Omidi K, Hooshyar M et al (2013) Large-scale investigation of oxygen response mutants in Saccharomyces cerevisiae. Mol BioSyst 9:1351–1359. https://doi.org/10.1039/C3MB25516F

    Article  CAS  PubMed  Google Scholar 

  23. Sopko R, Huang D, Preston N et al (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21:319–330. https://doi.org/10.1016/j.molcel.2005.12.011

    Article  CAS  PubMed  Google Scholar 

  24. Moteshareie H, Hajikarimlou M, Indrayanti AM et al (2018) Heavy metal sensitivities of gene deletion strains for ITT1 and RPS1A; connect their activities to the expression of URE2, a key gene involved in metal detoxification in yeast. BioRxiv. https://doi.org/10.1101/331009

    Article  Google Scholar 

  25. Alamgir M, Erukova V, Jessulat M et al (2010) Chemical-genetic profile analysis of five inhibitory compounds in yeast. BMC Chem Biol 10:6. https://doi.org/10.1186/1472-6769-10-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jessulat M, Malty RH, Nguyen-Tran D-H et al (2015) Spindle checkpoint factors Bub1 and Bub2 promote DNA double-strand break repair by nonhomologous end joining. Mol Cell Biol 35:2448–2463. https://doi.org/10.1128/MCB.00007-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yan TAH, Guillaume L et al (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813. https://doi.org/10.1126/science.1091317

    Article  CAS  Google Scholar 

  28. Yan TAH, Marie E et al (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368. https://doi.org/10.1126/science.1065810

    Article  Google Scholar 

  29. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  30. AU - Szymanski EP, AU - Kerscher O, (2013) Budding Yeast Protein Extraction and Purification for the Study of Function, Interactions, and Post-translational Modifications. JoVE. https://doi.org/10.3791/50921

    Article  Google Scholar 

  31. Stansfield I, Akhmaloka TMF (1995) A mutant allele of the SUP45 (SAL4) gene of Saccharomyces cerevisiae shows temperature-dependent allosuppressor and omnipotent suppressor phenotypes. Curr Genet 27:417–426. https://doi.org/10.1007/BF00311210

    Article  CAS  PubMed  Google Scholar 

  32. Krogan NJ, Kim M, Tong A et al (2003) Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 23:4207–4218. https://doi.org/10.1128/MCB.23.12.4207-4218.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Samanfar B, Shostak K, Moteshareie H et al (2017) The sensitivity of the yeast, Saccharomyces cerevisiae, to acetic acid is influenced by DOM34 and RPL36A. PeerJ 5:e4037. https://doi.org/10.7717/peerj.4037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Omidi K, Hooshyar M, Jessulat M et al (2014) Phosphatase complex Pph3/Psy2 is involved in regulation of efficient non-homologous end-joining pathway in the yeast Saccharomyces cerevisiae. PLoS ONE 9:e87248–e87248. https://doi.org/10.1371/journal.pone.0087248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baryshnikova A, Costanzo M, Kim Y et al (2010) Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat Methods 7:1017–1024. https://doi.org/10.1038/nmeth.1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wagih O, Usaj M, Baryshnikova A et al (2013) SGAtools: one-stop analysis and visualization of array-based genetic interaction screens. Nucleic Acids Res 41:W591–W596. https://doi.org/10.1093/nar/gkt400

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pavitt GD, Ramaiah K, , Kimball SR, Hinnebusch AG, (1998) eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange. Genes Dev 12:514–526. https://doi.org/10.1101/gad.12.4.514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Memarian N, Jessulat M, Alirezaie J et al (2007) Colony size measurement of the yeast gene deletion strains for functional genomics. BMC Bioinf 8:117. https://doi.org/10.1186/1471-2105-8-117

    Article  CAS  Google Scholar 

  39. Liu S, Milne GT, Kuremsky JG et al (2004) Identification of the proteins required for biosynthesis of diphthamide, the target of bacterial ADP-ribosylating toxins on translation elongation factor 2. Mol Cell Biol 24:9487–9497. https://doi.org/10.1128/MCB.24.21.9487-9497.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shalev A, Valás̆ek L, Pise-Masison CA et al (2001) Saccharomyces cerevisiae protein Pci8p and human protein eIF3e/Int-6 interact with the eIF3 core complex by binding to cognate eIF3b subunits. J Biol Chem 276:34948–34957. https://doi.org/10.1074/jbc.M102161200

    Article  CAS  PubMed  Google Scholar 

  41. Blewett NH, Goldstrohm AC (2012) A eukaryotic translation initiation factor 4E-binding protein promotes mRNA decapping and is required for PUF repression. Mol Cell Biol 32:4181–4194. https://doi.org/10.1128/MCB.00483-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Anthony RA, Liebman SW (1995) Alterations in ribosomal protein RPS28 can diversely affect translational accuracy in Saccharomyces cerevisiae. Genetics 140:1247–1258. https://doi.org/10.1093/genetics/140.4.1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Berset C, Trachsel H, Altmann M (1998) The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 95:4264–4269. https://doi.org/10.1073/pnas.95.8.4264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Romero AM, Ramos-Alonso L, Alepuz P et al (2020) Global translational repression induced by iron deficiency in yeast depends on the Gcn2/eIF2α pathway. Sci Rep 10:233. https://doi.org/10.1038/s41598-019-57132-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Searfoss A, Dever TE, Wickner R (2001) Linking the 3’ poly(A) tail to the subunit joining step of translation initiation: relations of Pab1p, eukaryotic translation initiation factor 5b (Fun12p), and Ski2p-Slh1p. Mol Cell Biol 21:4900–4908. https://doi.org/10.1128/MCB.21.15.4900-4908.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Park Y-U, Hur H, Ka M, Kim J (2006) Identification of translational regulation target genes during filamentous growth in Saccharomyces cerevisiae: regulatory role of Caf20 and Dhh1. Eukaryot Cell 5:2120–2127. https://doi.org/10.1128/EC.00121-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Costanzo M, Baryshnikova A, Bellay J et al (2010) The genetic landscape of a cell. Science (New York, NY) 327:425–431. https://doi.org/10.1126/science.1180823

    Article  CAS  Google Scholar 

  48. Omidi K, Jessulat M, Hooshyar M et al (2018) Uncharacterized ORF HUR1 influences the efficiency of non-homologous end-joining repair in Saccharomyces cerevisiae. Gene 639:128–136. https://doi.org/10.1016/j.gene.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  49. Mangus DA, Amrani N, Jacobson A (1998) Pbp1p, a factor interacting with Saccharomyces cerevisiae poly(A)-binding protein, regulates polyadenylation. Mol Cell Biol 18:7383–7396. https://doi.org/10.1128/MCB.18.12.7383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fa S, Qiaoning G, Eric N-E (2006) Ebs1p, a negative regulator of gene expression controlled by the Upf proteins in the yeast Saccharomyces cerevisiae. Eukaryot Cell 5:301–312. https://doi.org/10.1128/EC.5.2.301-312.2006

    Article  CAS  Google Scholar 

  51. Schütz P, Bumann M, Oberholzer AE et al (2008) Crystal structure of the yeast eIF4A-eIF4G complex: an RNA-helicase controlled by protein–protein interactions. Proc Natl Acad Sci USA 105:9564. https://doi.org/10.1073/pnas.0800418105

    Article  PubMed  PubMed Central  Google Scholar 

  52. Henri J, Rispal D, Bayart E et al (2010) Structural and functional insights into Saccharomyces cerevisiae Tpa1, a putative prolylhydroxylase influencing translation termination and transcription. J Biol Chem 285:30767–30778. https://doi.org/10.1074/jbc.M110.106864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen RE, Thorner J (2007) Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochem Biophys Acta 1773:1311–1340. https://doi.org/10.1016/j.bbamcr.2007.05.003

    Article  CAS  PubMed  Google Scholar 

  54. Dalla Venezia N, Vincent A, Marcel V et al (2019) Emerging role of eukaryote ribosomes in translational control. Int J Mol Sci 20:1226. https://doi.org/10.3390/ijms20051226

    Article  CAS  PubMed Central  Google Scholar 

  55. Carroll JS, Munchel SE, Weis K (2011) The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics. J Cell Biol 194:527–537. https://doi.org/10.1083/jcb.201007151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shepard KA, Gerber AP, Jambhekar A et al (2003) Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA microarray analysis. Proc Natl Acad Sci USA 100:11429–11434. https://doi.org/10.1073/pnas.2033246100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boone C, Bussey H, Andrews BJ (2007) Exploring genetic interactions and networks with yeast. Nat Rev Genet 8:437–449. https://doi.org/10.1038/nrg2085

    Article  CAS  PubMed  Google Scholar 

  58. Douglas AC, Smith AM, Sharifpoor S et al (2012) Functional analysis with a barcoder yeast gene overexpression system. G3: Genes|Genomes|Genetics 2:1279–1289. https://doi.org/10.1534/g3.112.003400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baker RT, Williamson NA, Wettenhall REH (1996) The yeast homolog of mammalian ribosomal protein S30 Is expressed from a duplicated gene without a ubiquitin-like protein fusion sequence: evolutionary implications *. J Biol Chem 271:13549–13555. https://doi.org/10.1074/jbc.271.23.13549

    Article  CAS  PubMed  Google Scholar 

  60. Tkach JM, Yimit A, Lee AY et al (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14:966–976. https://doi.org/10.1038/ncb2549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Contributions

Sasi Kumar Jagadeesan (SJ) is responsible for conceptualization, data curation, formal analysis, investigation, methodology, validation, visualization, and paper writing. Ashkan Golshani (AG) is responsible for conceptualization, data curation, funding acquisition, project management, supervision, validation paper- review & editing. Mustafa Al-gafari (MA) supported with genetic interaction analysis and writing. Azam Tayabli (AT) is responsible for data interpretation, supervision, and writing. Maryam Hajikarimlou (MH) contributed to methodology, and data validation. Sarah Takallou (ST) assisted with experimental analysis, which included β-galactosidase analysis and quantitative polymerase chain reaction (qPCR) analysis. Houman Moteshareie (HM) contributed to western blot analysis and data interpretation. Myron Smith (MS) is responsible for investigation, supervision, and writing. Bahram Samanfar (BS) is responsible for supervision, data curation, methodology, and writing. This work is dedicated to the loving memory of Mrs. Minoo Golshani who dedicated her life to helping others.

Corresponding author

Correspondence to Ashkan Golshani.

Ethics declarations

Conflict of interest

The authors declare no competing interests. The authors declare that they have no known conflicting interests / financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare that there are no research activities involved with human participants or animals during this study. The authors declare that the research was carried out with full awareness and informed consents from all researcher groups involved in the study, meeting standard ethical guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 308 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagadeesan, S.K., Al-gafari, M., Hajikarimlou, M. et al. Lithium chloride sensitivity connects the activity of PEX11 and RIM20 to the translation of PGM2 and other mRNAs with structured 5’-UTRs. Mol Cell Biochem 477, 2643–2656 (2022). https://doi.org/10.1007/s11010-022-04466-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04466-5

Keywords

Navigation