Skip to main content

Advertisement

Log in

Phosphoinositide 3-kinase/Akt and its related signaling pathways in the regulation of tumor-associated macrophages polarization

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Tumor-associated macrophages (TAMs) are a type of functionally plastic immune cell population in tumor microenvironment (TME) and mainly polarized into two phenotypes: M2 and M1-like TAMs. The M2-like TAMs could stimulate tumor growth and metastasis, tissue remodeling and immune-suppression, whereas M1-like TAMs could initiate immune response to dampen tumor progression. TAMs with different polarization phenotypes can produce various kinds of cytokines, chemokines and growth factors to regulate immunity and inflammatory responses. It is an effective method to treat cancer through ameliorating TME and modulating TAMs by converting M2 into M1-like phenotype. However, intracellular signaling mechanisms underlying TAMs polarization are largely undefined. Phosphoinositide 3-kinase (PI3K)/Akt is an important signaling pathway participating in M2-like TAMs polarization, survival, growth, proliferation, differentiation, apoptosis and cytoskeleton rearrangement. In the present review, we analyzed the mechanism of TAMs polarization focusing on PI3K/Akt and its downstream mitogen‑activated protein kinase (MAPK) as well as nuclear factor kappa B (NF-κB) signaling pathways, thus provides the first evidence of intracellular targets for cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from reference [10]

Fig. 2

Adapted from reference [54]

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  2. Zhao J, Mao Z, Fedewa SA et al (2020) The Affordable Care Act and access to care across the cancer control continuum: A review at 10 years[J]. CA Cancer J Clin 70(3):165–181

    Article  PubMed  Google Scholar 

  3. Boyiadzis MM, Dhodapkar MV, Brentjens RJ et al (2018) Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance[J]. J Immunother Cancer 6(1):137

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lin Y, Xu J, Lan H (2019) Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications[J]. J Hematol Oncol 12(1):76

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nielsen SR, Schmid MC (2017) Macrophages as Key Drivers of Cancer Progression and Metastasis[J]. Mediators Inflamm 2017:9624760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Salmaninejad A, Valilou SF, Soltani A et al (2019) Tumor-associated macrophages: role in cancer development and therapeutic implications[J]. Cell Oncol (Dordr) 42(5):591–608

    Article  Google Scholar 

  7. Tamura R, Tanaka T, Yamamoto Y et al (2018) Dual role of macrophage in tumor immunity[J]. Immunotherapy 10(10):899–909

    Article  CAS  PubMed  Google Scholar 

  8. Mcallister SS, Weinberg RA (2014) The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis[J]. Nat Cell Biol 16(8):717–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Novikova MV, Khromova NV, Kopnin PB (2017) Components of the hepatocellular carcinoma microenvironment and their role in tumor progression[J]. Biochemistry (Mosc) 82(8):861–873

    Article  CAS  Google Scholar 

  10. Mantuano NR, Oliveira-Nunes MC, Alisson-Silva F et al (2019) Emerging role of glycosylation in the polarization of tumor-associated macrophages[J]. Pharmacol Res 146:104285

    Article  CAS  PubMed  Google Scholar 

  11. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis[J]. Nat Rev Cancer 9(4):239–252

    Article  CAS  PubMed  Google Scholar 

  12. Mafi S, Mansoori B, Taeb S et al (2021) mTOR-mediated regulation of immune responses in cancer and tumor microenvironment[J]. Front Immunol 12:774103

    Article  CAS  PubMed  Google Scholar 

  13. Yang L, Zhang Y (2017) Tumor-associated macrophages: from basic research to clinical application[J]. J Hematol Oncol 10(1):58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Cheng Y, Zhu Y, Xu J et al (2018) PKN2 in colon cancer cells inhibits M2 phenotype polarization of tumor-associated macrophages via regulating DUSP6-Erk1/2 pathway[J]. Mol Cancer 17(1):13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Olson OC, Kim H, Quail DF et al (2017) Tumor-associated macrophages suppress the cytotoxic activity of antimitotic agents[J]. Cell Rep 19(1):101–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu K, Lin K, Li X et al (2020) Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment[J]. Front Immunol 11:1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar S, Ramesh A, Kulkarni A (2020) Targeting macrophages: a novel avenue for cancer drug discovery[J]. Expert Opin Drug Discov 15(5):561–574

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Zhang S, Wang Q et al (2017) Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein[J]. J Hematol Oncol 10(1):36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Jones JD, Sinder BP, Paige D et al (2019) Trabectedin reduces skeletal prostate cancer tumor size in association with effects on m2 macrophages and efferocytosis[J]. Neoplasia 21(2):172–184

    Article  CAS  PubMed  Google Scholar 

  20. Zheng X, Turkowski K, Mora J et al (2017) Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy[J]. Oncotarget 8(29):48436–48452

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ngambenjawong C, Gustafson HH, Pun SH (2017) Progress in tumor-associated macrophage (TAM)-targeted therapeutics[J]. Adv Drug Deliv Rev 114:206–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuan R, Li S, Geng H et al (2017) Reversing the polarization of tumor-associated macrophages inhibits tumor metastasis[J]. Int Immunopharmacol 49:30–37

    Article  CAS  PubMed  Google Scholar 

  23. Muller-Quernheim UC, Potthast L, Muller-Quernheim J et al (2012) Tumor-cell co-culture induced alternative activation of macrophages is modulated by interferons in vitro[J]. J Interferon Cytokine Res 32(4):169–177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zhao S, Mi Y, Guan B et al (2020) Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer[J]. J Hematol Oncol 13(1):156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Vitale I, Manic G, Coussens LM et al (2019) Macrophages and metabolism in the tumor microenvironment[J]. Cell Metab 30(1):36–50

    Article  CAS  PubMed  Google Scholar 

  26. Sawanobori Y, Ueha S, Kurachi M et al (2008) Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice[J]. Blood 111(12):5457–5466

    Article  CAS  PubMed  Google Scholar 

  27. Hughes R, Qian BZ, Rowan C et al (2015) Perivascular M2 macrophages stimulate tumor relapse after chemotherapy[J]. Cancer Res 75(17):3479–3491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ueno T, Toi M, Saji H et al (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer[J]. Clin Cancer Res 6(8):3282–3289

    CAS  PubMed  Google Scholar 

  29. Galdiero MR, Marone G, Mantovani A (2018) Cancer Inflammation and Cytokines[J]. Cold Spring Harb Perspect Biol 10(8):288

    Article  CAS  Google Scholar 

  30. Mittal D, Gubin MM, Schreiber RD et al (2014) New insights into cancer immunoediting and its three component phases–elimination, equilibrium and escape[J]. Curr Opin Immunol 27:16–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ji H, Cao R, Yang Y et al (2014) TNFR1 mediates TNF-alpha-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling[J]. Nat Commun 5:4944

    Article  CAS  PubMed  Google Scholar 

  32. Bieniasz-Krzywiec P, Martin-Perez R, Ehling M et al (2019) Podoplanin-expressing macrophages promote lymphangiogenesis and lymphoinvasion in breast cancer[J]. Cell Metab 30(5):917–936

    Article  CAS  PubMed  Google Scholar 

  33. Ran S, Volk-Draper L (2020) Lymphatic endothelial cell progenitors in the tumor microenvironment[J]. Adv Exp Med Biol 1234:87–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De I, Steffen MD, Clark PA et al (2016) CSF1 overexpression promotes high-grade glioma formation without impacting the polarization status of glioma-associated microglia and macrophages[J]. Cancer Res 76(9):2552–2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments[J]. Cancer Res 66(2):605–612

    Article  CAS  PubMed  Google Scholar 

  36. Pollard JW (2008) Macrophages define the invasive microenvironment in breast cancer[J]. J Leukoc Biol 84(3):623–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Franklin RA, Liao W, Sarkar A et al (2014) The cellular and molecular origin of tumor-associated macrophages[J]. Science 344(6186):921–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shand FH, Ueha S, Otsuji M et al (2014) Tracking of intertissue migration reveals the origins of tumor-infiltrating monocytes[J]. Proc Natl Acad Sci U S A 111(21):7771–7776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu Y, Cao X (2015) The origin and function of tumor-associated macrophages[J]. Cell Mol Immunol 12(1):1–4

    Article  PubMed  CAS  Google Scholar 

  40. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease[J]. Nature 496(7446):445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bain CC, Scott CL, Uronen-Hansson H et al (2013) Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors[J]. Mucosal Immunol 6(3):498–510

    Article  CAS  PubMed  Google Scholar 

  42. Schulz C, Gomez Perdiguero E, Chorro L et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells[J]. Science 336(6077):86–90

    Article  CAS  PubMed  Google Scholar 

  43. Sharma SK, Chintala NK, Vadrevu SK et al (2015) Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs[J]. J Immunol 194(11):5529–5538

    Article  CAS  PubMed  Google Scholar 

  44. Andersen JK, Miletic H, Hossain JA (2022) Tumor-associated macrophages in gliomas-basic insights and treatment opportunities[J]. Cancers (Basel) 14(5):1319

    Article  CAS  Google Scholar 

  45. Goswami KK, Ghosh T, Ghosh S et al (2017) Tumor promoting role of anti-tumor macrophages in tumor microenvironment[J]. Cell Immunol 316:1–10

    Article  CAS  PubMed  Google Scholar 

  46. Laoui D, Movahedi K, Van Overmeire E et al (2011) Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions[J]. Int J Dev Biol 55(7–9):861–867

    Article  PubMed  Google Scholar 

  47. Carmona-Fontaine C, Bucci V, Akkari L et al (2013) Emergence of spatial structure in the tumor microenvironment due to the Warburg effect[J]. Proc Natl Acad Sci U S A 110(48):19402–19407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aras S, Zaidi MR (2017) TAMeless traitors: macrophages in cancer progression and metastasis[J]. Br J Cancer 117(11):1583–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sevic I, Spinelli F M, Cantero M J, et al. The Role of the Tumor Microenvironment in the Development and Progression of Hepatocellular Carcinoma[M]. // TIRNITZ-PARKER J E E. Hepatocellular Carcinoma. City, 2019. https://www.ncbi.nlm.nih.gov/pubmed/31664802.

  50. Laoui D, Van Overmeire E, Di Conza G et al (2014) Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population[J]. Cancer Res 74(1):24–30

    Article  CAS  PubMed  Google Scholar 

  51. Habanjar O, Diab-Assaf M, Caldefie-Chezet F et al (2022) The Impact of obesity, adipose tissue, and tumor microenvironment on macrophage polarization and metastasis[J]. Biology (Basel) 11(2):339

    CAS  Google Scholar 

  52. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis[J]. Cell 141(1):39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Elinav E, Nowarski R, Thaiss CA et al (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms[J]. Nat Rev Cancer 13(11):759–771

    Article  CAS  PubMed  Google Scholar 

  54. Neamatallah T (2019) Mitogen-activated protein kinase pathway: a critical regulator in tumor-associated macrophage polarization[J]. J Microsc Ultrastruct 7(2):53–56

    Article  PubMed  PubMed Central  Google Scholar 

  55. Okikawa S, Morine Y, Saito Y et al (2022) Inhibition of the VEGF signaling pathway attenuates tumorassociated macrophage activity in liver cancer[J]. Oncol Rep 47(4):12

    Article  CAS  Google Scholar 

  56. Lee KM, Guerrero-Zotano AL, Servetto A et al (2020) Proline rich 11 (PRR11) overexpression amplifies PI3K signaling and promotes antiestrogen resistance in breast cancer[J]. Nat Commun 11(1):5488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu YP, Ke ZB, Zheng WC et al (2021) Kinesin family member 18B regulates the proliferation and invasion of human prostate cancer cells[J]. Cell Death Dis 12(4):302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hu L, Wang Y, Pan H et al (2021) Apoptosis repressor with caspase recruitment domain (ARC) promotes bone regeneration of bone marrow-derived mesenchymal stem cells by activating Fgf-2/PI3K/Akt signaling[J]. Stem Cell Res Ther 12(1):185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li A, Zhao F, Zhao Y et al (2021) ATF4-mediated GDF15 suppresses LPS-induced inflammation and MUC5AC in human nasal epithelial cells through the PI3K/Akt pathway[J]. Life Sci 275:119356

    Article  CAS  PubMed  Google Scholar 

  60. Green BD, Jabbour AM, Sandow JJ et al (2013) Akt1 is the principal Akt isoform regulating apoptosis in limiting cytokine concentrations[J]. Cell Death Differ 20(10):1341–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Luo Q, Zheng N, Jiang L et al (2020) Lipid accumulation in macrophages confers protumorigenic polarization and immunity in gastric cancer[J]. Cancer Sci 111(11):4000–4011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sa JK, Chang N, Lee HW et al (2020) Transcriptional regulatory networks of tumor-associated macrophages that drive malignancy in mesenchymal glioblastoma[J]. Genome Biol 21(1):216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang F, Wang H, Wang X et al (2016) TGF-beta induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype[J]. Oncotarget 7(32):52294–52306

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lian G, Chen S, Ouyang M et al (2019) Colon cancer cell secretes EGF to promote M2 polarization of TAM through EGFR/PI3K/AKT/mTOR pathway[J]. Technol Cancer Res Treat 18:1533033819849068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li M, Li M, Yang Y et al (2020) Remodeling tumor immune microenvironment via targeted blockade of PI3K-gamma and CSF-1/CSF-1R pathways in tumor associated macrophages for pancreatic cancer therapy[J]. J Control Release 321:23–35

    Article  CAS  PubMed  Google Scholar 

  66. Chen M, Lai R, Lin X et al (2021) Downregulation of triggering receptor expressed on myeloid cells 1 inhibits invasion and migration of liver cancer cells by mediating macrophage polarization[J]. Oncol Rep 45(4):1–12

    Article  CAS  Google Scholar 

  67. Lin F, Yin HB, Li XY et al (2020) Bladder cancer cellsecreted exosomal miR21 activates the PI3K/AKT pathway in macrophages to promote cancer progression[J]. Int J Oncol 56(1):151–164

    CAS  PubMed  Google Scholar 

  68. Yang C, Dou R, Wei C et al (2021) Tumor-derived exosomal microRNA-106b-5p activates EMT-cancer cell and M2-subtype TAM interaction to facilitate CRC metastasis[J]. Mol Ther 29:2088–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hao NB, Tang B, Wang GZ et al (2015) Hepatocyte growth factor (HGF) upregulates heparanase expression via the PI3K/Akt/NF-kappaB signaling pathway for gastric cancer metastasis[J]. Cancer Lett 361(1):57–66

    Article  CAS  PubMed  Google Scholar 

  70. Achyut BR, Angara K, Jain M et al (2017) Canonical NFkappaB signaling in myeloid cells is required for the glioblastoma growth[J]. Sci Rep 7(1):13754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang Q, Mao Z, Sun J (2019) NF-kappaB inhibitor, BAY11-7082, suppresses M2 tumor-associated macrophage induced EMT potential via miR-30a/NF-kappaB/Snail signaling in bladder cancer cells[J]. Gene 710:91–97

    Article  CAS  PubMed  Google Scholar 

  72. Piao C, Zhang WM, Li TT et al (2018) Complement 5a stimulates macrophage polarization and contributes to tumor metastases of colon cancer[J]. Exp Cell Res 366(2):127–138

    Article  CAS  PubMed  Google Scholar 

  73. Wei X, Nie S, Liu H et al (2017) Angiopoietin-like protein 2 facilitates non-small cell lung cancer progression by promoting the polarization of M2 tumor-associated macrophages[J]. Am J Cancer Res 7(11):2220–2233

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Khalife J, Ghose J, Martella M et al (2019) MiR-16 regulates crosstalk in NF-kappaB tolerogenic inflammatory signaling between myeloma cells and bone marrow macrophages[J]. JCI Insight. https://doi.org/10.1172/jci.insight.129348

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jang JY, Lee JK, Jeon YK et al (2013) Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization[J]. BMC Cancer 13:421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zhu C, Mustafa D, Zheng PP et al (2017) Activation of CECR1 in M2-like TAMs promotes paracrine stimulation-mediated glial tumor progression[J]. Neuro Oncol 19(5):648–659

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation[J]. Physiol Rev 81(2):807–869

    Article  CAS  PubMed  Google Scholar 

  78. Torii S, Nakayama K, Yamamoto T et al (2004) Regulatory mechanisms and function of ERK MAP kinases[J]. J Biochem 136(5):557–561

    Article  CAS  PubMed  Google Scholar 

  79. Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action[J]. Trends Cell Biol 14(11):628–638

    Article  CAS  PubMed  Google Scholar 

  80. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases[J]. Microbiol Mol Biol Rev 75(1):50–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mccain J (2013) The MAPK (ERK) Pathway: Investigational Combinations for the Treatment Of BRAF-Mutated Metastatic Melanoma[J]. P T 38(2):96–108

    PubMed  PubMed Central  Google Scholar 

  82. Lim MX, Png CW, Tay CY et al (2014) Differential regulation of proinflammatory cytokine expression by mitogen-activated protein kinases in macrophages in response to intestinal parasite infection[J]. Infect Immun 82(11):4789–4801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Lee JC, Laydon JT, Mcdonnell PC et al (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis[J]. Nature 372(6508):739–746

    Article  CAS  PubMed  Google Scholar 

  84. Suarez-Lopez L, Sriram G, Kong YW et al (2018) MK2 contributes to tumor progression by promoting M2 macrophage polarization and tumor angiogenesis[J]. Proc Natl Acad Sci U S A 115(18):E4236–E4244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Peng J, Tsang JY, Ho DH et al (2015) Modulatory effects of adiponectin on the polarization of tumor-associated macrophages[J]. Int J Cancer 137(4):848–858

    Article  CAS  PubMed  Google Scholar 

  86. Zhang Y, Choksi S, Chen K et al (2013) ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages[J]. Cell Res 23(7):898–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cui L, Yang G, Ye J et al (2020) Dioscin elicits anti-tumour immunity by inhibiting macrophage M2 polarization via JNK and STAT3 pathways in lung cancer[J]. J Cell Mol Med 24(16):9217–9230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Giurisato E, Xu Q, Lonardi S et al (2018) Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition[J]. Proc Natl Acad Sci U S A 115(12):E2801–E2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Horio D, Minami T, Kitai H et al (2020) Tumor-associated macrophage-derived inflammatory cytokine enhances malignant potential of malignant pleural mesothelioma[J]. Cancer Sci 111(8):2895–2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhu L, Yang Y, Li H et al (2022) Exosomal microRNAs induce tumor-associated macrophages via PPARgamma during tumor progression in SHH medulloblastoma[J]. Cancer Lett 535:215630

    Article  CAS  PubMed  Google Scholar 

  91. Lamb YN (2019) Pexidartinib: First Approval[J]. Drugs 79(16):1805–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. D’incalci M, Zambelli A, (2016) Trabectedin for the treatment of breast cancer[J]. Expert Opin Investig Drugs 25(1):105–115

    Article  CAS  Google Scholar 

  93. Nie Y, Huang H, Guo M et al (2019) Breast phyllodes tumors recruit and repolarize tumor-associated macrophages via secreting CCL5 to promote malignant progression, which can be inhibited by CCR5 inhibition therapy[J]. Clin Cancer Res 25(13):3873–3886

    Article  CAS  PubMed  Google Scholar 

  94. Chi H, Li C, Zhao FS et al (2017) Anti-tumor activity of toll-like receptor 7 Agonists[J]. Front Pharmacol 8:304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Smith DA, Conkling P, Richards DA et al (2014) Antitumor activity and safety of combination therapy with the Toll-like receptor 9 agonist IMO-2055, erlotinib, and bevacizumab in advanced or metastatic non-small cell lung cancer patients who have progressed following chemotherapy[J]. Cancer Immunol Immunother 63(8):787–796

    Article  CAS  PubMed  Google Scholar 

  96. Hourani T, Holden JA, Li W et al (2021) Tumor associated macrophages: origin, recruitment, phenotypic diversity, and targeting[J]. Front Oncol 11:788365

    Article  PubMed  PubMed Central  Google Scholar 

  97. Beatty GL, Torigian DA, Chiorean EG et al (2013) A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma[J]. Clin Cancer Res 19(22):6286–6295

    Article  CAS  PubMed  Google Scholar 

  98. Ellmark P, Mangsbo SM, Furebring C et al (2015) Kick-starting the cancer-immunity cycle by targeting CD40[J]. Oncoimmunology 4(7):e1011484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mukherjee S, Hussaini R, White R et al (2018) TriCurin, a synergistic formulation of curcumin, resveratrol, and epicatechin gallate, repolarizes tumor-associated macrophages and triggers an immune response to cause suppression of HPV+ tumors[J]. Cancer Immunol Immunother 67(5):761–774

    Article  CAS  PubMed  Google Scholar 

  100. Zhou Q, Liang J, Yang T et al (2022) Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer[J]. EMBO Mol Med 14(1):e14502

    Article  CAS  PubMed  Google Scholar 

  101. Sica A, Invernizzi P, Mantovani A (2014) Macrophage plasticity and polarization in liver homeostasis and pathology[J]. Hepatology 59(5):2034–2042

    Article  PubMed  Google Scholar 

  102. Wang YC, He F, Feng F et al (2010) Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses[J]. Cancer Res 70(12):4840–4849

    Article  CAS  PubMed  Google Scholar 

  103. Yang W, Yang S, Zhang F et al (2020) Influence of the Hippo-YAP signalling pathway on tumor associated macrophages (TAMs) and its implications on cancer immunosuppressive microenvironment[J]. Ann Transl Med 8(6):399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Huang YJ, Yang CK, Wei PL et al (2017) Ovatodiolide suppresses colon tumorigenesis and prevents polarization of M2 tumor-associated macrophages through YAP oncogenic pathways[J]. J Hematol Oncol 10(1):60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Murakami S, Shahbazian D, Surana R et al (2017) Yes-associated protein mediates immune reprogramming in pancreatic ductal adenocarcinoma[J]. Oncogene 36(9):1232–1244

    Article  CAS  PubMed  Google Scholar 

  106. Zhang YL, Li Q, Yang XM et al (2018) SPON2 Promotes M1-like Macrophage Recruitment and Inhibits Hepatocellular Carcinoma Metastasis by Distinct Integrin-Rho GTPase-Hippo Pathways[J]. Cancer Res 78(9):2305–2317

    Article  CAS  PubMed  Google Scholar 

  107. Mu X, Shi W, Xu Y et al (2018) Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer[J]. Cell Cycle 17(4):428–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu Q, Yang C, Wang S et al (2020) Wnt5a-induced M2 polarization of tumor-associated macrophages via IL-10 promotes colorectal cancer progression[J]. Cell Commun Signal 18(1):51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kasper S, Reis H, Ziegler S et al (2017) Molecular dissection of effector mechanisms of RAS-mediated resistance to anti-EGFR antibody therapy[J]. Oncotarget 8(28):45898–45917

    Article  PubMed  PubMed Central  Google Scholar 

  110. Liu Z, Jiang Z, Huang J et al (2014) miR-7 inhibits glioblastoma growth by simultaneously interfering with the PI3K/ATK and Raf/MEK/ERK pathways[J]. Int J Oncol 44(5):1571–1580

    Article  CAS  PubMed  Google Scholar 

  111. Park JS, Park MY, Cho YJ et al (2016) Anti-inflammatory effect of erdosteine in lipopolysaccharide-stimulated RAW 264.7 Cells[J]. Inflammation 39(4):1573–1581

    Article  CAS  PubMed  Google Scholar 

  112. Babaev VR, Ding L, Zhang Y et al (2016) Macrophage IKKalpha deficiency suppresses Akt phosphorylation, reduces cell survival, and decreases early atherosclerosis[J]. Arterioscler Thromb Vasc Biol 36(4):598–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hu TY, Ju JM, Mo LH et al (2019) Anti-inflammation action of xanthones from Swertia chirayita by regulating COX-2/NF-kappaB/MAPKs/Akt signaling pathways in RAW 264.7 macrophage cells[J]. Phytomedicine 55:214–221

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. DY, LY and JC contributed equally to this work. DY and LY wrote the paper. JC made the pictures. HL and ZX made the tables. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ying Hou.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

The authors declare that they consent for publication of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Yang, L., Cai, J. et al. Phosphoinositide 3-kinase/Akt and its related signaling pathways in the regulation of tumor-associated macrophages polarization. Mol Cell Biochem 477, 2469–2480 (2022). https://doi.org/10.1007/s11010-022-04461-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04461-w

Keywords

Navigation