Skip to main content

Advertisement

Log in

CircRNA–miRNA interactions in atherogenesis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Atherosclerosis is the major cause of coronary artery disease (CAD) which includes unstable angina, myocardial infarction, and heart failure. The onset of atherogenesis, a process of atherosclerotic lesion formation in the intima of arteries, is driven by lipid accumulation, a vicious cycle of reactive oxygen species (ROS)-induced oxidative stress and inflammatory reactions leading to endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) activation, and foam cell formation which further fuel plaque formation and destabilization. In recent years, there is a surge in the number of publications reporting the involvement of circular RNAs (circRNAs) in the pathogenesis of cardiovascular diseases, cancers, and metabolic syndromes. These studies have advanced our understanding on the biological functions of circRNAs. One of the most common mechanism of action of circRNAs reported is the sponging of microRNAs (miRNAs) by binding to the miRNAs response element (MRE), thereby indirectly increases the transcription of their target messenger RNAs (mRNAs). Individual networks of circRNA–miRNA–mRNA associated with atherogenesis have been extensively reported, however, there is a need to connect these findings for a complete overview. This review aims to provide an update on atherogenesis-related circRNAs and analyze the circRNA–miRNA–mRNA interactions in atherogenesis. The atherogenic mechanisms and clinical relevance of each atherogenesis-related circRNA were systematically discussed for better understanding of the knowledge gap in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing is not applicable—the article is a review of published research findings.

References

  1. Ambrose JA, Singh M (2015) Pathophysiology of coronary artery disease leading to acute coronary syndromes. F1000Prime Rep 7:8

    Article  Google Scholar 

  2. Kumar A, Cannon CP (2009) Acute coronary syndromes: diagnosis and management, part I. Mayo Clin Proc 84:917–938. https://doi.org/10.1016/S0025-6196(11)60674-5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Raines EW, Ross R (1995) Biology of atherosclerotic plaque formation: possible role of growth factors in lesion development and the potential impact of soy. J Nutr 125:624S-630S

    PubMed  CAS  Google Scholar 

  4. Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86:515–581. https://doi.org/10.1152/physrev.00024.2005

    Article  PubMed  CAS  Google Scholar 

  5. Tousoulis D, Oikonomou E, Economou EK, Crea F, Kaski JC (2016) Inflammatory cytokines in atherosclerosis: current therapeutic approaches. Eur Heart J 37:1723–1732. https://doi.org/10.1093/eurheartj/ehv759

    Article  PubMed  CAS  Google Scholar 

  6. Tabas I, Williams KJ, Borén J (2007) Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116:1832–1844. https://doi.org/10.1161/circulationaha.106.676890

    Article  PubMed  CAS  Google Scholar 

  7. Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17:1410–1422. https://doi.org/10.1038/nm.2538

    Article  PubMed  CAS  Google Scholar 

  8. Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, Banfi C (2021) Lipid peroxidation in atherosclerotic cardiovascular diseases. Antioxid Redox Signal 34:49–98. https://doi.org/10.1089/ars.2019.7955

    Article  PubMed  CAS  Google Scholar 

  9. Lusis AJ (2000) Atherosclerosis Nature 407:233–241. https://doi.org/10.1038/35025203

    Article  PubMed  CAS  Google Scholar 

  10. Weissberg PL (2000) Atherogenesis: current understanding of the causes of atheroma. Heart 83:247–252. https://doi.org/10.1136/heart.83.2.247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA 73:3852–3856. https://doi.org/10.1073/pnas.73.11.3852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461. https://doi.org/10.1038/nbt.2890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160:1125–1134. https://doi.org/10.1016/j.cell.2015.02.014

    Article  PubMed  CAS  Google Scholar 

  14. Mahmoudi E, Cairns MJ (2019) Circular RNAs are temporospatially regulated throughout development and ageing in the rat. Sci Rep 9:2564. https://doi.org/10.1038/s41598-019-38860-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Mayer A, Mosler G, Just W, Pilgrim C, Reisert I (2000) Developmental profile of Sry transcripts in mouse brain. Neurogenetics 3:25–30

    Article  PubMed  CAS  Google Scholar 

  16. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7:e30733. https://doi.org/10.1371/journal.pone.0030733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157. https://doi.org/10.1261/rna.035667.112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Suenkel C, Cavalli D, Massalini S, Calegari F, Rajewsky N (2020) A highly conserved circular RNA is required to keep neural cells in a progenitor state in the mammalian brain. Cell Rep 30:2170-2179.e5. https://doi.org/10.1016/j.celrep.2020.01.083

    Article  PubMed  CAS  Google Scholar 

  19. Wu W, Ji P, Zhao F (2020) CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol 21:101. https://doi.org/10.1186/s13059-020-02018-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Verduci L, Tarcitano E, Strano S, Yarden Y, Blandino G (2021) CircRNAs: role in human diseases and potential use as biomarkers. Cell Death Dis 12:468. https://doi.org/10.1038/s41419-021-03743-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS (2008) Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol 93:141–147. https://doi.org/10.1113/expphysiol.2007.038588

    Article  PubMed  CAS  Google Scholar 

  22. Pittner J, Wolgast M, Casellas D, Persson AE (2005) Increased shear stress-released NO and decreased endothelial calcium in rat isolated perfused juxtamedullary nephrons. Kidney Int 67:227–236. https://doi.org/10.1111/j.1523-1755.2005.00073.x

    Article  PubMed  CAS  Google Scholar 

  23. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I (2013) The vascular endothelium and human diseases. Int J Biol Sci 9:1057–1069. https://doi.org/10.7150/ijbs.7502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bouwens EA, Stavenuiter F, Mosnier LO (2013) Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J Thromb Haemost 11(Suppl 1):242–253. https://doi.org/10.1111/jth.12247

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sillen M, Declerck PJ (2020) Targeting PAI-1 in cardiovascular disease: structural insights into PAI-1 functionality and inhibition. Front Cardiovasc Med 7:622473. https://doi.org/10.3389/fcvm.2020.622473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Marcondes S, Cardoso MH, Morganti RP, Thomazzi SM, Lilla S, Murad F, De Nucci G, Antunes E (2006) Cyclic GMP-independent mechanisms contribute to the inhibition of platelet adhesion by nitric oxide donor: a role for alpha-actinin nitration. Proc Natl Acad Sci USA 103:3434–3439. https://doi.org/10.1073/pnas.0509397103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Morrell CN, Matsushita K, Chiles K, Scharpf RB, Yamakuchi M, Mason RJ, Bergmeier W, Mankowski JL, Baldwin WM 3rd, Faraday N, Lowenstein CJ (2005) Regulation of platelet granule exocytosis by S-nitrosylation. Proc Natl Acad Sci USA 102:3782–3787. https://doi.org/10.1073/pnas.0408310102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gao F, Lucke-Wold BP, Li X, Logsdon AF, Xu LC, Xu S, LaPenna KB, Wang H, Talukder MAH, Siedlecki CA, Huber JD, Rosen CL, He P (2017) Reduction of endothelial nitric oxide increases the adhesiveness of constitutive endothelial membrane ICAM-1 through Src-mediated phosphorylation. Front Physiol 8:1124. https://doi.org/10.3389/fphys.2017.01124

    Article  PubMed  Google Scholar 

  29. Chiu JJ, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91:327–387. https://doi.org/10.1152/physrev.00047.2009

    Article  PubMed  Google Scholar 

  30. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844. https://doi.org/10.1161/01.res.87.10.840

    Article  PubMed  CAS  Google Scholar 

  31. Gimbrone MA Jr, García-Cardeña G (2013) Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol 22:9–15. https://doi.org/10.1016/j.carpath.2012.06.006

    Article  PubMed  CAS  Google Scholar 

  32. Corson MA, James NL, Latta SE, Nerem RM, Berk BC, Harrison DG (1996) Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress. Circ Res 79:984–991. https://doi.org/10.1161/01.res.79.5.984

    Article  PubMed  CAS  Google Scholar 

  33. Förstermann U, Münzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708–1714. https://doi.org/10.1161/circulationaha.105.602532

    Article  PubMed  Google Scholar 

  34. Hofmann F, Feil R, Kleppisch T, Schlossmann J (2006) Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev 86:1–23. https://doi.org/10.1152/physrev.00015.2005

    Article  PubMed  CAS  Google Scholar 

  35. Bonetti PO, Lerman LO, Lerman A (2003) Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23:168–175. https://doi.org/10.1161/01.atv.0000051384.43104.fc

    Article  PubMed  CAS  Google Scholar 

  36. Masha A, Dinatale S, Allasia S, Martina V (2011) Role of the decreased nitric oxide bioavailability in the vascular complications of diabetes mellitus. Curr Pharm Biotechnol 12:1354–1363. https://doi.org/10.2174/138920111798281054

    Article  PubMed  CAS  Google Scholar 

  37. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14:133–140. https://doi.org/10.1161/01.atv.14.1.133

    Article  PubMed  CAS  Google Scholar 

  38. Chen JY, Ye ZX, Wang XF, Chang J, Yang MW, Zhong HH, Hong FF, Yang SL (2018) Nitric oxide bioavailability dysfunction involves in atherosclerosis. Biomed Pharmacother 97:423–428. https://doi.org/10.1016/j.biopha.2017.10.122

    Article  PubMed  CAS  Google Scholar 

  39. Hossain M, Qadri SM, Liu L (2012) Inhibition of nitric oxide synthesis enhances leukocyte rolling and adhesion in human microvasculature. J Inflamm (Lond) 9:28. https://doi.org/10.1186/1476-9255-9-28

    Article  CAS  Google Scholar 

  40. Anderson TJ (1999) Assessment and treatment of endothelial dysfunction in humans. J Am Coll Cardiol 34:631–638. https://doi.org/10.1016/s0735-1097(99)00259-4

    Article  PubMed  CAS  Google Scholar 

  41. Chhabra N (2009) Endothelial dysfunction—a predictor of atherosclerosis. Internet J Med 4:33–41

    Google Scholar 

  42. Čejková S, Králová-Lesná I, Poledne R (2016) Monocyte adhesion to the endothelium is an initial stage of atherosclerosis development. Cor Vasa 58:e419–e425. https://doi.org/10.1016/j.crvasa.2015.08.002

    Article  Google Scholar 

  43. Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D (2016) ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev 2016:3565127. https://doi.org/10.1155/2016/3565127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V, Kovacic JC (2017) Oxidative stress and cardiovascular risk: obesity, diabetes, smoking, and pollution: part 3 of a 3-part series. J Am Coll Cardiol 70:230–251. https://doi.org/10.1016/j.jacc.2017.05.043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Moldogazieva NT, Mokhosoev IM, Mel’nikova TI, Porozov YB, Terentiev AA (2019) Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxid Med Cell Longev 2019:3085756. https://doi.org/10.1155/2019/3085756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Luchetti F, Crinelli R, Nasoni MG, Benedetti S, Palma F, Fraternale A, Iuliano L (2020) LDL receptors, caveolae and cholesterol in endothelial dysfunction: oxLDLs accomplices or victims? Br J Pharmacol. https://doi.org/10.1111/bph.15272

    Article  PubMed  Google Scholar 

  47. Chen B, Lu Y, Chen Y, Cheng J (2015) The role of Nrf2 in oxidative stress-induced endothelial injuries. J Endocrinol 225:R83-99. https://doi.org/10.1530/joe-14-0662

    Article  PubMed  CAS  Google Scholar 

  48. Cominacini L, Pasini AF, Garbin U, Davoli A, Tosetti ML, Campagnola M, Rigoni A, Pastorino AM, Lo Cascio V, Sawamura T (2000) Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J Biol Chem 275:12633–12638. https://doi.org/10.1074/jbc.275.17.12633

    Article  PubMed  CAS  Google Scholar 

  49. Yu XH, Zheng XL, Tang CK (2015) Nuclear factor-κB activation as a pathological mechanism of lipid metabolism and atherosclerosis. Adv Clin Chem 70:1–30. https://doi.org/10.1016/bs.acc.2015.03.004

    Article  PubMed  CAS  Google Scholar 

  50. Alfarisi HAH, Mohamed ZBH, Ibrahim MB (2020) Basic pathogenic mechanisms of atherosclerosis. Egypt J Basic Appl Sci 7:116–125. https://doi.org/10.1080/2314808X.2020.1769913

    Article  Google Scholar 

  51. Viedt C, Vogel J, Athanasiou T, Shen W, Orth SR, Kübler W, Kreuzer J (2002) Monocyte chemoattractant protein-1 induces proliferation and interleukin-6 production in human smooth muscle cells by differential activation of nuclear factor-kappaB and activator protein-1. Arterioscler Thromb Vasc Biol 22:914–920. https://doi.org/10.1161/01.atv.0000019009.73586.7f

    Article  PubMed  CAS  Google Scholar 

  52. Voloshyna I, Littlefield MJ, Reiss AB (2014) Atherosclerosis and interferon-γ: new insights and therapeutic targets. Trends Cardiovasc Med 24:45–51. https://doi.org/10.1016/j.tcm.2013.06.003

    Article  PubMed  CAS  Google Scholar 

  53. Gao P, Wu W, Ye J, Lu YW, Adam AP, Singer HA, Long X (2018) Transforming growth factor β1 suppresses proinflammatory gene program independent of its regulation on vascular smooth muscle differentiation and autophagy. Cell Signal 50:160–170. https://doi.org/10.1016/j.cellsig.2018.07.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, Tokgözoğlu L, Lewis EF (2019) Atherosclerosis. Nat Rev Dis Primers 5:56. https://doi.org/10.1038/s41572-019-0106-z

    Article  PubMed  Google Scholar 

  55. Carpenter KL, Dennis IF, Challis IR, Osborn DP, Macphee CH, Leake DS, Arends MJ, Mitchinson MJ (2001) Inhibition of lipoprotein-associated phospholipase A2 diminishes the death-inducing effects of oxidised LDL on human monocyte-macrophages. FEBS Lett 505:357–363. https://doi.org/10.1016/s0014-5793(01)02840-x

    Article  PubMed  CAS  Google Scholar 

  56. Wang WY, Zhang J, Wu WY, Li J, Ma YL, Chen WH, Yan H, Wang K, Xu WW, Shen JH, Wang YP (2011) Inhibition of lipoprotein-associated phospholipase A2 ameliorates inflammation and decreases atherosclerotic plaque formation in ApoE-deficient mice. PLoS ONE 6:e23425. https://doi.org/10.1371/journal.pone.0023425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Tabas I, Bornfeldt KE (2016) Macrophage phenotype and function in different stages of atherosclerosis. Circ Res 118:653–667. https://doi.org/10.1161/circresaha.115.306256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bennett MR, Sinha S, Owens GK (2016) Vascular smooth muscle cells in atherosclerosis. Circ Res 118:692–702. https://doi.org/10.1161/CIRCRESAHA.115.306361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Ruddy JM, Ikonomidis JS, Jones JA (2016) Multidimensional contribution of matrix metalloproteinases to atherosclerotic plaque vulnerability: multiple mechanisms of inhibition to promote stability. J Vasc Res 53:1–16. https://doi.org/10.1159/000446703

    Article  PubMed  CAS  Google Scholar 

  60. Zhang Y, Zhao Y, Liu Y, Wang M, Yu W, Zhang L (2020) Exploring the regulatory roles of circular RNAs in Alzheimer’s disease. Transl Neurodegeneration 9:35–35. https://doi.org/10.1186/s40035-020-00216-z

    Article  CAS  Google Scholar 

  61. Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, Wei J, Yao RW, Yang L, Chen LL (2017) Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol Cell 67:214-227.e7. https://doi.org/10.1016/j.molcel.2017.05.023

    Article  PubMed  CAS  Google Scholar 

  62. Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Öhman M, Refojo D, Kadener S, Rajewsky N (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58:870–885. https://doi.org/10.1016/j.molcel.2015.03.027

    Article  PubMed  CAS  Google Scholar 

  63. Dubin RA, Kazmi MA, Ostrer H (1995) Inverted repeats are necessary for circularization of the mouse testis Sry transcript. Gene 167:245–248. https://doi.org/10.1016/0378-1119(95)00639-7

    Article  PubMed  CAS  Google Scholar 

  64. Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C, Rajewsky N (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10:170–177. https://doi.org/10.1016/j.celrep.2014.12.019

    Article  PubMed  CAS  Google Scholar 

  65. Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28:2233–2247. https://doi.org/10.1101/gad.251926.114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Barrett SP, Wang PL, Salzman J (2015) Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife 4:e07540. https://doi.org/10.7554/eLife.07540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zhang Y, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. Mol Cell 51:792–806. https://doi.org/10.1016/j.molcel.2013.08.017

    Article  PubMed  CAS  Google Scholar 

  68. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358. https://doi.org/10.1016/j.cell.2011.07.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Hansen TB, Kjems J, Damgaard CK (2013) Circular RNA and miR-7 in cancer. Cancer Res 73:5609–5612. https://doi.org/10.1158/0008-5472.can-13-1568

    Article  PubMed  CAS  Google Scholar 

  70. Huang H, Wei L, Qin T, Yang N, Li Z, Xu Z (2019) Circular RNA ciRS-7 triggers the migration and invasion of esophageal squamous cell carcinoma via miR-7/KLF4 and NF-κB signals. Cancer Biol Ther 20:73–80. https://doi.org/10.1080/15384047.2018.1507254

    Article  PubMed  CAS  Google Scholar 

  71. Zhao J, Tao Y, Zhou Y, Qin N, Chen C, Tian D, Xu L (2015) MicroRNA-7: a promising new target in cancer therapy. Cancer Cell Int 15:103. https://doi.org/10.1186/s12935-015-0259-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Zhang T, Jing B, Bai Y, Zhang Y, Yu H (2020) Circular RNA circTMEM45A acts as the sponge of MicroRNA-665 to promote hepatocellular carcinoma progression. Mol Ther Nucleic Acids 22:285–297. https://doi.org/10.1016/j.omtn.2020.08.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hentze MW, Preiss T (2013) Circular RNAs: splicing’s enigma variations. EMBO J 32:923–925. https://doi.org/10.1038/emboj.2013.53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M (2016) CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13:34–42. https://doi.org/10.1080/15476286.2015.1128065

    Article  PubMed  Google Scholar 

  75. Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL, Gorospe M (2017) Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 14:361–369. https://doi.org/10.1080/15476286.2017.1279788

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fang J, Hong H, Xue X, Zhu X, Jiang L, Qin M, Liang H, Gao L (2019) A novel circular RNA, circFAT1(e2), inhibits gastric cancer progression by targeting miR-548g in the cytoplasm and interacting with YBX1 in the nucleus. Cancer Lett 442:222–232. https://doi.org/10.1016/j.canlet.2018.10.040

    Article  PubMed  CAS  Google Scholar 

  77. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22:256. https://doi.org/10.1038/nsmb.2959

    Article  PubMed  CAS  Google Scholar 

  78. Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, Song W, Li X, Li L, Du Z, Jia L, Zhou L, Li W, Hoffman AR, Hu JF, Cui J (2018) A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol 19:218. https://doi.org/10.1186/s13059-018-1594-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66. https://doi.org/10.1016/j.molcel.2014.08.019

    Article  PubMed  CAS  Google Scholar 

  80. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44:2846–2858. https://doi.org/10.1093/nar/gkw027

    Article  PubMed  PubMed Central  Google Scholar 

  81. Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, Li X, Yang BB (2016) Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 38:1402–1412. https://doi.org/10.1093/eurheartj/ehw001

    Article  CAS  Google Scholar 

  82. Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, Shenzis S, Samson M, Dittmar G, Landthaler M, Chekulaeva M, Rajewsky N, Kadener S (2017) Translation of CircRNAs. Mol Cell 66:9-21.e7. https://doi.org/10.1016/j.molcel.2017.02.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, Wong CCL, Xiao X, Wang Z (2017) Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 27:626–641. https://doi.org/10.1038/cr.2017.31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I (2017) Circ-ZNF609 Is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66:22-37.e9. https://doi.org/10.1016/j.molcel.2017.02.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Liang WC, Wong CW, Liang PP, Shi M, Cao Y, Rao ST, Tsui SKW, Waye MMY, Zhang Q, Fu WM (2019) Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol 20:84. https://doi.org/10.1186/s13059-019-1685-4

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rossi F, Legnini I, Megiorni F, Colantoni A, Santini T, Morlando M, Di Timoteo G, Dattilo D, Dominici C, Bozzoni I (2019) Circ-ZNF609 regulates G1-S progression in rhabdomyosarcoma. Oncogene 38:3843–3854. https://doi.org/10.1038/s41388-019-0699-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Norata GD, Tonti L, Roma P, Catapano AL (2002) Apoptosis and proliferation of endothelial cells in early atherosclerotic lesions: possible role of oxidised LDL. Nutr Metab Cardiovasc Dis 12:297–305

    PubMed  CAS  Google Scholar 

  88. Galle J, Heinloth A, Wanner C, Heermeier K (2001) Dual effect of oxidized LDL on cell cycle in human endothelial cells through oxidative stress. Kidney Int Suppl 78:S120–S123. https://doi.org/10.1046/j.1523-1755.2001.59780120.x

    Article  PubMed  CAS  Google Scholar 

  89. Liu H, Ma X, Mao Z, Shen M, Zhu J, Chen F (2020) Circular RNA has_circ_0003204 inhibits oxLDL-induced vascular endothelial cell proliferation and angiogenesis. Cell Signal 70:109595. https://doi.org/10.1016/j.cellsig.2020.109595

    Article  PubMed  CAS  Google Scholar 

  90. Wan H, You T, Luo W (2021) circ_0003204 regulates cell growth, oxidative stress, and inflammation in ox-LDL-induced vascular endothelial cells via regulating miR-942-5p/HDAC9 Axis. Front Cardiovasc Med 8:646832. https://doi.org/10.3389/fcvm.2021.646832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Malhotra R, Mauer AC, Lino Cardenas CL, Guo X, Yao J, Zhang X, Wunderer F, Smith AV, Wong Q, Pechlivanis S, Hwang SJ, Wang J, Lu L, Nicholson CJ, Shelton G, Buswell MD, Barnes HJ, Sigurslid HH, Slocum C, Rourke CO, Rhee DK, Bagchi A, Nigwekar SU, Buys ES, Campbell CY, Harris T, Budoff M, Criqui MH, Rotter JI, Johnson AD, Song C, Franceschini N, Debette S, Hoffmann U, Kälsch H, Nöthen MM, Sigurdsson S, Freedman BI, Bowden DW, Jöckel KH, Moebus S, Erbel R, Feitosa MF, Gudnason V, Thanassoulis G, Zapol WM, Lindsay ME, Bloch DB, Post WS, O’Donnell CJ (2019) HDAC9 is implicated in atherosclerotic aortic calcification and affects vascular smooth muscle cell phenotype. Nat Genet 51:1580–1587. https://doi.org/10.1038/s41588-019-0514-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Schiano C, Benincasa G, Franzese M, Della Mura N, Pane K, Salvatore M, Napoli C (2020) Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases. Pharmacol Ther 210:107514. https://doi.org/10.1016/j.pharmthera.2020.107514

    Article  PubMed  CAS  Google Scholar 

  93. Han X, Han X, Wang Z, Shen J, Dong Q (2016) HDAC9 regulates ox-LDL-induced endothelial cell apoptosis by participating in inflammatory reactions. Front Biosci (Landmark Ed) 21:907–917. https://doi.org/10.2741/4428

    Article  CAS  Google Scholar 

  94. Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, Janson A, Kokkola R, Zhang M, Yang H, Tracey KJ (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192:565–570. https://doi.org/10.1084/jem.192.4.565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Su Q, Dong X, Tang C, Wei X, Hao Y, Wu J (2021) Knockdown of circ_0003204 alleviates oxidative low-density lipoprotein-induced human umbilical vein endothelial cells injury: circulating RNAs could explain atherosclerosis disease progression. Open Med (Wars) 16:558–569. https://doi.org/10.1515/med-2021-0209

    Article  CAS  Google Scholar 

  96. Roy A, Srivastava M, Saqib U, Liu D, Faisal SM, Sugathan S, Bishnoi S, Baig MS (2016) Potential therapeutic targets for inflammation in toll-like receptor 4 (TLR4)-mediated signaling pathways. Int Immunopharmacol 40:79–89. https://doi.org/10.1016/j.intimp.2016.08.026

    Article  PubMed  CAS  Google Scholar 

  97. Pasterkamp G, Van Keulen JK, De Kleijn DP (2004) Role of Toll-like receptor 4 in the initiation and progression of atherosclerotic disease. Eur J Clin Invest 34:328–334. https://doi.org/10.1111/j.1365-2362.2004.01338.x

    Article  PubMed  CAS  Google Scholar 

  98. Peng K, Jiang P, Du Y, Zeng D, Zhao J, Li M, Xia C, Xie Z, Wu J (2021) Oxidized low-density lipoprotein accelerates the injury of endothelial cells via circ-USP36/miR-98-5p/VCAM1 axis. IUBMB Life 73:177–187. https://doi.org/10.1002/iub.2419

    Article  PubMed  CAS  Google Scholar 

  99. Bernstein DL, Zuluaga-Ramirez V, Gajghate S, Reichenbach NL, Polyak B, Persidsky Y, Rom S (2020) miR-98 reduces endothelial dysfunction by protecting blood-brain barrier (BBB) and improves neurological outcomes in mouse ischemia/reperfusion stroke model. J Cereb Blood Flow Metab 40:1953–1965. https://doi.org/10.1177/0271678x19882264

    Article  PubMed  CAS  Google Scholar 

  100. Chen Z, Wang M, He Q, Li Z, Zhao Y, Wang W, Ma J, Li Y, Chang G (2017) MicroRNA-98 rescues proliferation and alleviates ox-LDL-induced apoptosis in HUVECs by targeting LOX-1. Exp Ther Med 13:1702–1710. https://doi.org/10.3892/etm.2017.4171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Hu C, Huang S, Wu F, Ding H (2018) miR-98 inhibits cell proliferation and induces cell apoptosis by targeting MAPK6 in HUVECs. Exp Ther Med 15:2755–2760. https://doi.org/10.3892/etm.2018.5735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Li HW, Meng Y, Xie Q, Yi WJ, Lai XL, Bian Q, Wang J, Wang JF, Yu G (2015) miR-98 protects endothelial cells against hypoxia/reoxygenation induced-apoptosis by targeting caspase-3. Biochem Biophys Res Commun 467:595–601. https://doi.org/10.1016/j.bbrc.2015.09.058

    Article  PubMed  CAS  Google Scholar 

  103. Zheng Z, Zhang G, Liang X, Li T (2021) LncRNA OIP5-AS1 facilitates ox-LDL-induced endothelial cell injury through the miR-98-5p/HMGB1 axis. Mol Cell Biochem 476:443–455. https://doi.org/10.1007/s11010-020-03921-5

    Article  PubMed  CAS  Google Scholar 

  104. Miao J, Wang B, Shao R, Wang Y (2021) CircUSP36 knockdown alleviates oxidized lowdensity lipoproteininduced cell injury and inflammatory responses in human umbilical vein endothelial cells via the miR20a5p/ROCK2 axis. Int J Mol Med. https://doi.org/10.3892/ijmm.2021.4873

    Article  PubMed  PubMed Central  Google Scholar 

  105. Goumans MJ, Liu Z, ten Dijke P (2009) TGF-beta signaling in vascular biology and dysfunction. Cell Res 19:116–127. https://doi.org/10.1038/cr.2008.326

    Article  PubMed  CAS  Google Scholar 

  106. Grainger DJ (2004) Transforming growth factor beta and atherosclerosis: so far, so good for the protective cytokine hypothesis. Arterioscler Thromb Vasc Biol 24:399–404. https://doi.org/10.1161/01.Atv.0000114567.76772.33

    Article  PubMed  CAS  Google Scholar 

  107. Khan R, Agrotis A, Bobik A (2007) Understanding the role of transforming growth factor-beta1 in intimal thickening after vascular injury. Cardiovasc Res 74:223–234. https://doi.org/10.1016/j.cardiores.2007.02.012

    Article  PubMed  CAS  Google Scholar 

  108. Wang L, Shen C, Wang Y, Zou T, Zhu H, Lu X, Li L, Yang B, Chen J, Chen S, Lu X, Gu D (2019) Identification of circular RNA Hsa_circ_0001879 and Hsa_circ_0004104 as novel biomarkers for coronary artery disease. Atherosclerosis 286:88–96. https://doi.org/10.1016/j.atherosclerosis.2019.05.006

    Article  PubMed  CAS  Google Scholar 

  109. Zhang C, Wang L, Shen Y (2021) Circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting miR-328-3p/TRIM14 axis in atherosclerosis. BMC Cardiovasc Disord 21:207. https://doi.org/10.1186/s12872-021-02012-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Huang X, Li Y, Li X, Fan D, Xin HB, Fu M (2020) TRIM14 promotes endothelial activation via activating NF-κB signaling pathway. J Mol Cell Biol 12:176–189. https://doi.org/10.1093/jmcb/mjz040

    Article  PubMed  CAS  Google Scholar 

  111. Qin X, Guo J (2020) MicroRNA-328-3p protects vascular endothelial cells against oxidized low-density lipoprotein induced injury via targeting forkhead box protein O4 (FOXO4) in atherosclerosis. Med Sci Monit 26:e921877. https://doi.org/10.12659/msm.921877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Hong L, Ma X, Liu J, Luo Y, Lin J, Shen Y, Zhang L (2021) Circular RNA-HIPK3 regulates human pulmonary artery endothelial cells function and vessel growth by regulating microRNA-328-3p/STAT3 axis. Pulm Circ 11:20458940211000230. https://doi.org/10.1177/20458940211000234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Zhao Z, Li X, Gao C, Jian D, Hao P, Rao L, Li M (2017) Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci Rep 7:39918. https://doi.org/10.1038/srep39918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Wang G, Li Y, Liu Z, Ma X, Li M, Lu Q, Li Y, Lu Z, Niu L, Fan Z, Lei Z (2020) Circular RNA circ_0124644 exacerbates the ox-LDL-induced endothelial injury in human vascular endothelial cells through regulating PAPP-A by acting as a sponge of miR-149-5p. Mol Cell Biochem 471:51–61. https://doi.org/10.1007/s11010-020-03764-0

    Article  PubMed  CAS  Google Scholar 

  115. Ali Sheikh MS, Xia K, Li F, Deng X, Salma U, Deng H, Wei Wei L, Yang TL, Peng J (2015) Circulating miR-765 and miR-149: potential noninvasive diagnostic biomarkers for geriatric coronary artery disease patients. Biomed Res Int 2015:740301. https://doi.org/10.1155/2015/740301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Sayed AS, Xia K, Li F, Deng X, Salma U, Li T, Deng H, Yang D, Haoyang Z, Yang T, Peng J (2015) The diagnostic value of circulating microRNAs for middle-aged (40–60-year-old) coronary artery disease patients. Clinics (Sao Paulo) 70:257–263. https://doi.org/10.6061/clinics/2015(04)07

    Article  Google Scholar 

  117. Xu G, Zhang Z, Xing Y, Wei J, Ge Z, Liu X, Zhang Y, Huang X (2014) MicroRNA-149 negatively regulates TLR-triggered inflammatory response in macrophages by targeting MyD88. J Cell Biochem 115:919–927. https://doi.org/10.1002/jcb.24734

    Article  PubMed  CAS  Google Scholar 

  118. Yuan J, Chen M, Xu Q, Liang J, Chen R, Xiao Y, Fang M, Chen L (2017) Effect of the diabetic environment on the expression of MiRNAs in endothelial cells: Mir-149-5p restoration ameliorates the high glucose-induced expression of TNF-α and ER stress markers. Cell Physiol Biochem 43:120–135. https://doi.org/10.1159/000480330

    Article  PubMed  CAS  Google Scholar 

  119. Huang HS, Huang XY, Yu HZ, Xue Y, Zhu PL (2020) Circular RNA circ-RELL1 regulates inflammatory response by miR-6873-3p/MyD88/NF-κB axis in endothelial cells. Biochem Biophys Res Commun 525:512–519. https://doi.org/10.1016/j.bbrc.2020.02.109

    Article  PubMed  CAS  Google Scholar 

  120. Li S, Hao M, Wu T, Wang Z, Wang X, Zhang J, Zhang L (2021) Kaempferol alleviates human endothelial cell injury through circNOL12/miR-6873-3p/FRS2 axis. Biomed Pharmacother 137:111419. https://doi.org/10.1016/j.biopha.2021.111419

    Article  PubMed  CAS  Google Scholar 

  121. Gotoh N (2008) Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci 99:1319–1325. https://doi.org/10.1111/j.1349-7006.2008.00840.x

    Article  PubMed  CAS  Google Scholar 

  122. Huang T, Zhao HY, Zhang XB, Gao XL, Peng WP, Zhou Y, Zhao WH, Yang HF (2020) LncRNA ANRIL regulates cell proliferation and migration via sponging miR-339-5p and regulating FRS2 expression in atherosclerosis. Eur Rev Med Pharmacol Sci 24:1956–1969. https://doi.org/10.26355/eurrev_202002_20373

    Article  PubMed  CAS  Google Scholar 

  123. Zhang W, Sui Y (2020) CircBPTF knockdown ameliorates high glucose-induced inflammatory injuries and oxidative stress by targeting the miR-384/LIN28B axis in human umbilical vein endothelial cells. Mol Cell Biochem 471:101–111. https://doi.org/10.1007/s11010-020-03770-2

    Article  PubMed  CAS  Google Scholar 

  124. Fan J, Xu W, Nan S, Chang M, Zhang Y (2020) MicroRNA-384-5p promotes endothelial progenitor cell proliferation and angiogenesis in cerebral ischemic stroke through the delta-likeligand 4-mediated notch signaling pathway. Cerebrovasc Dis 49:39–54. https://doi.org/10.1159/000503950

    Article  PubMed  CAS  Google Scholar 

  125. Xia F, Sun JJ, Jiang YQ, Li CF (2018) MicroRNA-384-3p inhibits retinal neovascularization through targeting hexokinase 2 in mice with diabetic retinopathy. J Cell Physiol 234:721–730. https://doi.org/10.1002/jcp.26871

    Article  PubMed  CAS  Google Scholar 

  126. Fu X, Ou B (2020) miR-152/LIN28B axis modulates high-glucose-induced angiogenesis in human retinal endothelial cells via VEGF signaling. J Cell Biochem 121:954–962. https://doi.org/10.1002/jcb.28978

    Article  PubMed  CAS  Google Scholar 

  127. Sharghi-Namini S, Tan E, Ong LL, Ge R, Asada HH (2014) Dll4-containing exosomes induce capillary sprout retraction in a 3D microenvironment. Sci Rep 4:4031. https://doi.org/10.1038/srep04031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M, Adams RH (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–1135. https://doi.org/10.1016/j.cell.2009.03.025

    Article  PubMed  CAS  Google Scholar 

  129. Xia HG, Najafov A, Geng J, Galan-Acosta L, Han X, Guo Y, Shan B, Zhang Y, Norberg E, Zhang T, Pan L, Liu J, Coloff JL, Ofengeim D, Zhu H, Wu K, Cai Y, Yates JR, Zhu Z, Yuan J, Vakifahmetoglu-Norberg H (2015) Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. J Cell Biol 210:705–716. https://doi.org/10.1083/jcb.201503044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Pan M, Han Y, Basu A, Dai A, Si R, Willson C, Balistrieri A, Scott BT, Makino A (2018) Overexpression of hexokinase 2 reduces mitochondrial calcium overload in coronary endothelial cells of type 2 diabetic mice. Am J Physiol Cell Physiol 314:C732-c740. https://doi.org/10.1152/ajpcell.00350.2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Cheng J, Liu Q, Hu N, Zheng F, Zhang X, Ni Y, Liu J (2019) Downregulation of hsa_circ_0068087 ameliorates TLR4/NF-κB/NLRP3 inflammasome-mediated inflammation and endothelial cell dysfunction in high glucose conditioned by sponging miR-197. Gene 709:1–7. https://doi.org/10.1016/j.gene.2019.05.012

    Article  PubMed  CAS  Google Scholar 

  132. Schulte C, Molz S, Appelbaum S, Karakas M, Ojeda F, Lau DM, Hartmann T, Lackner KJ, Westermann D, Schnabel RB, Blankenberg S, Zeller T (2015) miRNA-197 and miRNA-223 predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease. PLoS ONE 10:e0145930. https://doi.org/10.1371/journal.pone.0145930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Li S, Huang T, Qin L, Yin L (2021) Circ_0068087 silencing ameliorates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells depending on miR-186-5p-mediated regulation of roundabout guidance receptor 1. Front Cardiovasc Med 8:650374. https://doi.org/10.3389/fcvm.2021.650374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Yuen DA, Robinson LA (2013) Slit2-Robo signaling: a novel regulator of vascular injury. Curr Opin Nephrol Hypertens 22:445–451. https://doi.org/10.1097/MNH.0b013e32836235f4

    Article  PubMed  CAS  Google Scholar 

  135. Wei H, Cao C, Wei X, Meng M, Wu B, Meng L, Wei X, Gu S, Li H (2020) Circular RNA circVEGFC accelerates high glucose-induced vascular endothelial cells apoptosis through miR-338-3p/HIF-1α/VEGFA axis. Aging (Albany NY) 12:14365–14375. https://doi.org/10.18632/aging.103478

    Article  CAS  Google Scholar 

  136. Gao J, Ailifeire M, Wang C, Luo L, Zhang J, Yuan L, Zhang L, Li X, Wang M (2020) miR-320/VEGFA axis affects high glucose-induced metabolic memory during human umbilical vein endothelial cell dysfunction in diabetes pathology. Microvasc Res 127:103913. https://doi.org/10.1016/j.mvr.2019.103913

    Article  PubMed  CAS  Google Scholar 

  137. Yin J, Hou X, Yang S (2019) microRNA-338-3p promotes ox-LDL-induced endothelial cell injury through targeting BAMBI and activating TGF-β/Smad pathway. J Cell Physiol 234:11577–11586. https://doi.org/10.1002/jcp.27814

    Article  PubMed  CAS  Google Scholar 

  138. Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massagué J, Niehrs C (1999) Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature 401:480–485. https://doi.org/10.1038/46794

    Article  PubMed  CAS  Google Scholar 

  139. Raykhel I, Moafi F, Myllymäki SM, Greciano PG, Matlin KS, Moyano JV, Manninen A, Myllyharju J (2018) BAMBI is a novel HIF1-dependent modulator of TGFβ-mediated disruption of cell polarity during hypoxia. J Cell Sci. https://doi.org/10.1242/jcs.210906

    Article  PubMed  Google Scholar 

  140. Liang B, Li M, Deng Q, Wang C, Rong J, He S, Xiang Y, Zheng F (2020) CircRNA ZNF609 in peripheral blood leukocytes acts as a protective factor and a potential biomarker for coronary artery disease. Ann Transl Med 8:741. https://doi.org/10.21037/atm-19-4728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Liu C, Yao MD, Li CP, Shan K, Yang H, Wang JJ, Liu B, Li XM, Yao J, Jiang Q, Yan B (2017) Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction. Theranostics 7:2863–2877. https://doi.org/10.7150/thno.19353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Wang L, Fan C, Topol SE, Topol EJ, Wang Q (2003) Mutation of MEF2A in an inherited disorder with features of coronary artery disease. Science 302:1578–1581. https://doi.org/10.1126/science.1088477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Eltzschig HK, Bratton DL, Colgan SP (2014) Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat Rev Drug Discov 13:852–869. https://doi.org/10.1038/nrd4422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Wang HG, Yan H, Wang C, Li MM, Lv XZ, Wu HD, Fang ZH, Mo DL, Zhang ZY, Liang B, Lai KG, Bao JY, Yang XJ, Zhao HJ, Chen S, Fan YM, Tong XG (2020) circAFF1 aggravates vascular endothelial cell dysfunction mediated by miR-516b/SAV1/YAP1 Axis. Front Physiol 11:899. https://doi.org/10.3389/fphys.2020.00899

    Article  PubMed  PubMed Central  Google Scholar 

  145. Plouffe SW, Hong AW, Guan KL (2015) Disease implications of the Hippo/YAP pathway. Trends Mol Med 21:212–222. https://doi.org/10.1016/j.molmed.2015.01.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Rausch V, Hansen CG (2020) The Hippo pathway, YAP/TAZ, and the plasma membrane. Trends Cell Biol 30:32–48. https://doi.org/10.1016/j.tcb.2019.10.005

    Article  PubMed  CAS  Google Scholar 

  147. Lei D, Wang Y, Zhang L, Wang Z (2020) Circ_0010729 regulates hypoxia-induced cardiomyocyte injuries by activating TRAF5 via sponging miR-27a-3p. Life Sci 262:118511. https://doi.org/10.1016/j.lfs.2020.118511

    Article  PubMed  CAS  Google Scholar 

  148. Ma B, Zhao M, Guo Z (2021) Circular RNA circ_0010729 knockdown attenuates oxygen-glucose deprivation-induced human cardiac myocytes injury by miR-338-3p/CALM2 axis. J Cardiovasc Pharmacol 77:594–602. https://doi.org/10.1097/fjc.0000000000000988

    Article  PubMed  CAS  Google Scholar 

  149. Dang RY, Liu FL, Li Y (2017) Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1α axis. Biochem Biophys Res Commun 490:104–110. https://doi.org/10.1016/j.bbrc.2017.05.164

    Article  PubMed  CAS  Google Scholar 

  150. Bartoszewski R, Moszyńska A, Serocki M, Cabaj A, Polten A, Ochocka R, Dell’Italia L, Bartoszewska S, Króliczewski J, Dąbrowski M, Collawn JF (2019) Primary endothelial cell-specific regulation of hypoxia-inducible factor (HIF)-1 and HIF-2 and their target gene expression profiles during hypoxia. FASEB J 33:7929–7941. https://doi.org/10.1096/fj.201802650RR

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Kaushik K, Das A (2019) Endothelial progenitor cell therapy for chronic wound tissue regeneration. Cytotherapy 21:1137–1150. https://doi.org/10.1016/j.jcyt.2019.09.002

    Article  PubMed  CAS  Google Scholar 

  152. Muniyappa R, Sowers JR (2014) Glycogen synthase kinase-3β and cathepsin B in diabetic endothelial progenitor cell dysfunction: an old player finds a new partner. Diabetes 63:1194–1197. https://doi.org/10.2337/db14-0004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Tian D, Xiang Y, Tang Y, Ge Z, Li Q, Zhang Y (2020) Circ-ADAM9 targeting PTEN and ATG7 promotes autophagy and apoptosis of diabetic endothelial progenitor cells by sponging mir-20a-5p. Cell Death Dis 11:526. https://doi.org/10.1038/s41419-020-02745-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Heras-Sandoval D, Perez-Rojas JM, Hernandez-Damian J, Pedraza-Chaverri J (2014) The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26:2694–2701. https://doi.org/10.1016/j.cellsig.2014.08.019

    Article  PubMed  CAS  Google Scholar 

  155. Zhou RM, Shi LJ, Shan K, Sun YN, Wang SS, Zhang SJ, Li XM, Jiang Q, Yan B, Zhao C (2020) Circular RNA-ZBTB44 regulates the development of choroidal neovascularization. Theranostics 10:3293–3307. https://doi.org/10.7150/thno.39488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Chen PY, Schwartz MA, Simons M (2020) Endothelial-to-mesenchymal transition, vascular inflammation, and atherosclerosis. Front Cardiovasc Med 7:53. https://doi.org/10.3389/fcvm.2020.00053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Souilhol C, Harmsen MC, Evans PC, Krenning G (2018) Endothelial–mesenchymal transition in atherosclerosis. Cardiovasc Res 114:565–577. https://doi.org/10.1093/cvr/cvx253

    Article  PubMed  CAS  Google Scholar 

  158. Yang L, Han B, Zhang Y, Bai Y, Chao J, Hu G, Yao H (2018) Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition. Autophagy 14:404–418. https://doi.org/10.1080/15548627.2017.1414755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, Liang L, Gu J, He X, Huang S (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215. https://doi.org/10.1038/ncomms11215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Cao Y, Yuan G, Zhang Y, Lu R (2018) High glucose-induced circHIPK3 downregulation mediates endothelial cell injury. Biochem Biophys Res Commun 507:362–368. https://doi.org/10.1016/j.bbrc.2018.11.041

    Article  PubMed  CAS  Google Scholar 

  161. Wei MY, Lv RR, Teng Z (2020) Circular RNA circHIPK3 as a novel circRNA regulator of autophagy and endothelial cell dysfunction in atherosclerosis. Eur Rev Med Pharmacol Sci 24:12849–12858. https://doi.org/10.26355/eurrev_202012_24187

    Article  PubMed  Google Scholar 

  162. Si X, Zheng H, Wei G, Li M, Li W, Wang H, Guo H, Sun J, Li C, Zhong S, Liao W, Liao Y, Huang S, Bin J (2020) circRNA Hipk3 induces cardiac regeneration after myocardial infarction in mice by binding to Notch1 and miR-133a. Mol Ther Nucleic Acids 21:636–655. https://doi.org/10.1016/j.omtn.2020.06.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Wang Y, Zhao R, Liu W, Wang Z, Rong J, Long X, Liu Z, Ge J, Shi B (2019) Exosomal circHIPK3 released from hypoxia-pretreated cardiomyocytes regulates oxidative damage in cardiac microvascular endothelial cells via the miR-29a/IGF-1 pathway. Oxid Med Cell Longev 2019:7954657. https://doi.org/10.1155/2019/7954657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Shan K, Liu C, Liu BH, Chen X, Dong R, Liu X, Zhang YY, Liu B, Zhang SJ, Wang JJ, Zhang SH, Wu JH, Zhao C, Yan B (2017) Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation 136:1629–1642. https://doi.org/10.1161/circulationaha.117.029004

    Article  PubMed  CAS  Google Scholar 

  165. Kang L, Jia H, Huang B, Lu S, Chen Z, Shen J, Zou Y, Wang C, Sun Y (2021) Identification of differently expressed mRNAs in atherosclerosis reveals CDK6 is regulated by circHIPK3/miR-637 axis and promotes cell growth in human vascular smooth muscle cells. Front Genet 12:596169. https://doi.org/10.3389/fgene.2021.596169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, Jonasdottir A, Sigurdsson A, Baker A, Palsson A, Masson G, Gudbjartsson DF, Magnusson KP, Andersen K, Levey AI, Backman VM, Matthiasdottir S, Jonsdottir T, Palsson S, Einarsdottir H, Gunnarsdottir S, Gylfason A, Vaccarino V, Hooper WC, Reilly MP, Granger CB, Austin H, Rader DJ, Shah SH, Quyyumi AA, Gulcher JR, Thorgeirsson G, Thorsteinsdottir U, Kong A, Stefansson K (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316:1491–1493. https://doi.org/10.1126/science.1142842

    Article  PubMed  CAS  Google Scholar 

  167. McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, Hinds DA, Pennacchio LA, Tybjaerg-Hansen A, Folsom AR, Boerwinkle E, Hobbs HH, Cohen JC (2007) A common allele on chromosome 9 associated with coronary heart disease. Science 316:1488–1491. https://doi.org/10.1126/science.1142447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Bochenek G, Häsler R, El Mokhtari NE, König IR, Loos BG, Jepsen S, Rosenstiel P, Schreiber S, Schaefer AS (2013) The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum Mol Genet 22:4516–4527. https://doi.org/10.1093/hmg/ddt299

    Article  PubMed  CAS  Google Scholar 

  169. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6:e1001233. https://doi.org/10.1371/journal.pgen.1001233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou A, Gäbel G, Beutner F, Scholz M, Thiery J, Musunuru K, Krohn K, Mann M, Teupser D (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429. https://doi.org/10.1038/ncomms12429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Holdt LM, Beutner F, Scholz M, Gielen S, Gäbel G, Bergert H, Schuler G, Thiery J, Teupser D (2010) ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol 30:620–627. https://doi.org/10.1161/atvbaha.109.196832

    Article  PubMed  CAS  Google Scholar 

  172. Shi P, Ji H, Zhang H, Yang J, Guo R, Wang J (2020) circANRIL reduces vascular endothelial injury, oxidative stress and inflammation in rats with coronary atherosclerosis. Exp Ther Med 20:2245–2251. https://doi.org/10.3892/etm.2020.8956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Song CL, Wang JP, Xue X, Liu N, Zhang XH, Zhao Z, Liu JG, Zhang CP, Piao ZH, Liu Y, Yang YB (2017) Effect of circular ANRIL on the inflammatory response of vascular endothelial cells in a rat model of coronary atherosclerosis. Cell Physiol Biochem 42:1202–1212. https://doi.org/10.1159/000478918

    Article  PubMed  CAS  Google Scholar 

  174. Zhu K, Hu X, Chen H, Li F, Yin N, Liu AL, Shan K, Qin YW, Huang X, Chang Q, Xu GZ, Wang Z (2019) Downregulation of circRNA DMNT3B contributes to diabetic retinal vascular dysfunction through targeting miR-20b-5p and BAMBI. EBioMedicine 49:341–353. https://doi.org/10.1016/j.ebiom.2019.10.004

    Article  PubMed  PubMed Central  Google Scholar 

  175. Fan Y, Li X, Xiao W, Fu J, Harris RC, Lindenmeyer M, Cohen CD, Guillot N, Baron MH, Wang N, Lee K, He JC, Schlondorff D, Chuang PY (2015) BAMBI elimination enhances alternative TGF-β signaling and glomerular dysfunction in diabetic mice. Diabetes 64:2220–2233. https://doi.org/10.2337/db14-1397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Guillot N, Kollins D, Badimon JJ, Schlondorff D, Hutter R (2013) Accelerated reendothelialization, increased neovascularization and erythrocyte extravasation after arterial injury in BAMBI-/- mice. PLoS ONE 8:e58550. https://doi.org/10.1371/journal.pone.0058550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Salles C II, Monkman JH, Ahnström J, Lane DA, Crawley JT (2014) Vessel wall BAMBI contributes to hemostasis and thrombus stability. Blood 123:2873–2881. https://doi.org/10.1182/blood-2013-10-534024

    Article  CAS  Google Scholar 

  178. Zhu T, Yao Q, Wang W, Yao H, Chao J (2016) iNOS induces vascular endothelial cell migration and apoptosis via autophagy in ischemia/reperfusion injury. Cell Physiol Biochem 38:1575–1588. https://doi.org/10.1159/000443098

    Article  PubMed  CAS  Google Scholar 

  179. Bai Y, Zhang Y, Han B, Yang L, Chen X, Huang R, Wu F, Chao J, Liu P, Hu G, Zhang JH, Yao H (2018) Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting mir-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity. J Neurosci 38:32–50. https://doi.org/10.1523/jneurosci.1348-17.2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Chen Y, Wang Y, Jiang Y, Zhang X, Sheng M (2019) High-glucose treatment regulates biological functions of human umbilical vein endothelial cells via Sirt1/FOXO3 pathway. Ann Transl Med 7:199. https://doi.org/10.21037/atm.2019.04.29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Ku YH, Cho BJ, Kim MJ, Lim S, Park YJ, Jang HC, Choi SH (2017) Rosiglitazone increases endothelial cell migration and vascular permeability through Akt phosphorylation. BMC Pharmacol Toxicol 18:62. https://doi.org/10.1186/s40360-017-0169-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Li X, Zhou Q, Sunkara M, Kutys ML, Wu Z, Rychahou P, Morris AJ, Zhu H, Evers BM, Huang C (2013) Ubiquitylation of phosphatidylinositol 4-phosphate 5-kinase type I γ by HECTD1 regulates focal adhesion dynamics and cell migration. J Cell Sci 126:2617–2628. https://doi.org/10.1242/jcs.117044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Tiedt S, Prestel M, Malik R, Schieferdecker N, Duering M, Kautzky V, Stoycheva I, Böck J, Northoff BH, Klein M, Dorn F, Krohn K, Teupser D, Liesz A, Plesnila N, Holdt LM, Dichgans M (2017) RNA-Seq identifies circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as potential biomarkers for acute ischemic stroke. Circ Res 121:970–980. https://doi.org/10.1161/circresaha.117.311572

    Article  PubMed  CAS  Google Scholar 

  184. Xu RH, Liu B, Wu JD, Yan YY, Wang JN (2016) miR-143 is involved in endothelial cell dysfunction through suppression of glycolysis and correlated with atherosclerotic plaques formation. Eur Rev Med Pharmacol Sci 20:4063–4071

    PubMed  Google Scholar 

  185. Cheng J, Hu W, Zheng F, Wu Y, Li M (2020) hsa_circ_0058092 protects against hyperglycemia-induced endothelial progenitor cell damage via miR-217/FOXO3. Int J Mol Med 46:1146–1154. https://doi.org/10.3892/ijmm.2020.4664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Sang T, Cao Q, Wang Y, Liu F, Chen S (2014) Overexpression or silencing of FOXO3a affects proliferation of endothelial progenitor cells and expression of cell cycle regulatory proteins. PLoS ONE 9:e101703. https://doi.org/10.1371/journal.pone.0101703

    Article  PubMed  PubMed Central  Google Scholar 

  187. Tsuchiya K, Tanaka J, Shuiqing Y, Welch CL, DePinho RA, Tabas I, Tall AR, Goldberg IJ, Accili D (2012) FoxOs integrate pleiotropic actions of insulin in vascular endothelium to protect mice from atherosclerosis. Cell Metab 15:372–381. https://doi.org/10.1016/j.cmet.2012.01.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Potente M, Urbich C, Sasaki K, Hofmann WK, Heeschen C, Aicher A, Kollipara R, DePinho RA, Zeiher AM, Dimmeler S (2005) Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest 115:2382–2392. https://doi.org/10.1172/jci23126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Li CY, Ma L, Yu B (2017) Circular RNA hsa_circ_0003575 regulates oxLDL induced vascular endothelial cells proliferation and angiogenesis. Biomed Pharmacother 95:1514–1519. https://doi.org/10.1016/j.biopha.2017.09.064

    Article  PubMed  CAS  Google Scholar 

  190. Shang L, Quan A, Sun H, Xu Y, Sun G, Cao P (2019) MicroRNA-148a-3p promotes survival and migration of endothelial cells isolated from Apoe deficient mice through restricting circular RNA 0003575. Gene 711:143948. https://doi.org/10.1016/j.gene.2019.143948

    Article  PubMed  CAS  Google Scholar 

  191. Goedeke L, Rotllan N, Canfrán-Duque A, Aranda JF, Ramírez CM, Araldi E, Lin CS, Anderson NN, Wagschal A, de Cabo R, Horton JD, Lasunción MA, Näär AM, Suárez Y, Fernández-Hernando C (2015) MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat Med 21:1280–1289. https://doi.org/10.1038/nm.3949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Wei Z, Ran H, Yang C (2020) CircRSF1 contributes to endothelial cell growth, migration and tube formation under ox-LDL stress through regulating miR-758/CCND2 axis. Life Sci 259:118241. https://doi.org/10.1016/j.lfs.2020.118241

    Article  PubMed  CAS  Google Scholar 

  193. Johnson DG, Walker CL (1999) Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 39:295–312. https://doi.org/10.1146/annurev.pharmtox.39.1.295

    Article  PubMed  CAS  Google Scholar 

  194. Li XX, Liu YM, Li YJ, Xie N, Yan YF, Chi YL, Zhou L, Xie SY, Wang PY (2016) High glucose concentration induces endothelial cell proliferation by regulating cyclin-D2-related miR-98. J Cell Mol Med 20:1159–1169. https://doi.org/10.1111/jcmm.12765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Zhang X, Lu J, Zhang Q, Luo Q, Liu B (2021) CircRNA RSF1 regulated ox-LDL induced vascular endothelial cells proliferation, apoptosis and inflammation through modulating miR-135b-5p/HDAC1 axis in atherosclerosis. Biol Res 54:11. https://doi.org/10.1186/s40659-021-00335-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Hu C, Peng K, Wu Q, Wang Y, Fan X, Zhang DM, Passerini AG, Sun C (2021) HDAC1 and 2 regulate endothelial VCAM-1 expression and atherogenesis by suppressing methylation of the GATA6 promoter. Theranostics 11:5605–5619. https://doi.org/10.7150/thno.55878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Jin G, Wang Q, Hu X, Li X, Pei X, Xu E, Li M (2019) Profiling and functional analysis of differentially expressed circular RNAs in high glucose-induced human umbilical vein endothelial cells. FEBS Open Bio 9:1640–1651. https://doi.org/10.1002/2211-5463.12709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Zhang Q, Long J, Li N, Ma X, Zheng L (2021) Circ_CLASP2 regulates high glucose-induced dysfunction of human endothelial cells through targeting miR-140-5p/FBXW7 axis. Front Pharmacol 12:594793. https://doi.org/10.3389/fphar.2021.594793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Izumi N, Helker C, Ehling M, Behrens A, Herzog W, Adams RH (2012) Fbxw7 controls angiogenesis by regulating endothelial Notch activity. PLoS ONE 7:e41116. https://doi.org/10.1371/journal.pone.0041116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Pronk MCA, Majolee J, Loregger A, van Bezu JSM, Zelcer N, Hordijk PL, Kovacevic I (2019) FBXW7 regulates endothelial barrier function by suppression of the cholesterol synthesis pathway and prenylation of RhoB. Mol Biol Cell 30:607–621. https://doi.org/10.1091/mbc.E18-04-0259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Liu QQ, Ren K, Liu SH, Li WM, Huang CJ, Yang XH (2019) MicroRNA-140-5p aggravates hypertension and oxidative stress of atherosclerosis via targeting Nrf2 and Sirt2. Int J Mol Med 43:839–849. https://doi.org/10.3892/ijmm.2018.3996

    Article  PubMed  CAS  Google Scholar 

  202. Zhao Z, Li X, Jian D, Hao P, Rao L, Li M (2017) Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus. Acta Diabetol 54:237–245. https://doi.org/10.1007/s00592-016-0943-0

    Article  PubMed  CAS  Google Scholar 

  203. Pan L, Lian W, Zhang X, Han S, Cao C, Li X, Li M (2018) Human circular RNA-0054633 regulates high glucose-induced vascular endothelial cell dysfunction through the microRNA-218/roundabout 1 and microRNA-218/heme oxygenase-1 axes. Int J Mol Med 42:597–606. https://doi.org/10.3892/ijmm.2018.3625

    Article  PubMed  CAS  Google Scholar 

  204. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 73:3221–3247. https://doi.org/10.1007/s00018-016-2223-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Schachter M (1997) Vascular smooth muscle cell migration, atherosclerosis, and calcium channel blockers. Int J Cardiol 62(Suppl 2):S85-90. https://doi.org/10.1016/s0167-5273(97)00245-3

    Article  PubMed  Google Scholar 

  206. Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517. https://doi.org/10.1152/physrev.1995.75.3.487

    Article  PubMed  CAS  Google Scholar 

  207. Jaminon A, Reesink K, Kroon A, Schurgers L (2019) The role of vascular smooth muscle cells in arterial remodeling: focus on calcification-related processes. Int J Mol Sci. https://doi.org/10.3390/ijms20225694

    Article  PubMed  PubMed Central  Google Scholar 

  208. Lutgens E, de Muinck ED, Kitslaar PJ, Tordoir JH, Wellens HJ, Daemen MJ (1999) Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques. Cardiovasc Res 41:473–479. https://doi.org/10.1016/s0008-6363(98)00311-3

    Article  PubMed  CAS  Google Scholar 

  209. Bennett MR, Evan GI, Schwartz SM (1995) Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 95:2266–2274. https://doi.org/10.1172/JCI117917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Sun Y, Zhang S, Yue M, Li Y, Bi J, Liu H (2019) Angiotensin II inhibits apoptosis of mouse aortic smooth muscle cells through regulating the circNRG-1/miR-193b-5p/NRG-1 axis. Cell Death Dis 10:362. https://doi.org/10.1038/s41419-019-1590-5

    Article  PubMed  PubMed Central  Google Scholar 

  211. Zhang M, Xu Y, Qiu Z, Jiang L (2019) Sulforaphane attenuates angiotensin II-induced vascular smooth muscle cell migration via suppression of NOX4/ROS/Nrf2 signaling. Int J Biol Sci 15:148–157. https://doi.org/10.7150/ijbs.28874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Ding P, Ding Y, Tian Y, Lei X (2020) Circular RNA circ_0010283 regulates the viability and migration of oxidized lowdensity lipoproteininduced vascular smooth muscle cells via an miR3703p/HMGB1 axis in atherosclerosis. Int J Mol Med 46:1399–1408. https://doi.org/10.3892/ijmm.2020.4703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Wang R, Wu W, Li W, Huang S, Li Z, Liu R, Shan Z, Zhang C, Li W, Wang S (2018) Activation of NLRP3 inflammasome promotes foam cell formation in vascular smooth muscle cells and atherogenesis via HMGB1. J Am Heart Assoc 7:e008596. https://doi.org/10.1161/JAHA.118.008596

    Article  PubMed  PubMed Central  Google Scholar 

  214. Yang L, Yang F, Zhao H, Wang M, Zhang Y (2019) Circular RNA circCHFR facilitates the proliferation and migration of vascular smooth muscle via miR-370/FOXO1/Cyclin D1 pathway. Mol Ther Nucleic Acids 16:434–441. https://doi.org/10.1016/j.omtn.2019.02.028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Zhuang JB, Li T, Hu XM, Ning M, Gao WQ, Lang YH, Zheng WF, Wei J (2020) Circ_CHFR expedites cell growth, migration and inflammation in ox-LDL-treated human vascular smooth muscle cells via the miR-214-3p/Wnt3/beta-catenin pathway. Eur Rev Med Pharmacol Sci 24:3282–3292. https://doi.org/10.26355/eurrev_202003_20696

    Article  PubMed  Google Scholar 

  216. Samarzija I, Sini P, Schlange T, Macdonald G, Hynes NE (2009) Wnt3a regulates proliferation and migration of HUVEC via canonical and non-canonical Wnt signaling pathways. Biochem Biophys Res Commun 386:449–454. https://doi.org/10.1016/j.bbrc.2009.06.033

    Article  PubMed  CAS  Google Scholar 

  217. Kong P, Yu Y, Wang L, Dou YQ, Zhang XH, Cui Y, Wang HY, Yong YT, Liu YB, Hu HJ, Cui W, Sun SG, Li BH, Zhang F, Han M (2019) circ-Sirt1 controls NF-kappaB activation via sequence-specific interaction and enhancement of SIRT1 expression by binding to miR-132/212 in vascular smooth muscle cells. Nucleic Acids Res 47:3580–3593. https://doi.org/10.1093/nar/gkz141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Li L, Zhang HN, Chen HZ, Gao P, Zhu LH, Li HL, Lv X, Zhang QJ, Zhang R, Wang Z, She ZG, Zhang R, Wei YS, Du GH, Liu DP, Liang CC (2011) SIRT1 acts as a modulator of neointima formation following vascular injury in mice. Circ Res 108:1180–1189. https://doi.org/10.1161/CIRCRESAHA.110.237875

    Article  PubMed  CAS  Google Scholar 

  219. Kane AE, Sinclair DA (2018) Sirtuins and NAD(+) in the development and treatment of metabolic and cardiovascular diseases. Circ Res 123:868–885. https://doi.org/10.1161/CIRCRESAHA.118.312498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Majesky MW (1994) Neointima formation after acute vascular injury. Role of counteradhesive extracellular matrix proteins. Tex Heart Inst J 21:78–85

    PubMed  PubMed Central  CAS  Google Scholar 

  221. Wang Y, Wang Y, Li Y, Wang B, Miao Z, Liu X, Ma Y (2019) Decreased expression of circ_0020397 in intracranial aneurysms may be contributing to decreased vascular smooth muscle cell proliferation via increased expression of miR-138 and subsequent decreased KDR expression. Cell Adh Migr 13:220–228. https://doi.org/10.1080/19336918.2019.1619432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Kowanetz M, Ferrara N (2006) Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res 12:5018–5022. https://doi.org/10.1158/1078-0432.CCR-06-1520

    Article  PubMed  CAS  Google Scholar 

  223. Chanakira A, Dutta R, Charboneau R, Barke R, Santilli SM, Roy S (2012) Hypoxia differentially regulates arterial and venous smooth muscle cell proliferation via PDGFR-beta and VEGFR-2 expression. Am J Physiol Heart Circ Physiol 302:H1173–H1184. https://doi.org/10.1152/ajpheart.00411.2011

    Article  PubMed  CAS  Google Scholar 

  224. Yao JS, Zhai W, Fan Y, Lawton MT, Barbaro NM, Young WL, Yang GY (2007) Interleukin-6 upregulates expression of KDR and stimulates proliferation of human cerebrovascular smooth muscle cells. J Cereb Blood Flow Metab 27:510–520. https://doi.org/10.1038/sj.jcbfm.9600365

    Article  PubMed  CAS  Google Scholar 

  225. Shen L, Hu Y, Lou J, Yin S, Wang W, Wang Y, Xia Y, Wu W (2019) CircRNA0044073 is upregulated in atherosclerosis and increases the proliferation and invasion of cells by targeting miR107. Mol Med Rep 19:3923–3932. https://doi.org/10.3892/mmr.2019.10011

    Article  PubMed  CAS  Google Scholar 

  226. Wang R, Zhang Y, Xu L, Lin Y, Yang X, Bai L, Chen Y, Zhao S, Fan J, Cheng X, Liu E (2016) Protein inhibitor of activated STAT3 suppresses oxidized LDL-induced cell responses during atherosclerosis in apolipoprotein E-deficient mice. Sci Rep 6:36790. https://doi.org/10.1038/srep36790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Foley NH, O’Neill LA (2012) miR-107: a toll-like receptor-regulated miRNA dysregulated in obesity and type II diabetes. J Leukoc Biol 92:521–527. https://doi.org/10.1189/jlb.0312160

    Article  PubMed  CAS  Google Scholar 

  228. Khor ES, Wong PF (2018) Endothelial replicative senescence delayed by the inhibition of MTORC1 signaling involves MicroRNA-107. Int J Biochem Cell Biol 101:64–73. https://doi.org/10.1016/j.biocel.2018.05.016

    Article  PubMed  CAS  Google Scholar 

  229. Wei S, Zheng Y, Jiang Y, Li X, Geng J, Shen Y, Li Q, Wang X, Zhao C, Chen Y, Qian Z, Zhou J, Li W (2019) The circRNA circPTPRA suppresses epithelial-mesenchymal transitioning and metastasis of NSCLC cells by sponging miR-96-5p. EBioMedicine 44:182–193. https://doi.org/10.1016/j.ebiom.2019.05.032

    Article  PubMed  PubMed Central  Google Scholar 

  230. Zhang LL (2020) CircRNA-PTPRA promoted the progression of atherosclerosis through sponging with miR-636 and upregulating the transcription factor SP1. Eur Rev Med Pharmacol Sci 24:12437–12449. https://doi.org/10.26355/eurrev_202012_24039

    Article  PubMed  Google Scholar 

  231. Soderling SH, Beavo JA (2000) Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr Opin Cell Biol 12:174–179. https://doi.org/10.1016/s0955-0674(99)00073-3

    Article  PubMed  CAS  Google Scholar 

  232. Wang L, Zheng Z, Feng X, Zang X, Ding W, Wu F, Zhao Q (2019) circRNA/lncRNA–miRNA–mRNA network in oxidized, low-density, lipoprotein-induced foam cells. DNA Cell Biol 38:1499–1511. https://doi.org/10.1089/dna.2019.4865

    Article  PubMed  CAS  Google Scholar 

  233. Xu F, Shen L, Chen H, Wang R, Zang T, Qian J, Ge J (2021) circDENND1B participates in the antiatherosclerotic effect of IL-1β monoclonal antibody in mouse by promoting cholesterol efflux via miR-17-5p/Abca1 axis. Front Cell Dev Biol 9:652032. https://doi.org/10.3389/fcell.2021.652032

    Article  PubMed  PubMed Central  Google Scholar 

  234. Chen J, Xu L, Hu Q, Yang S, Zhang B, Jiang H (2015) MiR-17-5p as circulating biomarkers for the severity of coronary atherosclerosis in coronary artery disease. Int J Cardiol 197:123–124. https://doi.org/10.1016/j.ijcard.2015.06.037

    Article  PubMed  Google Scholar 

  235. Tan L, Liu L, Jiang Z, Hao X (2019) Inhibition of microRNA-17-5p reduces the inflammation and lipid accumulation, and up-regulates ATP-binding cassette transporterA1 in atherosclerosis. J Pharmacol Sci 139:280–288. https://doi.org/10.1016/j.jphs.2018.11.012

    Article  PubMed  CAS  Google Scholar 

  236. Wang X, Bai M (2021) CircTM7SF3 contributes to oxidized low-density lipoprotein-induced apoptosis, inflammation and oxidative stress through targeting miR-206/ASPH axis in atherosclerosis cell model in vitro. BMC Cardiovasc Disord 21:51. https://doi.org/10.1186/s12872-020-01800-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Xing T, Du L, Zhuang X, Zhang L, Hao J, Wang J (2017) Upregulation of microRNA-206 induces apoptosis of vascular smooth muscle cells and decreases risk of atherosclerosis through modulating FOXP1. Exp Ther Med 14:4097–4103. https://doi.org/10.3892/etm.2017.5071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, Pico AR, Bader GD, Ideker T (2012) A travel guide to Cytoscape plugins. Nat Methods 9:1069–1076. https://doi.org/10.1038/nmeth.2212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Wen G, Zhou T, Gu W (2021) The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell 12:911–946. https://doi.org/10.1007/s13238-020-00799-3

    Article  PubMed  CAS  Google Scholar 

  240. Ren S, Lin P, Wang J, Yu H, Lv T, Sun L, Du G (2020) Circular RNAs: promising molecular biomarkers of human aging-related diseases via functioning as an miRNA sponge. Mol Ther Methods Clin Dev 18:215–229. https://doi.org/10.1016/j.omtm.2020.05.027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Jost I, Shalamova LA, Gerresheim GK, Niepmann M, Bindereif A, Rossbach O (2018) Functional sequestration of microRNA-122 from Hepatitis C Virus by circular RNA sponges. RNA Biol 15:1032–1039. https://doi.org/10.1080/15476286.2018.1435248

    Article  PubMed  PubMed Central  Google Scholar 

  242. Liu X, Abraham JM, Cheng Y, Wang Z, Wang Z, Zhang G, Ashktorab H, Smoot DT, Cole RN, Boronina TN, DeVine LR, Talbot CC Jr, Liu Z, Meltzer SJ (2018) Synthetic circular RNA functions as a miR-21 sponge to suppress gastric carcinoma cell proliferation. Mol Ther Nucleic Acids 13:312–321. https://doi.org/10.1016/j.omtn.2018.09.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, Hur S, Chang HY (2019) N6-methyladenosine modification controls circular RNA immunity. Mol Cell 76:96-109.e9. https://doi.org/10.1016/j.molcel.2019.07.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Wesselhoeft RA, Kowalski PS, Parker-Hale FC, Huang Y, Bisaria N, Anderson DG (2019) RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol Cell 74:508-520.e4. https://doi.org/10.1016/j.molcel.2019.02.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Gao Y, Peng J, Ren Z, He NY, Li Q, Zhao XS, Wang MM, Wen HY, Tang ZH, Jiang ZS, Wang GX, Liu LS (2016) Functional regulatory roles of microRNAs in atherosclerosis. Clin Chim Acta 460:164–171. https://doi.org/10.1016/j.cca.2016.06.044

    Article  PubMed  CAS  Google Scholar 

  246. Loyer X, Mallat Z, Boulanger CM, Tedgui A (2015) MicroRNAs as therapeutic targets in atherosclerosis. Expert Opin Ther Targets 19:489–496. https://doi.org/10.1517/14728222.2014.989835

    Article  PubMed  CAS  Google Scholar 

  247. Zhang Y, Zhang L, Wang Y, Ding H, Xue S, Qi H, Li P (2019) MicroRNAs or long noncoding RNAs in diagnosis and prognosis of coronary artery disease. Aging Dis 10:353–366. https://doi.org/10.14336/AD.2018.0617

    Article  PubMed  PubMed Central  Google Scholar 

  248. Economou EK, Oikonomou E, Siasos G, Papageorgiou N, Tsalamandris S, Mourouzis K, Papaioanou S, Tousoulis D (2015) The role of microRNAs in coronary artery disease: from pathophysiology to diagnosis and treatment. Atherosclerosis 241:624–633. https://doi.org/10.1016/j.atherosclerosis.2015.06.037

    Article  PubMed  CAS  Google Scholar 

  249. Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, Megens RT, Heyll K, Noels H, Hristov M, Wang S, Kiessling F, Olson EN, Weber C (2014) MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 20:368–376. https://doi.org/10.1038/nm.3487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L, Kundu RK, Quertermous T, Tsao PS, Spin JM (2011) MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol 226:1035–1043. https://doi.org/10.1002/jcp.22422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Sun Y, Chen D, Cao L, Zhang R, Zhou J, Chen H, Li Y, Li M, Cao J, Wang Z (2013) MiR-490-3p modulates the proliferation of vascular smooth muscle cells induced by ox-LDL through targeting PAPP-A. Cardiovasc Res 100:272–279. https://doi.org/10.1093/cvr/cvt172

    Article  PubMed  CAS  Google Scholar 

  252. Dodbele S, Mutlu N, Wilusz JE (2021) Best practices to ensure robust investigation of circular RNAs: pitfalls and tips. EMBO Rep 22:e52072. https://doi.org/10.15252/embr.202052072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M (2014) Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell 54:766–776. https://doi.org/10.1016/j.molcel.2014.03.045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Jens M, Rajewsky N (2015) Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat Rev Genet 16:113–126. https://doi.org/10.1038/nrg3853

    Article  PubMed  CAS  Google Scholar 

  255. Chen L, Luo W, Zhang W, Chu H, Wang J, Dai X, Cheng Y, Zhu T, Chao J (2020) circDLPAG4/HECTD1 mediates ischaemia/reperfusion injury in endothelial cells via ER stress. RNA Biol 17:240–253. https://doi.org/10.1080/15476286.2019.1676114

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was funded by the Ministry of Higher Education, Malaysia, Fundamental Research Grant Scheme No. FRGS/2/2013/SKK01/UM/02/3.

Author information

Authors and Affiliations

Authors

Contributions

WPF and LYY conceived and designed the review. All authors were involved in literature search, analysis, and drafting the manuscript. WPF and LYY critically reviewed and revised the manuscript.

Corresponding author

Correspondence to Pooi-Fong Wong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, KL., Tan, KE., Lim, YY. et al. CircRNA–miRNA interactions in atherogenesis. Mol Cell Biochem 477, 2703–2733 (2022). https://doi.org/10.1007/s11010-022-04455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04455-8

Keywords

Navigation