Skip to main content

Advertisement

Log in

Tannic acid attenuate AKT phosphorylation to inhibit UMUC3 bladder cancer cell proliferation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Urothelial bladder cancer is rapidly spreading across Western countries, and therapy has shown little-to-moderate effects on bladder cancer. Thus, focusing on curbing cancer incidence has become crucial. The aim of the present study was to investigate the anticancer effects of Tannic acid (TA) in human bladder cancer. UMUC3 bladder cancer cells were treated with different concentrations of TA (0–100 µM) and tested for cell viability, colony formation, and apoptosis. The involvement of the phosphoinositide-3 kinase (PI3K)/Akt pathway in the action of TA was examined. TA treatment significantly inhibited the viability and increased percentage of apoptotic cells, thereby decreasing antiapoptotic proteins (BCL2, MCL-1, and BCL-XL) expression, resulting in the Caspase-3 activation. TA treatment decreased stem cell markers expression such as SOX2, OCT4, and NANOG. Additionally, TA treatment significantly reduced the phosphorylation levels of Akt in bladder cancer cells. Our study demonstrates the growth inhibitory effects of TA in bladder cancer cells, and highlights its potential as an anticancer agent for bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Dobruch J, Daneshmand S, Fisch M, Lotan Y, Noon AP, Resnick MJ, Shariat SF, Zlotta AR, Boorjian SA (2016) Gender and bladder cancer: a collaborative review of etiology, biology, and outcomes. Eur Urol 69:300–310. https://doi.org/10.1016/j.eururo.2015.08.037

    Article  PubMed  Google Scholar 

  2. May M, Bastian PJ, Brookman-May S, Fritsche HM, Tilki D, Otto W, Bolenz C, Gilfrich C, Trojan L, Herrmann E, Moritz R, Tiemann A, Muller SC, Ellinger J, Buchner A, Stief CG, Wieland WF, Hofner T, Hohenfellner M, Haferkamp A, Roigas J, Zacharias M, Nuhn P, Burger M (2013) Gender-specific differences in cancer-specific survival after radical cystectomy for patients with urothelial carcinoma of the urinary bladder in pathologic tumor stage T4a. Urol Oncol 31:1141–1147. https://doi.org/10.1016/j.urolonc.2011.09.011

    Article  PubMed  Google Scholar 

  3. Richters A, Aben KKH, Kiemeney L (2020) The global burden of urinary bladder cancer: an update. World J Urol 38:1895–1904. https://doi.org/10.1007/s00345-019-02984-4

    Article  PubMed  Google Scholar 

  4. Cumberbatch MG, Rota M, Catto JW, La Vecchia C (2016) The role of tobacco smoke in bladder and kidney carcinogenesis: a comparison of exposures and meta-analysis of incidence and mortality risks. Eur Urol 70:458–466. https://doi.org/10.1016/j.eururo.2015.06.042

    Article  PubMed  CAS  Google Scholar 

  5. Burger M, Catto JW, Dalbagni G, Grossman HB, Herr H, Karakiewicz P, Kassouf W, Kiemeney LA, La Vecchia C, Shariat S, Lotan Y (2013) Epidemiology and risk factors of urothelial bladder cancer. Eur Urol 63:234–241. https://doi.org/10.1016/j.eururo.2012.07.033

    Article  PubMed  Google Scholar 

  6. Kim DK, Lee JY, Jung JH, Hah YS, Cho KS (2019) Role of adjuvant cisplatin-based chemotherapy following radical cystectomy in locally advanced muscle-invasive bladder cancer: systematic review and meta-analysis of randomized trials. Investig Clin Urol 60:64–74. https://doi.org/10.4111/icu.2019.60.2.64

    Article  PubMed  PubMed Central  Google Scholar 

  7. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780. https://doi.org/10.1038/nrc1189

    Article  PubMed  CAS  Google Scholar 

  8. Kapinova A, Kubatka P, Golubnitschaja O, Kello M, Zubor P, Solar P, Pec M (2018) Dietary phytochemicals in breast cancer research: anticancer effects and potential utility for effective chemoprevention. Environ Health Prev Med 23:36. https://doi.org/10.1186/s12199-018-0724-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kotecha R, Takami A, Espinoza JL (2016) Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget 7:52517–52529. https://doi.org/10.18632/oncotarget.9593

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liskova A, Stefanicka P, Samec M, Smejkal K, Zubor P, Bielik T, Biskupska-Bodova K, Kwon TK, Danko J, Busselberg D, Adamek M, Rodrigo L, Kruzliak P, Shleikin A, Kubatka P (2020) Dietary phytochemicals as the potential protectors against carcinogenesis and their role in cancer chemoprevention. Clin Exp Med 20:173–190. https://doi.org/10.1007/s10238-020-00611-w

    Article  PubMed  CAS  Google Scholar 

  11. Nagesh PKB, Hatami E, Chowdhury P, Kashyap VK, Khan S, Hafeez BB, Chauhan SC, Jaggi M, Yallapu MM (2018) Tannic acid induces endoplasmic reticulum stress-mediated apoptosis in prostate cancer. Cancers (Basel). https://doi.org/10.3390/cancers10030068

    Article  PubMed Central  Google Scholar 

  12. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38:421–464. https://doi.org/10.1080/10408699891274273

    Article  PubMed  CAS  Google Scholar 

  13. Ferreira D, Gross GG, Hagerman AE, Kolodziej H, Yoshida T (2008) Tannins and related polyphenols: perspectives on their chemistry, biology, ecological effects, and human health protection. Phytochemistry 69:3006–3008. https://doi.org/10.1016/j.phytochem.2008.10.018

    Article  PubMed  CAS  Google Scholar 

  14. Nam S, Smith DM, Dou QP (2001) Tannic acid potently inhibits tumor cell proteasome activity, increases p27 and bax expression, and induces G1 arrest and apoptosis. Cancer Epidemiol Biomarkers Prev 10:1083–1088

    PubMed  CAS  Google Scholar 

  15. Karakurt S, Adali O (2016) Tannic acid inhibits proliferation, migration, invasion of prostate cancer and modulates drug metabolizing and antioxidant enzymes. Anticancer Agents Med Chem 16:781–789. https://doi.org/10.2174/1871520616666151111115809

    Article  PubMed  CAS  Google Scholar 

  16. Tikoo K, Sane MS, Gupta C (2011) Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: potential role of tannins in cancer chemotherapy. Toxicol Appl Pharmacol 251:191–200. https://doi.org/10.1016/j.taap.2010.12.012

    Article  PubMed  CAS  Google Scholar 

  17. Sun Y, Zhang T, Wang B, Li H, Li P (2012) Tannic acid, an inhibitor of poly(ADP-ribose) glycohydrolase, sensitizes ovarian carcinoma cells to cisplatin. Anticancer Drugs 23:979–990. https://doi.org/10.1097/CAD.0b013e328356359f

    Article  PubMed  CAS  Google Scholar 

  18. Darvin P, Joung YH, Kang DY, Sp N, Byun HJ, Hwang TS, Sasidharakurup H, Lee CH, Cho KH, Park KD, Lee HK, Yang YM (2017) Tannic acid inhibits EGFR/STAT1/3 and enhances p38/STAT1 signalling axis in breast cancer cells. J Cell Mol Med 21:720–734. https://doi.org/10.1111/jcmm.13015

    Article  PubMed  CAS  Google Scholar 

  19. Lee H-P, Wang S-W, Wu Y-C, Tsai C-H, Tsai F-J, Chung J-G, Huang C-Y, Yang J-S, Hsu Y-M, Yin M-C, Li T-M, Tang C-H (2019) Glucocerebroside reduces endothelial progenitor cell-induced angiogenesis. Food Agric Immunol 30:1033–1045. https://doi.org/10.1080/09540105.2019.1660623

    Article  CAS  Google Scholar 

  20. Lee H-P, Wang S-W, Wu Y-C, Lin L-W, Tsai F-J, Yang J-S, Li T-M, Tang C-H (2020) Soya-cerebroside inhibits VEGF-facilitated angiogenesis in endothelial progenitor cells. Food Agric Immunol 31:193–204. https://doi.org/10.1080/09540105.2020.1713055

    Article  CAS  Google Scholar 

  21. Lee H-P, Wu Y-C, Chen B-C, Liu S-C, Li T-M, Huang W-C, Hsu C-J, Tang C-H (2020) Soya-cerebroside reduces interleukin production in human rheumatoid arthritis synovial fibroblasts by inhibiting the ERK, NF-κB and AP-1 signalling pathways. Food Agric Immunol 31:740–750. https://doi.org/10.1080/09540105.2020.1766426

    Article  CAS  Google Scholar 

  22. Chou SL, Ramesh S, Kuo CH, Ali A, Ho TJ, Chang KP, Hsieh DJ, Kumar VB, Weng YS, Kuo WW, Huang CY (2022) Tanshinone IIA inhibits Leu27IGF-II-induced insulin-like growth factor receptor II signaling and myocardial apoptosis via estrogen receptor-mediated Akt activation. Environ Toxicol 37:142–150. https://doi.org/10.1002/tox.23385

    Article  PubMed  CAS  Google Scholar 

  23. Sp N, Kang DY, Kim DH, Yoo JS, Jo ES, Rugamba A, Jang KJ, Yang YM (2020) Tannic acid inhibits Non-small cell lung cancer (NSCLC) stemness by inducing G(0)/G(1) cell cycle arrest and intrinsic apoptosis. Anticancer Res 40:3209–3220. https://doi.org/10.21873/anticanres.14302

    Article  PubMed  CAS  Google Scholar 

  24. Sp N, Kang DY, Jo ES, Rugamba A, Kim WS, Park Y-M, Hwang D-Y, Yoo J-S, Liu Q, Jang K-J, Yang YM (2020) Tannic acid promotes TRAIL-induced extrinsic apoptosis by regulating mitochondrial ROS in human embryonic carcinoma cells. Cells. https://doi.org/10.3390/cells9020282

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jordan LG, Booth BW (2018) HER2(+) breast cancer cells undergo apoptosis upon exposure to tannic acid released from remodeled cross-linked collagen type I. J Biomed Mater Res A 106:26–32. https://doi.org/10.1002/jbm.a.36205

    Article  PubMed  CAS  Google Scholar 

  26. Cosan D, Soyocak A, Basaran A, Degirmenci I, Gunes HV (2009) The effects of resveratrol and tannic acid on apoptosis in colon adenocarcinoma cell line. Saudi Med J 30:191–195

    PubMed  Google Scholar 

  27. Geng N, Zheng X, Wu M, Yang L, Li X, Chen J (2019) Tannic acid synergistically enhances the anticancer efficacy of cisplatin on liver cancer cells through mitochondria-mediated apoptosis. Oncol Rep 42:2108–2116. https://doi.org/10.3892/or.2019.7281

    Article  PubMed  CAS  Google Scholar 

  28. Darvin P, Baeg SJ, Joung YH, Sp N, Kang DY, Byun HJ, Park JU, Yang YM (2015) Tannic acid inhibits the Jak2/STAT3 pathway and induces G1/S arrest and mitochondrial apoptosis in YD-38 gingival cancer cells. Int J Oncol 47:1111–1120. https://doi.org/10.3892/ijo.2015.3098

    Article  PubMed  CAS  Google Scholar 

  29. Moretti L, Li B, Kim KW, Chen H, Lu B (2010) AT-101, a pan-Bcl-2 inhibitor, leads to radiosensitization of non-small cell lung cancer. J Thorac Oncol 5:680–687. https://doi.org/10.1097/JTO.0b013e3181d6e08e

    Article  PubMed  Google Scholar 

  30. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274. https://doi.org/10.1016/j.cell.2007.06.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Tanel A, Averill‐Bates DA (2007) P38 and ERK mitogen‐activated protein kinases mediate acrolein‐induced apoptosis in Chinese hamster ovary cells. Cell Signal 19(5):968–977. https://doi.org/10.1016/j.cellsig.2006.10.014

Download references

Funding

This work was supported by China Medical University and Asia University, Taiwan (CMU107-ASIA-01).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—M-CC, C-YH. Methodology—SAS. Validation—C-YH, VBK. Formal analysis—M-CC, C-HH. Investigation—C-YH, M-CC. Data curation—CHD, R-JC. Writing—original draft preparation—VBK. Writing—review and editing—T-FW, VPV, C–CL. Visualization—M-CC, C-YH. Supervision—C-YH. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Chih-Yang Huang.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, MC., Annseles Rajula, S., Bharath Kumar, V. et al. Tannic acid attenuate AKT phosphorylation to inhibit UMUC3 bladder cancer cell proliferation. Mol Cell Biochem 477, 2863–2869 (2022). https://doi.org/10.1007/s11010-022-04454-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04454-9

Keywords

Navigation