Skip to main content
Log in

Effect of hyperhomocysteinemia on rat cardiac sarcoplasmic reticulum

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Increased concentration of plasma homocysteine (Hcy) is an independent risk factor of cardiovascular disease, yet the mechanism by which hyperhomocysteinemia (HHcy) causes cardiac dysfunction is largely unknown. The aim of present study was to investigate the contribution of sarcoplasmic reticulum to impaired cardiac contractile function in HHCy. HHcy-induced by subcutaneous injection of Hcy (0.45 μmol/g of body weight) twice a day for a period of 2 weeks resulted in significant decrease in developed left ventricular pressure and maximum rate of ventricular relaxation. Our results show that abundances of SR Ca2+-handling proteins, Ca2+-ATPase (SERCA2), calsequestrin and histidine-rich calcium-binding protein are significantly reduced while the content of phospholamban is unchanged. Moreover, we found that increased PLN:SERCA2 ratio results in the inhibition of SERCA2 activity at low free Ca2+ concentrations. We further discovered that HHcy is not associated with increased oxidative stress in SR. Taken together, these findings suggest that disturbances in SR Ca2+ handling, caused by altered protein contents but not oxidative damage, may contribute to impaired cardiac contractility in HHcy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Schaffer A, Verdoia M, Cassetti E, Marino P, Suryapranata H, De Luca G (2014) Relationship between homocysteine and coronary artery disease. Results from a large prospective cohort study. Thromb Res 134:288–293

    Article  CAS  Google Scholar 

  2. Moshal KS, Kumar M, Tyagi N, Mishra PK, Metreveli N, Rodriguez WE, Tyagi SC (2009) Restoration of contractility in hyperhomocysteinemia by cardiac-specific deletion of NMDA-R1. Am J Physiol Heart Circ Physiol 296:H887–H892. https://doi.org/10.1152/ajpheart.00750.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vacek TP, Vacek JC, Tyagi N, Tyagi SC (2012) Autophagy and heart failure: a possible role for homocysteine. Cell Biochem Biophys 62:1–11

    Article  CAS  Google Scholar 

  4. Li L, Hu B-C, Gong S-J, Yan J (2011) Homocysteine-induced caspase-3 activation by endoplasmic reticulum stress in endothelial progenitor cells from patients with coronary heart disease and healthy donors. Biosci Biotechnol Biochem 75:1300–1305

    Article  CAS  Google Scholar 

  5. Görlach A, Bertram K, Hudecova S, Krizanova O (2015) Calcium and ROS: a mutual interplay. Redox Biol 6:260–271

    Article  Google Scholar 

  6. Chakraborti S, Das S, Kar P, Ghosh B, Samanta K, Kolley S, Ghosh S, Roy S, Chakraborti T (2007) Calcium signaling phenomena in heart diseases: a perspective. Mol Cell Biochem 298:1–40. https://doi.org/10.1007/s11010-006-9355-8

    Article  CAS  PubMed  Google Scholar 

  7. Eisner DA, Caldwell JL, Kistamás K, Trafford AW (2017) Calcium and excitation-contraction coupling in the heart. Circ Res 121:181–195. https://doi.org/10.1161/CIRCRESAHA.117.310230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang Q, Michalak M (2020) Calsequestrin. Structure, function, and evolution. Cell Calcium 90:102242. https://doi.org/10.1016/j.ceca.2020.102242

    Article  CAS  PubMed  Google Scholar 

  9. Arvanitis DA, Vafiadaki E, Sanoudou D, Kranias EG (2011) Histidine-rich calcium binding protein: the new regulator of sarcoplasmic reticulum calcium cycling. J Mol Cell Cardiol 50:43–49

    Article  CAS  Google Scholar 

  10. Denniss AL, Dashwood AM, Molenaar P, Beard NA (2020) Sarcoplasmic reticulum calcium mishandling: central tenet in heart failure? Biophys Rev 12:865–878. https://doi.org/10.1007/s12551-020-00736-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moshal KS, Tipparaju SM, Vacek TP, Kumar M, Singh M, Frank IE, Patibandla PK, Tyagi N, Rai J, Metreveli N, Rodriguez WE, Tseng MT, Tyagi SC (2008) Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol 295:H890–H897. https://doi.org/10.1152/ajpheart.00099.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cai B, Gong D, Chen N, Li J, Wang G, Lu Y, Yang B (2011) The negative inotropic effects of homocysteine were prevented by matrine via the regulating intracellular calcium level. Int J Cardiol 150:113–115. https://doi.org/10.1016/j.ijcard.2011.04.031

    Article  PubMed  Google Scholar 

  13. Zivkovic V, Jakovljevic V, Djordjevic D, Vuletic M, Barudzic N, Djuric D (2012) The effects of homocysteine-related compounds on cardiac contractility, coronary flow, and oxidative stress markers in isolated rat heart. Mol Cell Biochem 370:59–67. https://doi.org/10.1007/s11010-012-1398-4

    Article  CAS  PubMed  Google Scholar 

  14. Demerchi SA, King N, McFarlane JR, Moens PDJ (2021) Effect of methionine feeding on oxidative stress, intracellular calcium and contractility in cardiomyocytes isolated from male and female rats. Mol Cell Biochem 476:2039–2045. https://doi.org/10.1007/s11010-020-04011-2

    Article  CAS  PubMed  Google Scholar 

  15. Almashhadany A, Shackebaei D, Van der Touw T, Jones GL, Suleiman MS, King N (2015) Homocysteine exposure impairs myocardial resistance to ischaemia reperfusion and oxidative stress. Cell Physiol Biochem 37:2265–2274. https://doi.org/10.1159/000438582

    Article  CAS  PubMed  Google Scholar 

  16. Timkova V, Tatarkova Z, Lehotsky J, Racay P, Dobrota D, Kaplan P (2016) Effects of mild hyperhomocysteinemia on electron transport chain complexes, oxidative stress, and protein expression in rat cardiac mitochondria. Mol Cell Biochem 411:261–270

    Article  CAS  Google Scholar 

  17. Tatarkova Z, Kovalska M, Sivonova MK, Racay P, Lehotsky J, Kaplan P (2019) Tyrosine nitration of mitochondrial proteins during myocardial ischemia and reperfusion. J Physiol Biochem 75:217–227. https://doi.org/10.1007/s13105-019-00683-7

    Article  CAS  PubMed  Google Scholar 

  18. Kaplan P, Babusikova E, Lehotsky J, Dobrota D (2003) Free radical-induced protein modification and inhibition of Ca2+-ATPase of cardiac sarcoplasmic reticulum. Mol Cell Biochem 248:41–47

    Article  CAS  Google Scholar 

  19. Chang L, Xu J, Yu F, Zhao J, Tang X, Tang C (2004) Taurine protected myocardial mitochondria injury induced by hyperhomocysteinemia in rats. Amino Acids 27:37–48. https://doi.org/10.1007/s00726-004-0096-2

    Article  CAS  PubMed  Google Scholar 

  20. Chang L, Geng B, Yu F, Zhao J, Jiang H, Du J, Tang C (2008) Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids 34:573–585. https://doi.org/10.1007/s00726-007-0011-8

    Article  CAS  PubMed  Google Scholar 

  21. Fan CD, Sun JY, Fu XT, Hou YJ, Li Y, Yang MF, Fu XY, Sun BL (2017) Astaxanthin attenuates homocysteine-induced cardiotoxicity in vitro and in vivo by inhibiting mitochondrial dysfunction and oxidative damage. Front Physiol 8:1041. https://doi.org/10.3389/fphys.2017.01041

    Article  PubMed  PubMed Central  Google Scholar 

  22. Longoni A, Kolling J, Siebert C, Dos Santos JP, da Silva JS, Pettenuzzo LF, Meira-Martins LA, Gonçalves CA, de Assis AM, Wyse AT (2017) 1,25-Dihydroxyvitamin D3 prevents deleterious effects of homocysteine on mitochondrial function and redox status in heart slices. Nutr Res 38:52–63. https://doi.org/10.1016/j.nutres.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  23. Lopez-Crisosto C, Pennanen C, Vasquez-Trincado C, Morales PE, Bravo-Sagua R, Quest AFG, Chiong M, Lavandero S (2017) Sarcoplasmic reticulum–mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol 14:342–360. https://doi.org/10.1038/nrcardio.2017.23

    Article  CAS  PubMed  Google Scholar 

  24. Vacek TP, Vacek JC, Tyagi SC (2012) Mitochondrial mitophagic mechanisms of myocardial matrix metabolism and remodelling. Arch Physiol Biochem 118:31–42. https://doi.org/10.3109/13813455.2011.635660

    Article  CAS  PubMed  Google Scholar 

  25. MacLennan D, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577. https://doi.org/10.1038/nrm1151

    Article  CAS  PubMed  Google Scholar 

  26. Vasanji Z, Dhalla NS, Netticadan T (2004) Increased inhibition of SERCA2 by phospholamban in the type I diabetic heart. Mol Cell Biochem 261:245–249

    Article  CAS  Google Scholar 

  27. Hamstra SI, Whitley KC, Baranowski RW, Kurgan N, Braun JL, Messner HN, Fajardo VA (2020) The role of phospholamban and GSK3 in regulating rodent cardiac SERCA function. Am J Physiol Cell Physiol 319:C694–C699. https://doi.org/10.1152/ajpcell.00318.2020

    Article  CAS  PubMed  Google Scholar 

  28. Cantilina T, Sagara Y, Inesi G, Jones LR (1993) Comparative studies of cardiac and skeletal sarcoplasmic reticulum ATPases. Effect of a phospholamban antibody on enzyme activation by Ca2+. J Biol Chem 268:17018–17025

    Article  CAS  Google Scholar 

  29. Bokník P, Unkel C, Kirchhefer U, Kleideiter U, Klein-Wiele O, Knapp J, Linck B, Lüss H, Müller FU, Schmitz W, Vahlensieck U, Zimmermann N, Jones LR, Neumann J (1999) Regional expression of phospholamban in the human heart. Cardiovasc Res 43:67–76. https://doi.org/10.1016/s0008-6363(99)00053-x

    Article  PubMed  Google Scholar 

  30. Uzelac JJ, Stanić M, Krstić D, Čolović M, Djurić D (2018) Effects of homocysteine and its related compounds on oxygen consumption of the rat heart tissue homogenate: the role of different gasotransmitters. Mol Cell Biochem 444:143–148. https://doi.org/10.1007/s11010-017-3238-z

    Article  CAS  PubMed  Google Scholar 

  31. Hänninen SL, Ronkainen JJ, Leskinen H, Tavi P (2010) Mitochondrial uncoupling downregulates calsequestrin expression and reduces SR Ca2+ stores in cardiomyocytes. Cardiovasc Res 88:75–82. https://doi.org/10.1093/cvr/cvq180

    Article  CAS  PubMed  Google Scholar 

  32. Fan G-C, Gregory KN, Zhao W, Park WJ, Kranias EG (2004) Regulation of myocardial function by histidine-rich, calcium-binding protein. Am J Physiol Heart Circ Physiol 287:H1705–H1711

    Article  CAS  Google Scholar 

  33. Dhalla NS, Temsah RM (2001) Sarcoplasmic reticulum and cardiac oxidative stress: an emerging target for heart disease. Emerg Therapeut Targ 5:205–217. https://doi.org/10.1517/14728222.5.2.205

    Article  CAS  Google Scholar 

  34. Levrand S, Pacher P, Pesse B, Rolli J, Feihl F, Waeber B, Liaudet L (2007) Homocysteine induces cell death in H9C2 cardiomyocytes through the generation of peroxynitrite. Biochem Biophys Res Commun 359:445–450. https://doi.org/10.1016/j.bbrc.2007.05.147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kolling J, Scherer EB, da Cunha AA, da Cunha MJ, Wyse AT (2011) Homocysteine induces oxidative-nitrative stress in heart of rats: prevention by folic acid. Cardiovasc Toxicol 11:67–73. https://doi.org/10.1007/s12012-010-9094-7

    Article  CAS  PubMed  Google Scholar 

  36. Derouiche F, Bôle-Feysot C, Naïmi D, Coëffier M (2014) Hyperhomocysteinemia-induced oxidative stress differentially alters proteasome composition and activities in heart and aorta. Biochem Biophys Res Commun 452:740–745. https://doi.org/10.1016/j.bbrc.2014.08.141

    Article  CAS  PubMed  Google Scholar 

  37. Suematsu N, Ojaimi C, Kinugawa S, Wang Z, Xu X, Koller A, Recchia FA, Hintze TH (2007) Hyperhomocysteinemia alters cardiac substrate metabolism by impairing nitric oxide bioavailability through oxidative stress. Circulation 115:255–262. https://doi.org/10.1161/CIRCULATIONAHA.106.652693

    Article  CAS  PubMed  Google Scholar 

  38. Kaplan P, Tatarkova Z, Sivonova MK, Racay P, Lehotsky J (2020) Homocysteine and mitochondria in cardiovascular and cerebrovascular systems. Int J Mol Sci 21:7698. https://doi.org/10.3390/ijms21207698

    Article  CAS  PubMed Central  Google Scholar 

  39. Gomez J, Sanchez-Roman I, Gomez A, Sanchez C, Suarez H, Lopez-Torres M, Barja G (2011) Methionine and homocysteine modulate the rate of ROS generation of isolated mitochondria in vitro. J Bioenerg Biomembr 43:377–386. https://doi.org/10.1007/s10863-011-9368-1

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by grant VEGA 1/0004/19.

Author information

Authors and Affiliations

Authors

Contributions

PK, ZT and JL: designed the study. ZT, MB, PR and MKS: performed the experiments and statistical analysis. DD: critically reviewed and edited the manuscript. All the authors approved the final version.

Corresponding author

Correspondence to Peter Kaplan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study has been approved by the Ethical Committee of the Jessenius Faculty of Medicine in Martin, Slovakia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatarkova, Z., Bencurova, M., Lehotsky, J. et al. Effect of hyperhomocysteinemia on rat cardiac sarcoplasmic reticulum. Mol Cell Biochem 477, 1621–1628 (2022). https://doi.org/10.1007/s11010-022-04399-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04399-z

Keywords

Navigation