Skip to main content
Log in

BCL2L1 is identified as a target of naringenin in regulating ovarian cancer progression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Naringenin is a natural bioactive flavonoid with a wide spectrum of biological activities, including anti-carcinogenic ability. Our study aimed to investigate the effect of naringenin on ovarian cancer (OC) progression. Naringenin was input into PharmMapper and SwissTargetPrediction databases to predict its targets, and OC-related targets were obtained using MalaCards and GEPIA databases, which were imported into online Venn tool to identify the common targets. B-cell lymphoma-2 like 1 (BCL2L1) expression in OC tissues and cells was detected using GEPIA and HPA databases, qRT-PCR and Western blot analysis. The prognostic and diagnostic values of BCL2L1 in OC were determined using Kaplan–Meier plotter tool and receiver operating characteristic (ROC) curve analysis, respectively. Cell proliferation was evaluated using CCK-8 and EdU incorporation assays. Cell apoptosis was determined using TUNEL and caspase-3 activity assays. Effect of naringenin on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway was evaluated by Western blot analysis. BCL2L1 was identified as the candidate target of naringenin against OC. BCL2L1 was upregulated in OC tissues and cells. Naringenin decreased BCL2L1 expression and inactivated the PI3K/Akt pathway in OC cells. Naringenin inhibited cell proliferation and increased the apoptotic rate in OC cells, while these effects were partially abolished by BCL2L1 overexpression and treatment with 740Y-P, a PI3K activator. In conclusion, naringenin exerted an anti-tumor effect on OC progression via inactivation of the PI3K/Akt/BCL2L1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. La Vecchia C (2017) Ovarian cancer: epidemiology and risk factors. Eur J Cancer Prev 26(1):55–62

    PubMed  Google Scholar 

  2. Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61(4):212–236

    PubMed  Google Scholar 

  3. Kossaï M, Leary A, Scoazec JY, Genestie C (2018) Ovarian cancer: a heterogeneous disease. Pathobiology 85(1–2):41–49

    PubMed  Google Scholar 

  4. Gstöttner M, Angerer A, Rosiek R, Bach CM (2012) Quantitative volumetry of cement leakage in viscosity-controlled vertebroplasty. J Spinal Disord Tech 25(5):E150-154

    PubMed  Google Scholar 

  5. Kim A, Ueda Y, Naka T, Enomoto T (2012) Therapeutic strategies in epithelial ovarian cancer. J Exp Clin Cancer Res 31(1):14

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zsiros E, Tanyi J, Balint K, Kandalaft LE (2014) Immunotherapy for ovarian cancer: recent advances and perspectives. Curr Opin Oncol 26(5):492–500

    CAS  PubMed  Google Scholar 

  7. Sudo T (2012) Molecular-targeted therapies for ovarian cancer: prospects for the future. Int J Clin Oncol 17(5):424–429

    CAS  PubMed  Google Scholar 

  8. Temkin SM, Terplan M (2015) Trends in relative survival for ovarian cancer from 1975–2011. Obstet Gynecol 126(4):898

    PubMed  Google Scholar 

  9. Safarzadeh E, Sandoghchian Shotorbani S, Baradaran B (2014) Herbal medicine as inducers of apoptosis in cancer treatment. Adv Pharm Bull 4(Suppl 1):421–427

    PubMed  PubMed Central  Google Scholar 

  10. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kawaii S, Tomono Y, Katase E, Ogawa K, Yano M (1999) Quantitation of flavonoid constituents in citrus fruits. J Agric Food Chem 47(9):3565–3571

    CAS  PubMed  Google Scholar 

  12. Meiyanto E, Hermawan A, Anindyajati A (2012) Natural products for cancer-targeted therapy: citrus flavonoids as potent chemopreventive agents. Asian Pac J Cancer Prev 13(2):427–436

    PubMed  Google Scholar 

  13. Wang J, Yang Z, Lin L, Zhao Z, Liu Z, Liu X (2012) Protective effect of naringenin against lead-induced oxidative stress in rats. Biol Trace Elem Res 146(3):354–359

    CAS  PubMed  Google Scholar 

  14. Bodet C, La VD, Epifano F, Grenier D (2008) Naringenin has anti-inflammatory properties in macrophage and ex vivo human whole-blood models. J Periodontal Res 43(4):400–407

    CAS  PubMed  Google Scholar 

  15. Lee CH, Jeong TS, Choi YK, Hyun BH, Oh GT, Kim EH et al (2001) Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem Biophys Res Commun 284(3):681–688

    CAS  PubMed  Google Scholar 

  16. Kanno S, Shouji A, Hirata R, Asou K, Ishikawa M (2004) Effects of naringin on cytosine arabinoside (Ara-C)-induced cytotoxicity and apoptosis in P388 cells. Life Sci 75(3):353–365

    CAS  PubMed  Google Scholar 

  17. Wang BD, Yang ZY, Wang Q, Cai TK, Crewdson P (2006) Synthesis, characterization, cytotoxic activities, and DNA-binding properties of the La(III) complex with naringenin Schiff-base. Bioorg Med Chem 14(6):1880–1888

    CAS  PubMed  Google Scholar 

  18. Wang X, Shen Y, Wang S, Li S, Zhang W, Liu X et al (2017) PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 45(W1):W356-w360

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V (2014) SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 42(Web Server issue):W32–W38

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rappaport N, Twik M, Plaschkes I, Nudel R, Iny Stein T, Levitt J et al (2017) MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res 45(D1):D877-d887

    CAS  PubMed  Google Scholar 

  21. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45(W1):W98-w102

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Thul PJ, Lindskog C (2018) The human protein atlas: a spatial map of the human proteome. Protein Sci 27(1):233–244

    CAS  PubMed  Google Scholar 

  23. Deng J, Wang L, Chen H, Hao J, Ni J, Chang L et al (2016) Targeting epithelial–mesenchymal transition and cancer stem cells for chemoresistant ovarian cancer. Oncotarget 7(34):55771–55788

    PubMed  PubMed Central  Google Scholar 

  24. Moyer VA (2012) Screening for ovarian cancer: U.S. Preventive Services Task Force reaffirmation recommendation statement. Ann Intern Med 157(12):900–904

    PubMed  Google Scholar 

  25. Colombo N, Lorusso D, Scollo P (2017) Impact of recurrence of ovarian cancer on quality of life and outlook for the future. Int J Gynecol Cancer 27(6):1134–1140

    PubMed  PubMed Central  Google Scholar 

  26. Dutta S, Mahalanobish S, Saha S, Ghosh S, Sil PC (2019) Natural products: an upcoming therapeutic approach to cancer. Food Chem Toxicol 128:240–255

    CAS  PubMed  Google Scholar 

  27. Ravishankar D, Rajora AK, Greco F, Osborn HM (2013) Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol 45(12):2821–2831

    CAS  PubMed  Google Scholar 

  28. Joshi R, Kulkarni YA, Wairkar S (2018) Pharmacokinetic, pharmacodynamic and formulations aspects of naringenin: an update. Life Sci 215:43–56

    CAS  PubMed  Google Scholar 

  29. Wang R, Wang J, Dong T, Shen J, Gao X, Zhou J (2019) Naringenin has a chemoprotective effect in MDA-MB-231 breast cancer cells via inhibition of caspase-3 and -9 activities. Oncol Lett 17(1):1217–1222

    CAS  PubMed  Google Scholar 

  30. Sabarinathan D, Mahalakshmi P, Vanisree AJ (2010) Naringenin promote apoptosis in cerebrally implanted C6 glioma cells. Mol Cell Biochem 345(1–2):215–222

    CAS  PubMed  Google Scholar 

  31. Lim W, Park S, Bazer FW, Song G (2017) Naringenin-induced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways. J Cell Biochem 118(5):1118–1131

    CAS  PubMed  Google Scholar 

  32. Kanno S, Tomizawa A, Ohtake T, Koiwai K, Ujibe M, Ishikawa M (2006) Naringenin-induced apoptosis via activation of NF-kappaB and necrosis involving the loss of ATP in human promyeloleukemia HL-60 cells. Toxicol Lett 166(2):131–139

    CAS  PubMed  Google Scholar 

  33. Chen YC, Shen SC, Lin HY (2003) Rutinoside at C7 attenuates the apoptosis-inducing activity of flavonoids. Biochem Pharmacol 66(7):1139–1150

    CAS  PubMed  Google Scholar 

  34. Revil T, Toutant J, Shkreta L, Garneau D, Cloutier P, Chabot B (2007) Protein kinase C-dependent control of Bcl-x alternative splicing. Mol Cell Biol 27(24):8431–8441

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Warren CFA, Wong-Brown MW, Bowden NA (2019) BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis 10(3):177

    PubMed  PubMed Central  Google Scholar 

  36. Harmalkar M, Upraity S, Kazi S, Shirsat NV (2015) Tamoxifen-induced cell death of malignant glioma cells is brought about by oxidative-stress-mediated alterations in the expression of BCL2 family members and is enhanced on miR-21 inhibition. J Mol Neurosci 57(2):197–202

    CAS  PubMed  Google Scholar 

  37. Porta C, Paglino C, Mosca A (2014) Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 4:64

    PubMed  PubMed Central  Google Scholar 

  38. Alzahrani AS (2019) PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside. Semin Cancer Biol 59:125–132

    CAS  PubMed  Google Scholar 

  39. Mabuchi S, Kuroda H, Takahashi R, Sasano T (2015) The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol Oncol 137(1):173–179

    CAS  PubMed  Google Scholar 

  40. Dobbin ZC, Landen CN (2013) The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer. Int J Mol Sci 14(4):8213–8227

    PubMed  PubMed Central  Google Scholar 

  41. Cai J, Xu L, Tang H, Yang Q, Yi X, Fang Y et al (2014) The role of the PTEN/PI3K/Akt pathway on prognosis in epithelial ovarian cancer: a meta-analysis. Oncologist 19(5):528–535

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Singh R, Letai A (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. CA Cancer J Clin 20(3):175–193

    CAS  Google Scholar 

  43. Khwaja A (1999) Akt is more than just a Bad kinase. Nature 401(6748):33–34

    CAS  PubMed  Google Scholar 

  44. Ke X, Li L, Li J, Zheng M, Liu P (2021) Anti-oncogenic PTEN induces ovarian cancer cell senescence by targeting P21. Cell Biol Int. https://doi.org/10.1002/cbin.11709

    Article  PubMed  Google Scholar 

  45. Martins FC, Couturier DL, Paterson A, Karnezis AN, Chow C, Nazeran TM et al (2020) Clinical and pathological associations of PTEN expression in ovarian cancer: a multicentre study from the Ovarian Tumour Tissue Analysis Consortium. Br J Cancer 123(5):793–802

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu B, Wei Y (2020) Antitumor activity of celastrol by inhibition of proliferation, invasion, and migration in cholangiocarcinoma via PTEN/PI3K/Akt pathway. Cancer Med 9(2):783–796

    CAS  PubMed  Google Scholar 

  47. De Marco C, Laudanna C, Rinaldo N, Oliveira DM, Ravo M, Weisz A et al (2017) Specific gene expression signatures induced by the multiple oncogenic alterations that occur within the PTEN/PI3K/AKT pathway in lung cancer. PLoS ONE 12(6):e0178865

    PubMed  PubMed Central  Google Scholar 

  48. Jia B, Yu D, Yu G, Cheng Y, Wang Y, Yi X et al (2018) Naringenin improve hepatitis C virus infection induced insulin resistance by increase PTEN expression via p53-dependent manner. Biomed Pharmacother 103:746–754

    CAS  PubMed  Google Scholar 

  49. Muthumanickam S, Indhumathi T, Boomi P, Balajee R, Jeyakanthan J, Anand K et al (2020) In silico approach of naringin as potent phosphatase and tensin homolog (PTEN) protein agonist against prostate cancer. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1830855

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

JX conducted the experiments and wrote the manuscript. ZG conducted the experiments. SY and HL collected and analyzed the data.

Corresponding author

Correspondence to Jing Xu.

Ethics declarations

Conflict of interest

No conflict of interest.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 265 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Guo, Z., Yuan, S. et al. BCL2L1 is identified as a target of naringenin in regulating ovarian cancer progression. Mol Cell Biochem 477, 1541–1553 (2022). https://doi.org/10.1007/s11010-022-04389-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04389-1

Keywords

Navigation