Skip to main content

Advertisement

Log in

Exploration of targets and molecular mechanisms of cinnamaldehyde in overcoming fulvestrant-resistant breast cancer: a bioinformatics study

  • Original Article
  • Published:
Network Modeling Analysis in Health Informatics and Bioinformatics Aims and scope Submit manuscript

Abstract

The efficacy of fulvestrant therapy for estrogen receptor positive (ER+) or luminal breast cancer therapy may decrease on account of chemoresistance, which contributes to tumor relapse and metastasis. Cinnamaldehyde has previously been shown to trigger apoptosis in MCF-7 cells, which are ER+ breast cancer cells. This study aimed to identify the targets and molecular mechanisms of cinnamaldehyde in overcoming fulvestrant-resistant breast cancer using a bioinformatics approach. The microarray data of fulvestrant-resistant and cinnamaldehyde-treated MCF-7 cells were obtained from GSE74391 and GSE85871, respectively, and a total of 310 differentially expressed genes (DEGs) were recovered from these databases. Gene Ontology analysis revealed several DEGs that participated in metabolic processes, responded to a stimulus, were located in the membrane and nucleus, and regulated the molecular functions of the protein and ion binding. Drug association analysis revealed the associations between these DEGs and protein kinase inhibitors. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the DEGs regulated pathways for cancer, erbB, and MAPK signaling. Genetic alterations for each target gene ranged from 3 to 14% (CDK2, 3%; MDM2, 6%; KRAS, 7%; PIK3R1, 7%; CDH1, 8%; ESR1, 14%). Further investigation was conducted to examine the impact of genetic alterations on the signaling, resulting in BRCA-2012-RTK-RAS-PI(3)K-pathway. This study identified six possible targets of cinnamaldehyde in overcoming fulvestrant-resistant breast cancer, including CDK2, MDM2, KRAS, PIK3R1, CDH1, and ESR1. PI3K/Akt signaling is a possible target of cinnamaldehyde in overcoming fulvestrant-resistant breast cancer. Molecular docking study results showed that cinnamaldehyde could bind to several protein targets with specific properties and could also be considered to inhibit the activity of target proteins because of its protein-binding distance. Further investigations to verify the findings of this study are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GO:

Gene ontology

DEGs:

Differentially expressed genes

WebGestalt:

WEB-based Gene SeT AnaLysis Toolkit

KEGG:

Kyoto encyclopedia of genes and genomes

DAVID:

Database for annotation, visualization, and integrated discovery

PPI:

Protein–protein interaction

SERD:

Selective estrogen receptor down regulator

EMT:

Epithelial to mesenchymal transition

ERα:

Estrogen receptor alpha

ROS:

Reactive oxygen species

CTGs:

Potential cinnamaldehyde target genes against fulvestrant-resistant breast cancer

References

  • Ahn CR, Park J, Kim JE, Ahn KS, Kim YW, Jeong M, Kim HJ, Park SH, Baek S (2020) Cinnamaldehyde and hyperthermia co-treatment synergistically induces ROS-mediated apoptosis in ACHN renal cell carcinoma cells. Biomedicines 8(9):E357. https://doi.org/10.3390/biomedicines8090357

    Article  Google Scholar 

  • Ai X, Xiang L, Huang Z, Zhou S, Zhang S, Zhang T, Jiang T (2018) Overexpression of PIK3R1 promotes hepatocellular carcinoma progression. Biol Res 51(1):52. https://doi.org/10.1186/s40659-018-0202-7

    Article  Google Scholar 

  • Almotlak AA, Farooqui M, Siegfried JM (2020) Inhibiting pathways predicted from a steroid hormone gene signature yields synergistic antitumor effects in NSCLC. J Thorac Oncol 15(1):62–79

    Google Scholar 

  • Alves CL, Elias D, Lyng M, Bak M, Kirkegaard T, Lykkesfeldt AE, Ditzel HJ (2016) High CDK6 protects cells from fulvestrant-mediated apoptosis and is a predictor of resistance to fulvestrant in estrogen receptor-positive metastatic breast cancer. Clin Cancer Res 22(22):5514–5526

    Google Scholar 

  • Alves CL, Elias D, Lyng MB, Bak M, Ditzel HJ (2018) SNAI2 upregulation is associated with an aggressive phenotype in fulvestrant-resistant breast cancer cells and is an indicator of poor response to endocrine therapy in estrogen receptor-positive metastatic breast cancer. Breast Cancer Res 20(1):60. https://doi.org/10.1186/s13058-018-0988-9

    Article  Google Scholar 

  • Anjarsari EY, Kristina N, Larasati YA, Putri DDP, Meiyanto E (2013) Synergistic effect of cinnamon essential oil (Cinnamomum burmannii) and doxorubicin on T47D cells correlated with apoptosis induction. Indones J Cancer Chemoprev 4(1):450–456

    Google Scholar 

  • Browning JWL, Rambo TME, McKay BC (2020) Comparative genomic analysis of the 3’ UTR of human MDM2 identifies multiple transposable elements, an RLP24 pseudogene and a cluster of novel repeat sequences that arose during primate evolution. Gene 741:144557. https://doi.org/10.1016/j.gene.2020.144557

    Article  Google Scholar 

  • Caldon CE, Sergio CM, Kang J, Muthukaruppan A, Boersma MN, Stone A, Barraclough J, Lee CS, Black MA, Miller LD, Gee JM, Nicholson RI, Sutherland RL, Print CG, Musgrove EA (2012) Cyclin E2 overexpression is associated with endocrine resistance but not insensitivity to CDK2 inhibition in human breast cancer cells. Mol Cancer Ther 11(7):1488–1499

    Google Scholar 

  • Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404

    Google Scholar 

  • Chang W-L, Cheng F-C, Wang S-P, Chou S-T, Shih Y (2017) Cinnamomum cassia essential oil and its major constituent cinnamaldehyde induced cell cycle arrest and apoptosis in human oral squamous cell carcinoma HSC-3 cells. Environ Toxicol 32(2):456–468

    Google Scholar 

  • Chen L, Yang L, Yao L, Kuang X-Y, Zuo W-J, Li S, Qiao F, Liu Y-R, Cao Z-G, Zhou S-L, Zhou X-Y, Yang W-T, Shi J-X, Huang W, Hu X, Shao Z-M (2018) Characterization of PIK3CA and PIK3R1 somatic mutations in Chinese breast cancer patients. Nat Commun 9(1):1357. https://doi.org/10.1038/s41467-018-03867-9

    Article  Google Scholar 

  • Chiang YF, Chen HY, Huang KC, Lin PH, Hsia SM (2019) Dietary antioxidant trans-cinnamaldehyde reduced visfatin-induced breast cancer progression. Vivo and In Vitro Study. Antioxidants (Basel) 8(12):625. https://doi.org/10.3390/antiox8120625

    Article  Google Scholar 

  • Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8(Suppl 4):S11. https://doi.org/10.1186/1752-0509-8-S4-S11

    Article  Google Scholar 

  • Ciruelos Gil EM (2014) Targeting the PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer. Cancer Treat Rev 40(7):862–871

    Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13

    Google Scholar 

  • De Santo I, McCartney A, Migliaccio I, Di Leo A, Malorni L (2019) The emerging role of ESR1 mutations in luminal breast cancer as a prognostic and predictive biomarker of response to endocrine therapy. Cancers (Basel) 11(12):1894. https://doi.org/10.3390/cancers11121894

    Article  Google Scholar 

  • Dickson A (2018) Mapping the ligand binding landscape. Biophys J 115:1707–1719. https://doi.org/10.1016/j.bpj.2018.09.021

    Article  Google Scholar 

  • Dolfi SC, Jäger AV, Medina DJ, Haffty BG, Yang JM, Hirshfield KM (2014) Fulvestrant treatment alters MDM2 protein turnover and sensitivity of human breast carcinoma cells to chemotherapeutic drugs. Cancer Lett 350(1–2):52–60

    Google Scholar 

  • Dong K, Lei Q, Guo R, Wu X, Zhang Y, Cui N, Shi JY, Lu T (2019) Regulating intracellular ROS signal by a dual pH/reducing-responsive nanogels system promotes tumor cell apoptosis. Int J Nanomed 14:5713–5728. https://doi.org/10.2147/IJN.S208089

    Article  Google Scholar 

  • Du G, Zhang J, Luo Z, Ma F, Ma L, Li S (2020) Joint imbalanced classification and feature selection for hospital readmissions. Knowl-Based Syst 200:106020. https://doi.org/10.1016/j.knosys.2020.106020

    Article  Google Scholar 

  • Fang S-H, Rao YK, Tzeng Y-M (2004) Cytotoxic effect of trans-cinnamaldehyde from cinnamomum osmophloeum leaves on human cancer cell lines. Int J Appl Sci Eng 2(2):136–147

    Google Scholar 

  • Ferrer I, Zugazagoitia J, Herbertz S, John W, Paz-Ares L, Schmid-Bindert G (2018) KRAS-Mutant non-small cell lung cancer: from biology to therapy. Lung Cancer 124:53–64. https://doi.org/10.1016/j.lungcan.2018.07.013

    Article  Google Scholar 

  • Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):l1. https://doi.org/10.1126/scisignal.2004088

    Article  Google Scholar 

  • Ghorbani A, Jeddi-Tehrani M, Saidpour A, Safa M, Bayat AA, Zand H (2015) PI3K/AKT and Mdm2 activation are associated with inhibitory effect of cAMP increasing agents on DNA damage-induced cell death in human pre-B NALM-6 cells. Arch Biochem Biophys 566:58–66

    Google Scholar 

  • Gul A, Leyland-Jones B, Dey N, De P (2018) A combination of the PI3K pathway inhibitor plus cell cycle pathway inhibitor to combat endocrine resistance in hormone receptor-positive breast cancer: a genomic algorithm-based treatment approach. Am J Cancer Res 8(12):2359–2376

    Google Scholar 

  • Han L, Mei J, Ma J, Wang F, Gu Z, Li J, Zhang Z, Zeng Y, Lou X, Yao X, Tao N, Qin Z (2020) Cinnamaldehyde induces endogenous apoptosis of the prostate cancer-associated fibroblasts via interfering the Glutathione-associated mitochondria function. Med Oncol 37(10):91. https://doi.org/10.1007/s12032-020-01417-2

    Article  Google Scholar 

  • He W, Zhang W, Zheng Q, Wei Z, Wang Y, Hu M, Ma F, Tao N, Luo C (2019) Cinnamaldehyde causes apoptosis of myeloid-derived suppressor cells through the activation of TLR4. Oncol Lett 18(3):2420–2426

    Google Scholar 

  • Hermawan A, Putri H, Utomo RY (2020) Comprehensive bioinformatics study reveals targets and molecular mechanism of hesperetin in overcoming breast cancer chemoresistance. Mol Divers 24:933–947

    Google Scholar 

  • Huang T-C, Fu H-Y, Ho C-T, Tan D, Huang Y-T, Pan M-H (2007) Induction of apoptosis by cinnamaldehyde from indigenous cinnamon Cinnamomum osmophloeum Kaneh through reactive oxygen species production, glutathione depletion, and caspase activation in human leukemia K562 cells. Food Chem 103(2):434–443

    Google Scholar 

  • Huang X, Li Z, Zhang Q, Wang W, Li B, Wang L, Xu Z, Zeng A, Zhang X, Zhang X, He Z, Li Q, Sun G, Wang S, Li Q, Wang L, Zhang L, Xu H, Xu Z (2019) Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer 18(1):71. https://doi.org/10.1186/s12943-019-0969-3

    Article  Google Scholar 

  • Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27(55):6920–6929

    Google Scholar 

  • Jung JH, You S, Oh JW, Yoon J, Yeon A, Shahid M, Cho E, Sairam V, Park TD, Kim KP, Kim J (2018) Integrated proteomic and phosphoproteomic analyses of cisplatin-sensitive and resistant bladder cancer cells reveal CDK2 network as a key therapeutic target. Cancer Lett 437:1–12

    Google Scholar 

  • Juric D, Janku F, Rodón J, Burris HA, Mayer IA, Schuler M, Seggewiss-Bernhardt R, Gil-Martin M, Middleton MR, Baselga J, Bootle D, Demanse D, Blumenstein L, Schumacher K, Huang A, Quadt C, Rugo HS (2019) Alpelisib plus fulvestrant in PIK3CA-altered and PIK3CA-wild-type estrogen receptor-positive advanced breast cancer: a phase 1b clinical trial. JAMA Oncol 5(2):e184475. https://doi.org/10.1001/jamaoncol.2018.4475

    Article  Google Scholar 

  • Ka H, Park H-J, Jung H-J, Choi J-W, Cho K-S, Ha J, Lee K-T (2003) Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Lett 196(2):143–152

    Google Scholar 

  • Kim MJ, Lee SJ, Ryu JH, Kim SH, Kwon IC, Roberts TM (2020) Combination of KRAS gene silencing and PI3K inhibition for ovarian cancer treatment. J Control Release 318:98–108

    Google Scholar 

  • Kostrzewa T, Przychodzen P, Gorska-Ponikowska M, Kuban-Jankowska A (2019) Curcumin and cinnamaldehyde as PTP1B inhibitors with antidiabetic and anticancer potential. Anticancer Res 39(2):745–749

    Google Scholar 

  • Koundouros N, Poulogiannis G (2018) Phosphoinositide 3-kinase/Akt signaling and redox metabolism in cancer. Front Oncol 8:160. https://doi.org/10.3389/fonc.2018.00160

    Article  Google Scholar 

  • Lal N, White BS, Goussous G, Pickles O, Mason MJ, Beggs AD, Taniere P, Willcox BE, Guinney J, Middleton GW (2018) KRAS mutation and consensus molecular subtypes 2 and 3 are independently associated with reduced immune infiltration and reactivity in colorectal cancer. Clin Cancer Res 24(1):224–233

    Google Scholar 

  • Larasati YA, Putri DP, Utomo RY, Hermawan A, Meiyanto E (2014) Combination of cisplatin and cinnamon essential oil inhibits HeLa cells proliferation through cell cycle arrest. J Appl Pharm Sci 4(12):14–19

    Google Scholar 

  • Lau MT, Klausen C, Leung PC (2011) E-cadherin inhibits tumor cell growth by suppressing PI3K/Akt signaling via β-catenin-Egr1-mediated PTEN expression. Oncogene 30(24):2753–2766

    Google Scholar 

  • Lefebvre C, Bachelot T, Filleron T, Pedrero M, Campone M, Soria JC, Massard C, Levy C, Arnedos M, Lacroix-Triki M, Garrabey J, Boursin Y, Deloger M, Fu Y, Commo F, Scott V, Lacroix L, Dieci MV, Kamal M, Dieras V, Goncalves A, Ferrerro JM, Romieu G, Vanlemmens L, Mouret Reynier MA, Thery JC, Le Du F, Guiu S, Dalenc F, Clapisson G, Bonnefoi H, Jimenez M, Le Tourneau C, Andre F (2016) Mutational profile of metastatic breast cancers: a retrospective analysis. PLoS Med 13(12):e1002201. https://doi.org/10.1371/journal.pmed.1002201

    Article  Google Scholar 

  • Li J, Teng Y, Liu S, Wang Z, Chen Y, Zhang Y, Xi S, Xu S, Wang R, Zou X (2016) Cinnamaldehyde affects the biological behavior of human colorectal cancer cells and induces apoptosis via inhibition of the PI3K/Akt signaling pathway. Oncol Rep 35(3):1501–1510

    Google Scholar 

  • Li X, Mak VCY, Zhou Y, Wang C, Wong ESY, Sharma R, Lu Y, Cheung ANY, Mills GB, Cheung LWT (2019) Deregulated Gab2 phosphorylation mediates aberrant AKT and STAT3 signaling upon PIK3R1 loss in ovarian cancer. Nat Commun 10(1):716. https://doi.org/10.1038/s41467-019-08574-7

    Article  Google Scholar 

  • Liu P, Wang Y, Li X (2019) Targeting the untargetable KRAS in cancer therapy. Acta Pharm Sin B 9(5):871–879

    Google Scholar 

  • Loi S, Dushyanthen S, Beavis PA, Salgado R, Denkert C, Savas P, Combs S, Rimm DL, Giltnane JM, Estrada MV (2016) RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res 22(6):1499–1509

    Google Scholar 

  • Lu J, McEachern D, Li S, Ellis MJ, Wang S (2016) Reactivation of p53 by MDM2 inhibitor MI-77301 for the treatment of endocrine-resistant breast cancer. Mol Cancer Ther 15(12):2887–2893

    Google Scholar 

  • Luo J, Cantley LC (2005) The negative regulation of phosphoinositide 3-kinase signaling by p85 and its implication in cancer. Cell Cycle 4(10):1309–1312

    Google Scholar 

  • Lv C, Wu X, Wang X, Su J, Zeng H, Zhao J, Lin S, Liu R, Li H, Li X, Zhang W (2017) The gene expression profiles in response to 102 traditional Chinese medicine (TCM) components: a general template for research on TCMs. Sci Rep 7(1):352. https://doi.org/10.1038/s41598-017-00535-8

    Article  Google Scholar 

  • Lymperatou D, Giannopoulou E, Koutras AK, Kalofonos HP (2013) The exposure of breast cancer cells to fulvestrant and tamoxifen modulates cell migration differently. Biomed Res Int 2013:147514. https://doi.org/10.1155/2013/147514

    Article  Google Scholar 

  • Marino M, Galluzzo P, Ascenzi P (2006) Estrogen signaling multiple pathways to impact gene transcription. Curr Genomics 7(8):497–508

    Google Scholar 

  • McAndrew NP, Finn RS (2020) Management of ER positive metastatic breast cancer. Semin Oncol S0093–7754(20):30082–30088. https://doi.org/10.1053/j.seminoncol.2020.07.005

    Article  Google Scholar 

  • Mei J, Ma J, Xu Y, Wang Y, Hu M, Ma F, Qin Z, Xue R, Tao N (2020) Cinnamaldehyde treatment of prostate cancer-associated fibroblasts prevents their inhibitory effect on T cells through toll-like receptor 4. Drug Des Dev Ther 14:3363–3372. https://doi.org/10.2147/DDDT.S241410

    Article  Google Scholar 

  • Meng M, Geng S, Du Z, Yao J, Zheng Y, Li Z, Zhang Z, Li J, Duan Y, Du G (2017) Berberine and cinnamaldehyde together prevent lung carcinogenesis. Oncotarget 8(44):76385–76397

    Google Scholar 

  • Miller TW, Balko JM, Arteaga CL (2011) Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol 29(33):4452–4461

    Google Scholar 

  • Nathan MR, Schmid P (2017) A review of fulvestrant in breast cancer. Oncol Ther 5(1):17–29

    Google Scholar 

  • Ng LT, Wu SJ (2011) Antiproliferative activity of cinnamomum cassia constituents and effects of pifithrin-alpha on their apoptotic signaling pathways in Hep G2 cells. Evid Based Complement Altern Med 2011:492148. https://doi.org/10.1093/ecam/nep220

    Article  Google Scholar 

  • Nishikawa M (2008) Reactive oxygen species in tumor metastasis. Cancer Lett 266(1):53–59

    Google Scholar 

  • Nunnery SE, Mayer IA (2020) Targeting the PI3K/AKT/mTOR pathway in hormone-positive breast cancer. Drugs. https://doi.org/10.1007/s40265-020-01394-w

    Article  Google Scholar 

  • Okoh VO, Felty Q, Parkash J, Poppiti R, Roy D (2013) Reactive oxygen species via redox signaling to PI3K/AKT pathway contribute to the malignant growth of 4-hydroxy estradiol-transformed mammary epithelial cells. PLoS ONE 8:e54206

    Google Scholar 

  • Ortega MA, Fraile-Martínez O, Asúnsolo Á, Buján J, García-Honduvilla N, Coca S (2020) Signal transduction pathways in breast cancer: the important role of PI3K/Akt/mTOR. J Oncol 2020:9258396–9258396

    Google Scholar 

  • PAHO (2020) Cancer Profile Global 2020. Pan America Health Organization:https://www.paho.org/hq/index.php?option=com_docman&view=download&category_slug=4-cancer-country-profiles-2020&alias=51561-global-cancer-profile-2020&Itemid=270&lang=fr.

  • Pancholi S, Leal MF, Ribas R, Simigdala N, Schuster E, Chateau-Joubert S, Zabaglo L, Hills M, Dodson A, Gao Q, Johnston SR, Dowsett M, Cosulich SC, Maragoni E, Martin LA (2019) Combination of mTORC1/2 inhibitor vistusertib plus fulvestrant in vitro and in vivo targets oestrogen receptor-positive endocrine-resistant breast cancer. Breast Cancer Res 21:135

    Google Scholar 

  • Park J, Baek SH (2020) Combination therapy with cinnamaldehyde and hyperthermia induces apoptosis of A549 non-small cell lung carcinoma cells via regulation of reactive oxygen species and mitogen-activated protein kinase family. Int J Mol Sci 21:6229

    Google Scholar 

  • Patra S, Young V, Llewellyn L, Senapati JN, Mathew J (2017) BRAF, KRAS and PIK3CA mutation and sensitivity to trastuzumab in breast cancer cell line model. Asian Pac J Cancer Prev 18:2209–2213

    Google Scholar 

  • Petrova YI, Schecterson L, Gumbiner BM (2016) Roles for E-cadherin cell surface regulation in cancer. Mol Biol Cell 27(21):3233–3244

    Google Scholar 

  • Rani A, Stebbing J, Giamas G, Murphy J (2019) Endocrine Resistance in Hormone Receptor Positive Breast Cancer-From Mechanism to Therapy. Front Endocrinol (Lausanne) 10:245. https://doi.org/10.3389/fendo.2019.00245

    Article  Google Scholar 

  • Reza HA, Anamika WJ, Mostafa MG, Chowdhury MK, Uddin MA (2020) MDM2 SNP 285 is associated with reduced lung cancer risk in bangladeshi population. Mymensingh Med J 29(1):108–114

    Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Google Scholar 

  • Sharma U, Sharma AK, Gupta A, Kumar R, Pandey AK, Pandey A (2017) Pharmacological activities of cinnamaldehyde and eugenol: antioxidant, cytotoxic and anti-leishmanial aspects. Cell Mol Biol (Noisy le Grand) 63(6):73–78

    Google Scholar 

  • Shin SY, Jung H, Ahn S, Hwang D, Yoon H, Hyun J, Yong Y, Cho HJ, Koh D, Lee YH, Lim Y (2014) Polyphenols bearing cinnamaldehyde scaffold showing cell growth inhibitory effects on the cisplatin-resistant A2780/Cis ovarian cancer cells. Bioorg Med Chem 22(6):1809–1820

    Google Scholar 

  • Simsek S, Kursuncu U, Kibis E, AnisAbdellatif M, Dag A (2020) A hybrid data mining approach for identifying the temporal effects of variables associated with breast cancer survival. Expert Syst Appl 139:112863. https://doi.org/10.1016/j.eswa.2019.112863

    Article  Google Scholar 

  • Štefaniková A, Klačanová K, Pilchová I, Hatok J, Račay P (2017) Cyclin-dependent kinase 2 inhibitor SU9516 increases sensitivity of colorectal carcinoma cells Caco-2 but not HT29 to BH3 mimetic ABT-737. Gen Physiol Biophys 36(5):539–547

    Google Scholar 

  • Swetzig WM, Wang J, Das GM (2016) Estrogen receptor alpha (ERα/ESR1) mediates the p53-independent overexpression of MDM4/MDMX and MDM2 in human breast cancer. Oncotarget 7(13):16049–16069

    Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452

    Google Scholar 

  • Taniguchi CM, Winnay J, Kondo T, Bronson RT, Guimaraes AR, Alemán JO, Luo J, Stephanopoulos G, Weissleder R, Cantley LC, Kahn CR (2010) The phosphoinositide 3-kinase regulatory subunit p85alpha can exert tumor suppressor properties through negative regulation of growth factor signaling. Cancer Res 70(13):5305–5315

    Google Scholar 

  • Thorpe LM, Spangle JM, Ohlson CE, Cheng H, Roberts TM, Cantley LC, Zhao JJ (2017) PI3K-p110α mediates the oncogenic activity induced by loss of the novel tumor suppressor PI3K-p85α. Proc Natl Acad Sci USA 114(27):7095–7100

    Google Scholar 

  • Tian F, Yu CT, Ye WD, Wang Q (2017) Cinnamaldehyde induces cell apoptosis mediated by a novel circular RNA hsa_circ_0043256 in non-small cell lung cancer. Biochem Biophys Res Commun 493(3):1260–1266

    Google Scholar 

  • Wade M, Li YC, Wahl GM (2013) MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13(2):83–96

    Google Scholar 

  • Wang B, Song J (2019) Structural basis for the ORC1-Cyclin A association. Protein Sci 28(9):1727–1733

    Google Scholar 

  • Wang Y, Xie BH, Lin WH, Huang YH, Ni JY, Hu J, Cui W, Zhou J, Shen L, Xu LF, Lian F, Li HP (2019) Amplification of SMYD3 promotes tumorigenicity and intrahepatic metastasis of hepatocellular carcinoma via upregulation of CDK2 and MMP2. Oncogene 38(25):4948–4961

    Google Scholar 

  • Wang J, Zhang N, Peng M, Hua X, Huang C, Tian Z, Xie Q, Zhu J, Li J, Huang H, Huang C (2019) p85α inactivates MMP-2 and suppresses bladder cancer invasion by inhibiting MMP-14 transcription and TIMP-2 degradation. Neoplasia 21(9):908–920

    Google Scholar 

  • Wierød L, Rosseland CM, Lindeman B, Oksvold MP, Grøsvik H, Skarpen E, Huitfeldt HS (2007) CDK2 regulation through PI3K and CDK4 is necessary for cell cycle progression of primary rat hepatocytes. Cell Prolif 40(4):475–487

    Google Scholar 

  • Wu S-J, Ng L-T, Lin C-C (2005) Cinnamaldehyde-induced apoptosis in human PLC/PRF/5 cells through activation of the proapoptotic Bcl-2 family proteins and MAPK pathway. Life Sci 77(8):938–951

    Google Scholar 

  • Wu C, Zhuang Y, Jiang S, Tian F, Teng Y, Chen X, Zheng P, Liu S, Zhou J, Wu J, Wang R, Zou X (2017) Cinnamaldehyde induces apoptosis and reverses epithelial-mesenchymal transition through inhibition of Wnt/β-catenin pathway in non-small cell lung cancer. J Biochem Cell Biol 84:58–74. https://doi.org/10.1016/j.biocel.2017.01.005

    Article  Google Scholar 

  • Wu C-e, Zhuang Y-w, Zhou J-y, Liu S-l, Wang R-p, Shu P (2019) Cinnamaldehyde enhances apoptotic effect of oxaliplatin and reverses epithelial-mesenchymal transition and stemnness in hypoxic colorectal cancer cells. Expe Cell Res 383(1):111500. https://doi.org/10.1016/j.yexcr.2019.111500

    Article  Google Scholar 

  • Xia E, Sun W, Mei J, Xu E, Wang K, Qin Y (2018) Mining disease-symptom relation from massive biomedical literature and its application in severe disease diagnosis. AMIA Annu Symp Proc 2018:1118–1126

    Google Scholar 

  • Xu XZ, Li XA, Luo Y, Liu JF, Wu HW, Huang G (2019) MiR-9 promotes synovial sarcoma cell migration and invasion by directly targeting CDH1. Int J Biochem Cell Biol 112:61–71

    Google Scholar 

  • Yan L, Song F, Li H, Li Y, Li J, He Q-Y, Zhang D, Wang F, Zhang M, Zhao H, Feng T, Zhao Y-Y, Wang S-W (2018) Submicron emulsion of cinnamaldehyde ameliorates bleomycin-induced idiopathic pulmonary fibrosis via inhibition of inflammation, oxidative stress and epithelial-mesenchymal transition. Biomed Pharmacother 102:765–771

    Google Scholar 

  • Yang G, Deng Q, Fan W, Zhang Z, Xu P, Tang S, Wang P, Wang J, Yu M (2017) Cyclooxygenase-2 expression is positively associated with lymph node metastasis in nasopharyngeal carcinoma. PLoS ONE 12(3):e0173641

    Google Scholar 

  • Yeh WL, Shioda K, Coser KR, Rivizzigno D, McSweeney KR, Shioda T (2013) Fulvestrant-induced cell death and proteasomal degradation of estrogen receptor alpha protein in MCF-7 cells require the CSK c-Src tyrosine kinase. PLoS ONE 8(4):e60889

    Google Scholar 

  • Yi JH, Do I-G, Jang J, Kim ST, Kim K-M, Park SH, Park JO, Park YS, Lim HY, Kang WK, Lee J (2014) Anti-tumor efficacy of fulvestrant in estrogen receptor positive gastric cancer. Sci Rep 4:7592–7592

    Google Scholar 

  • Zhang LL, Liu J, Lei S, Zhang J, Zhou W, Yu HG (2014) PTEN inhibits the invasion and metastasis of gastric cancer via downregulation of FAK expression. Cell Signal 26(5):1011–1020

    Google Scholar 

  • Zhang W, Gao J, Cheng C, Zhang M, Liu W, Ma X, Lei W, Hao E, Hou X, Hou Y, Bai G (2020a) Cinnamaldehyde enhances antimelanoma activity through covalently binding ENO1 and exhibits a promoting effect with dacarbazine. Cancers (Basel) 12(2):311

    Google Scholar 

  • Zhang W, Gao J, Shen F, Ma X, Wang Z, Hou X, Hao E, Hou Y, Bai G (2020b) Cinnamaldehyde changes the dynamic balance of glucose metabolism by targeting ENO1. Life Sci 258:118151

    Google Scholar 

Download references

Funding

The authors did not receive any particular grant from the public, commercial, or non-profit funding agency.

Author information

Authors and Affiliations

Authors

Contributions

AH contributed to the design, acquisition, review and evaluation of the data, the writing and revision of the article and the final approval of the version to bepublished. HP contributed to the analysis of the results, drafted the article and finalized the version to be published. RYU contributed to the data acquisition and drafted the article. The final manuscript was read and accepted by all contributors.

Corresponding author

Correspondence to Adam Hermawan.

Ethics declarations

Availability of data and material

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 514 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermawan, A., Putri, H. & Utomo, R.Y. Exploration of targets and molecular mechanisms of cinnamaldehyde in overcoming fulvestrant-resistant breast cancer: a bioinformatics study. Netw Model Anal Health Inform Bioinforma 10, 30 (2021). https://doi.org/10.1007/s13721-021-00303-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13721-021-00303-9

Keywords

Navigation