Skip to main content

Advertisement

Log in

LncRNA CRNDE promotes cell proliferation, migration and invasion of ovarian cancer via miR-423-5p/FSCN1 axis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ovarian cancer seriously threatens the health of women. LncRNA CRNDE is known to be upregulated in ovarian cancer. However, the mechanism by which CRNDE regulates the progress of ovarian cancer is largely unknown. MTT assay was applied to measure the cell viability. Colony formation assay was used to measure the cell proliferation. Cell migration was tested by wound healing, and Transwell assay was performed to detect cell invasion. In addition, the expression of miR-423-5p, CRNDE and FSCN1 were detected by RT-qPCR and western blotting, respectively. Meanwhile, dual-luciferase reporter assay and RIP assay were performed to explore the correlation between miR-423-5p and CRNDE (or FSCN1). CRNDE and FSCN1 were upregulated in ovarian cancer cells (SKOV3, CAOV-3, IGROV1, A2780 and C13K), while miR-423-5p was downregulated. Moreover, silencing of FSCN1/CRNDE significantly decreased proliferation, migration and invasion of ovarian cancer cells (SKOV3 and CI3K) via suppressing MMP-2 and MMP-9. In addition, CRNDE could sponge miR-423-5p, and FSCN1 was confirmed to be the direct target of miR-423-5p. Furthermore, CRNDE knockdown-induced inhibition of FSCN1 was notably reversed by miR-423-5p downregulation. Knockdown of CRNDE inhibited cell proliferation, migration and invasion of ovarian cancer via miR-423-5p/FSCN1 axis. Thus, CRNDE may serve a new target for ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

Abbreviations

EOC:

Epithelial ovarian carcinoma

EMT:

Epithelial-mesenchymal transition

FSCN1:

Fascin-1

FBS:

Fetal bovine serum

Mut:

Mutant type

MMP-2:

Matrix metalloproteinase-2

MMP-9:

Matrix metalloproteinase-9

WT:

Wild type

RIP:

RNA immunoprecipitation

References

  1. Lengyel E (2010) Ovarian cancer development and metastasis. Am J Pathol 177:1053–1064. https://doi.org/10.2353/ajpath.2010.100105

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. https://doi.org/10.3322/caac.20107

    Article  PubMed  Google Scholar 

  3. Karst AM, Drapkin R (2010) Ovarian cancer pathogenesis: a model in evolution. J Oncol 2010:932371. https://doi.org/10.1155/2010/932371

    Article  CAS  PubMed  Google Scholar 

  4. Reid BM, Permuth JB, Sellers TA (2017) Epidemiology of ovarian cancer: a review. Cancer Biol Med 14:9–32. https://doi.org/10.20892/j.issn.2095-3941.2016.0084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lheureux S, Gourley C, Vergote I, Oza AM (2019) Epithelial ovarian cancer. The Lancet 393:1240–1253. https://doi.org/10.1016/s0140-6736(18)32552-2

    Article  Google Scholar 

  6. Doherty JA, Peres LC, Wang C, Way GP, Greene CS, Schildkraut JM (2017) Challenges and opportunities in studying the epidemiology of ovarian cancer subtypes. Curr Epidemiol Rep 4:211–220. https://doi.org/10.1007/s40471-017-0115-y

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kiesslich T, Pichler M, Neureiter D (2013) Epigenetic control of epithelial-mesenchymal-transition in human cancer. Mol Clin Oncol 1:3–11. https://doi.org/10.3892/mco.2012.28

    Article  PubMed  Google Scholar 

  8. Meng F, Wu G (2012) The rejuvenated scenario of epithelial-mesenchymal transition (EMT) and cancer metastasis. Cancer Metastasis Rev 31:455–467. https://doi.org/10.1007/s10555-012-9379-3

    Article  CAS  PubMed  Google Scholar 

  9. Lars C, Hanker TK, Holtrich U, Graeser M, Becker S, Er JR, Gevensleben H, Rody A (2013) Prognostic impact of Fascin-1 (FSCN1) in epithelial ovarian cancer. Anticancer Res 33:371–378

    Google Scholar 

  10. Hashimoto Y, Skacel M, Adams JC (2005) Roles of fascin in human carcinoma motility and signaling: prospects for a novel biomarker? Int J Biochem Cell Biol 37:1787–1804. https://doi.org/10.1016/j.biocel.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  11. Al-Alwan M, Olabi S, Ghebeh H, Barhoush E, Tulbah A, Al-Tweigeri T, Ajarim D, Adra C (2011) Fascin is a key regulator of breast cancer invasion that acts via the modification of metastasis-associated molecules. PLoS ONE 6:e27339. https://doi.org/10.1371/journal.pone.0027339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Winder SJ, Ayscough KR (2005) Actin-binding proteins. J Cell Sci 118:651–654. https://doi.org/10.1242/jcs.01670

    Article  CAS  PubMed  Google Scholar 

  13. Li J, Zhang S, Pei M, Wu L, Liu Y, Li H, Lu J, Li X (2018) FSCN1 Promotes epithelial-mesenchymal transition through increasing snail1 in ovarian cancer cells. Cell Physiol Biochem 49:1766–1777. https://doi.org/10.1159/000493622

    Article  CAS  PubMed  Google Scholar 

  14. Chen W, Bian H, Xie X, Yang X, Bi B, Li C, Zhang Y, Zhu Q, Song J, Qin C, Qi J (2020) Negative feedback loop of ERK/CREB/miR-212-3p inhibits HBeAg-induced macrophage activation. J Cell Mol Med. https://doi.org/10.1111/jcmm.15723

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tang R, Wang J, Zhou M, Lan Y, Jiang L, Price M, Yue B, Li D, Fan Z (2020) Comprehensive analysis of lncRNA and mRNA expression changes in Tibetan chicken lung tissue between three developmental stages. Anim Genet. https://doi.org/10.1111/age.12990

    Article  PubMed  Google Scholar 

  16. Wang D, Xing N, Yang T, Liu J, Zhao H, He J, Ai Y, Yang J (2020) Exosomal lncRNA H19 promotes the progression of hepatocellular carcinoma treated with Propofol via miR-520a-3p/LIMK1 axis. Cancer Med. https://doi.org/10.1002/cam4.3313

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Hou CZ, Dong YL, Zhu L, Xu H (2020) Long noncoding RNA LINP1 promoted proliferation and invasion of ovarian cancer via inhibiting KLF6. Eur Rev Med Pharmacol Sci 24:7918. https://doi.org/10.26355/eurrev_202008_22452

    Article  CAS  PubMed  Google Scholar 

  18. He Y, Wei L, Zhang S, Liu H, Fang F, Li Y (2020) LncRNA PLAC2 positively regulates CDK2 to promote ovarian carcinoma cell proliferation. Cancer Manag Res 12:5713–5720. https://doi.org/10.2147/CMAR.S242781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan H, Li H, Silva MA, Guan Y, Yang L, Zhu L, Zhang Z, Li G, Ren C (2019) LncRNA FLVCR1-AS1 mediates miR-513/YAP1 signaling to promote cell progression, migration, invasion and EMT process in ovarian cancer. J Exp Clin Cancer Res 38:356. https://doi.org/10.1186/s13046-019-1356-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. You Q, Shi HY, Gong CF, Tian XY, Li S (2019) Long non-coding RNA DLX6-AS1 acts as an oncogene by targeting miR-613 in ovarian cancer. Eur Rev Med Pharmacol Sci 23:6429–6435. https://doi.org/10.26355/eurrev_201908_18524

    Article  CAS  PubMed  Google Scholar 

  21. Luo X, Tu T, Zhong Y, Xu S, Chen X, Chen L, Yang F (2021) ceRNA network analysis shows that lncRNA CRNDE promotes progression of glioblastoma through sponge mir-9-5p. Front Genet 12:617350. https://doi.org/10.3389/fgene.2021.617350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu HY, Gao YJ, Wang Y, Liang C, Zhang ZX, Chen Y (2021) LncRNA CRNDE promotes the progression and angiogenesis of pancreatic cancer via miR-451a/CDKN2D axis. Transl Oncol 14:101088. https://doi.org/10.1016/j.tranon.2021.101088

    Article  PubMed  PubMed Central  Google Scholar 

  23. Szafron LM, Balcerak A, Grzybowska EA, Pienkowska-Grela B, Podgorska A, Zub R, Olbryt M, Pamula-Pilat J, Lisowska KM, Grzybowska E, Rubel T, Dansonka-Mieszkowska A, Konopka B, Kulesza M, Lukasik M, Kupryjanczyk J (2015) The putative oncogene, CRNDE, is a negative prognostic factor in ovarian cancer patients. Oncotarget 6:43897–43910. https://doi.org/10.18632/oncotarget.6016

    Article  PubMed  PubMed Central  Google Scholar 

  24. Niu YC, Tong J, Shi XF, Zhang T (2020) MicroRNA-654-3p enhances cisplatin sensitivity by targeting QPRT and inhibiting the PI3K/AKT signaling pathway in ovarian cancer cells. Exp Ther Med 20:1467–1479. https://doi.org/10.3892/etm.2020.8878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y, Qin X, Jiang J, Zhao W (2020) MicroRNA-126 exerts antitumor functions in ovarian cancer by targeting EGFL7 and affecting epithelial-to-mesenchymal transition and ERK/MAPK signaling pathway. Oncol Lett 20:1327–1335. https://doi.org/10.3892/ol.2020.11687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Romani C, Salviato E, Paderno A, Zanotti L, Ravaggi A, Deganello A, Berretti G, Gualtieri T, Marchini S, D’Incalci M, Mattavelli D, Piazza C, Bossi P, Romualdi C, Nicolai P, Bignotti E (2021) Genome-wide study of salivary miRNAs identifies miR-423-5p as promising diagnostic and prognostic biomarker in oral squamous cell carcinoma. Theranostics 11:2987–2999. https://doi.org/10.7150/thno.45157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu D, Li B, Shi X, Zhang J, Chen AM, Xu J, Wang W, Huang K, Gao J, Zheng Z, Liu D, Wang H, Shi W, Chen L, Xu J (2021) Cross-platform genomic identification and clinical validation of breast cancer diagnostic biomarkers. Aging (Albany NY) 13:4258–4273. https://doi.org/10.18632/aging.202388

    Article  CAS  Google Scholar 

  28. Tang X, Zeng X, Huang Y, Chen S, Lin F, Yang G, Yang N (2018) miR-423-5p serves as a diagnostic indicator and inhibits the proliferation and invasion of ovarian cancer. Exp Ther Med 15:4723–4730. https://doi.org/10.3892/etm.2018.6015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei D, Sun L, Feng W (2021) hsa_circ_0058357 acts as a ceRNA to promote nonsmall cell lung cancer progression via the hsamiR243p/AVL9 axis. Mol Med Rep 23(6):470. https://doi.org/10.3892/mmr.2021.12109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li J, Han X, Gu Y, Wu J, Song J, Shi Z, Chang H, Liu M, Zhang Y (2021) LncRNA MTX2-6 suppresses cell proliferation by acting as ceRNA of miR-574-5p to accumulate SMAD4 in esophageal squamous cell carcinoma. Front Cell Dev Biol 9:654746. https://doi.org/10.3389/fcell.2021.654746

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhu J, Li X, Zhang S, Liu J, Yao X, Zhao Q, Kou B, Han P, Wang X, Bai Y, Zheng Z, Xu C (2021) Taraxasterol inhibits TGF-beta1-induced epithelial-to-mesenchymal transition in papillary thyroid cancer cells through regulating the Wnt/beta-catenin signaling. Hum Exp Toxicol 40:S87–S95. https://doi.org/10.1177/09603271211023792

    Article  CAS  PubMed  Google Scholar 

  32. Kureishy N, Sapountzi V, Prag S, Anilkumar N, Adams JC (2002) Fascins, and their roles in cell structure and function. BioEssays 24:350–361. https://doi.org/10.1002/bies.10070

    Article  CAS  PubMed  Google Scholar 

  33. Luo A, Yin Y, Li X, Xu H, Mei Q, Feng D (2015) The clinical significance of FSCN1 in non-small cell lung cancer. Biomed Pharmacother 73:75–79. https://doi.org/10.1016/j.biopha.2015.05.014

    Article  CAS  PubMed  Google Scholar 

  34. Wang CQ, Tang CH, Wang Y, Jin L, Wang Q, Li X, Hu GN, Huang BF, Zhao YM, Su CM (2017) FSCN1 gene polymorphisms: biomarkers for the development and progression of breast cancer. Sci Rep 7:15887. https://doi.org/10.1038/s41598-017-16196-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cao D, Maitra A, Saavedra JA, Klimstra DS, Adsay NV, Hruban RH (2005) Expression of novel markers of pancreatic ductal adenocarcinoma in pancreatic nonductal neoplasms: additional evidence of different genetic pathways. Mod Pathol 18:752–761. https://doi.org/10.1038/modpathol.3800363

    Article  CAS  PubMed  Google Scholar 

  36. Hu W, Deavers M, Kavanagh JJ, Kudelka AP, Verschraegen CF (2000) Increased expression of fascin, motility associated protein, in cell cultures derived from ovarian cancer and in borderline and carcinomatous ovarian tumors. Clin Exp Metastasis 18:83–88

    Article  CAS  PubMed  Google Scholar 

  37. Li H, Li Q, Li Y, Sang X, Yuan H, Zheng B (2020) Stannic oxide nanoparticle regulates proliferation, invasion, apoptosis, and oxidative stress of oral cancer cells. Front Bioeng Biotechnol 8:768. https://doi.org/10.3389/fbioe.2020.00768

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cai M, Shao W, Yu H, Hong Y, Shi L (2020) Paeonol inhibits cell proliferation, migration and invasion and induces apoptosis in hepatocellular carcinoma by regulating miR-21-5p/KLF6 axis. Cancer Manag Res 12:5931–5943. https://doi.org/10.2147/CMAR.S254485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guo L, Kang JS, Kang NJ, Choi YW (2020) S-petasin induces apoptosis and inhibits cell migration through activation of p53 pathway signaling in melanoma B16F10cells and A375cells. Arch Biochem Biophys 692:108519. https://doi.org/10.1016/j.abb.2020.108519

    Article  CAS  PubMed  Google Scholar 

  40. Li F, Huang C, Li Q, Wu X (2018) Construction and comprehensive analysis for dysregulated long non-coding RNA (lncRNA)-associated competing endogenous RNA (ceRNA) network in gastric cancer. Med Sci Monit 24:37–49. https://doi.org/10.12659/msm.905410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen Y, Tian T, Li ZY, Wang CY, Deng R, Deng WY, Yang AK, Chen YF, Li H (2019) FSCN1 is an effective marker of poor prognosis and a potential therapeutic target in human tongue squamous cell carcinoma. Cell Death Dis 10:356. https://doi.org/10.1038/s41419-019-1574-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Du W, Feng Z, Sun Q (2018) LncRNA LINC00319 accelerates ovarian cancer progression through miR-423-5p/NACC1 pathway. Biochem Biophys Res Commun 507:198–202. https://doi.org/10.1016/j.bbrc.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  43. Cao Z, Chen H, Mei X, Li X (2021) Silencing of NACC1 inhibits the proliferation, migration and invasion of nasopharyngeal carcinoma cells via regulating the AKT/mTOR signaling pathway. Oncol Lett 22:828. https://doi.org/10.3892/ol.2021.13088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. He W, Zhu X, Tang X, Xiang X, Yu J, Sun H (2022) Circ_0027089 regulates NACC1 by targeting miR-136-5p to aggravate the development of hepatitis B virus-related hepatocellular carcinoma. Anticancer Drugs 33:e336–e348. https://doi.org/10.1097/CAD.0000000000001211

    Article  CAS  PubMed  Google Scholar 

  45. Huang FK, Han S, Xing B, Huang J, Liu B, Bordeleau F, Reinhart-King CA, Zhang JJ, Huang XY (2015) Targeted inhibition of fascin function blocks tumour invasion and metastatic colonization. Nat Commun 6:7465. https://doi.org/10.1038/ncomms8465

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

QW: concepts, design, writing- original draft preparation; LXW: experimental studies; CYZ: writing- original draft preparation; NB: data acquisition, data analysis; CF: experimental studies; ZMZ: experimental studies; LW: data acquisition, data analysis; ZZG: supervision, writing- reviewing and Editing; All the authors approved for the final version.

Corresponding author

Correspondence to Zhen-Zhen Gao.

Ethics declarations

Conflict of interest

All authors declared that there is no conflict of interest for this paper.

Ethical approval

Not Applicable.

Consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All authors agree to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Qiong Wang and Ling-Xiong Wang are first co-authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, LX., Zhang, CY. et al. LncRNA CRNDE promotes cell proliferation, migration and invasion of ovarian cancer via miR-423-5p/FSCN1 axis. Mol Cell Biochem 477, 1477–1488 (2022). https://doi.org/10.1007/s11010-022-04382-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04382-8

Keywords

Navigation