Skip to main content
Log in

Differential and targeted vesiculation: pathologic cellular responses to elevated arterial pressure

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Extracellular vesicles are small membrane-enclosed particles released during cell activation or injury. They have been investigated for several decades and found to be secreted in various diseases. Their pathogenic role is further supported by the presence of several important molecules among their cargo, including proteins, lipids, and nucleic acids. Many studies have reported enhanced and targeted extracellular vesicle biogenesis in diseases that involve chronic or transient elevation of arterial pressure resulting in endothelial dysfunction, within either the general circulatory system or specific local vascular beds. In addition, several associated pathologic processes have been studied and reported. However, the role of elevated pressure as a common pathogenic trigger across vascular domains and disease chronicity has not been previously described. This review will therefore summarize our current knowledge of the differential and targeted biogenesis of extracellular vesicles in major diseases that are characterized by elevated arterial pressure leading to endothelial dysfunction and propose a unified theory of pressure-induced extracellular vesicle-mediated pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Berda-Haddad Y, Robert S, Salers P, Zekraoui L, Farnarier C, Dinarello CA, Dignat-George F, Kaplanski G (2011) Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1α. Proc Natl Acad Sci 108:20684–20689. https://doi.org/10.1073/pnas.1116848108

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jansen F, Nickenig G, Werner N (2017) Extracellular vesicles in cardiovascular disease: potential applications in diagnosis, prognosis, and epidemiology. Circ Res 120:1649–1657. https://doi.org/10.1161/circresaha.117.310752

    Article  CAS  PubMed  Google Scholar 

  3. Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M, Baran J (2017) The methods of choice for extracellular vesicles (EVs) characterization. Int J Mol Sci 18:1153. https://doi.org/10.3390/ijms18061153

    Article  CAS  PubMed Central  Google Scholar 

  4. van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64:676–705. https://doi.org/10.1124/pr.112.005983

    Article  CAS  PubMed  Google Scholar 

  5. Horstman LL, Ahn YS (1999) Platelet microparticles: a wide-angle perspective. Crit Rev Oncol Hematol 30:111–142. https://doi.org/10.1016/S1040-8428(98)00044-4

    Article  CAS  PubMed  Google Scholar 

  6. Macfarlane RG, Trevan JW, Attwood AM (1941) Participation of a fat soluble substance in coagulation of the blood. J Physiol 99:5–10. https://doi.org/10.1113/jphysiol.1941.sp003921

    Article  Google Scholar 

  7. Chargaff E, West R (1946) The biological significance of the thromboplastic protein of blood. J Biol Chem 166:189–197

    Article  CAS  PubMed  Google Scholar 

  8. Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13:269–288

    Article  CAS  PubMed  Google Scholar 

  9. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420

    Article  CAS  PubMed  Google Scholar 

  10. Stein JM, Luzio JP (1991) Ectocytosis caused by sublytic autologous complement attack on human neutrophils. The sorting of endogenous plasma-membrane proteins and lipids into shed vesicles. Biochem J 274(2):381–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Preston RA, Jy W, Jimenez JJ, Mauro LM, Horstman LL, Valle M, Aime G, Ahn YS (2003) Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 41:211–217. https://doi.org/10.1161/01.hyp.0000049760.15764.2d

    Article  CAS  PubMed  Google Scholar 

  12. Pironti G, Strachan RT, Abraham D, Mon-Wei YuS, Chen M, Chen W, Hanada K, Mao L, Watson LJ, Rockman HA (2015) Circulating exosomes induced by cardiac pressure overload contain functional angiotensin II Type 1 receptors. Circulation 131:2120–2130. https://doi.org/10.1161/CIRCULATIONAHA.115.015687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sarker S, Scholz-Romero K, Perez A, Illanes SE, Mitchell MD, Rice GE, Salomon C (2014) Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy. J Transl Med 12:204. https://doi.org/10.1186/1479-5876-12-204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Diehl P, Aleker M, Helbing T, Sossong V, Germann M, Sorichter S, Bode C, Moser M (2011) Increased platelet, leukocyte and endothelial microparticles predict enhanced coagulation and vascular inflammation in pulmonary hypertension. J Thromb Thrombolysis 31:173–179. https://doi.org/10.1007/s11239-010-0507-z

    Article  PubMed  Google Scholar 

  15. Zhang M, Xin W, Ma C, Zhang H, Mao M, Liu Y, Zheng X, Zhang L, Yu X, Li H et al (2018) Exosomal 15-LO2 mediates hypoxia-induced pulmonary artery hypertension in vivo and in vitro. Cell Death Dis 9:1022–1022. https://doi.org/10.1038/s41419-018-1073-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anderson TJ (1999) Assessment and treatment of endothelial dysfunction in humans. J Am Coll Cardiol 34:631–638. https://doi.org/10.1016/S0735-1097(99)00259-4

    Article  CAS  PubMed  Google Scholar 

  17. Hadi HAR, Carr CS, Al Suwaidi J (2005) Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag 1:183–198

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bonetti PO, Lerman LO, Lerman A (2003) Endothelial dysfunction. Arterioscler Thromb Vasc Biol 23:168–175

    Article  CAS  PubMed  Google Scholar 

  19. Cahill PA, Redmond EM (2016) Vascular endothelium—gatekeeper of vessel health. Atherosclerosis 248:97–109. https://doi.org/10.1016/j.atherosclerosis.2016.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brandes RP (2014) Endothelial dysfunction and hypertension. Hypertension 64:924–928

    Article  CAS  PubMed  Google Scholar 

  21. Meaney E (2021) From endothelial dysfunction to complicated atherosclerotic plaque—the long journey of the more lethal disease of our times. Cardiovasc Metab Sci 32(S3):160–163

    Article  Google Scholar 

  22. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, Ramirez A, Schlaich M, Stergiou GS, Tomaszewski M et al (2020) 2020 International Society of Hypertension Global Hypertension Practice guidelines. Hypertension 75:1334–1357

    Article  CAS  PubMed  Google Scholar 

  23. Charles L, Triscott J, Dobbs B (2017) Secondary hypertension: discovering the underlying cause. Am Fam Physician 96:453–461

    PubMed  Google Scholar 

  24. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A et al (2018) 2018 ESC/ESH guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 36:1953–2041. https://doi.org/10.1097/hjh.0000000000001940

    Article  CAS  PubMed  Google Scholar 

  25. Akers JC, Gonda D, Kim R, Carter BS, Chen CC (2013) Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol 113:1–11. https://doi.org/10.1007/s11060-013-1084-8

    Article  PubMed  PubMed Central  Google Scholar 

  26. Teng F, Fussenegger M (2021) Shedding light on extracellular vesicle biogenesis and bioengineering. Adv Sci 8(1):2003505. https://doi.org/10.1002/advs.202003505

    Article  CAS  Google Scholar 

  27. Samsel L, McCoy JP Jr (2015) Imaging flow cytometry for the study of erythroid cell biology and pathology. J Immunol Methods 423:52–59. https://doi.org/10.1016/j.jim.2015.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blair TA, Frelinger AL (2020) Platelet surface marker analysis by mass cytometry. Platelets 31:633–640. https://doi.org/10.1080/09537104.2019.1668549

    Article  CAS  PubMed  Google Scholar 

  29. Kalina T, Fišer K, Pérez-Andrés M, Kuzílková D, Cuenca M, Bartol SJW, Blanco E, Engel P, van Zelm MC (2019) CD maps—dynamic profiling of CD1–CD100 surface expression on human leukocyte and lymphocyte subsets. Front Immunol. https://doi.org/10.3389/fimmu.2019.02434

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chistiakov DA, Killingsworth MC, Myasoedova VA, Orekhov AN, Bobryshev YV (2017) CD68/macrosialin: not just a histochemical marker. Lab Invest 97:4–13. https://doi.org/10.1038/labinvest.2016.116

    Article  CAS  PubMed  Google Scholar 

  31. Goncharov NV, Popova PI, Avdonin PP, Kudryavtsev IV, Serebryakova MK, Korf EA, Avdonin PV (2020) Markers of endothelial cells in normal and pathological conditions. biochemistry (Moscow). Suppl Ser A 14:167–183. https://doi.org/10.1134/S1990747819030140

    Article  CAS  Google Scholar 

  32. López Andrés N, Tesse A, Regnault V, Louis H, Cattan V, Thornton SN, Labat C, Kakou A, Tual-Chalot S, Faure S et al (2012) Increased microparticle production and impaired microvascular endothelial function in aldosterone-salt-treated rats: protective effects of polyphenols. PLOS ONE 7:e39235. https://doi.org/10.1371/journal.pone.0039235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Young CN, Davisson RL (2015) Angiotensin-II, the brain, and hypertension. Hypertension 66:920–926

    Article  CAS  PubMed  Google Scholar 

  34. Burger D, Montezano AC, Nishigaki N, He Y, Carter A, Touyz RM (2011) Endothelial microparticle formation by angiotensin II is mediated via ang II receptor Type I/NADPH oxidase/rho kinase pathways targeted to lipid rafts. Arterioscler Thromb Vasc Biol 31:1898–1907. https://doi.org/10.1161/atvbaha.110.222703

    Article  CAS  PubMed  Google Scholar 

  35. Cordazzo C, Neri T, Petrini S, Lombardi S, Balia C, Cianchetti S, Carmazzi Y, Paggiaro P, Pedrinelli R, Celi A (2013) Angiotensin II induces the generation of procoagulant microparticles by human mononuclear cells via an angiotensin type 2 receptor-mediated pathway. Thromb Res 131:e168–e174. https://doi.org/10.1016/j.thromres.2013.01.019

    Article  CAS  PubMed  Google Scholar 

  36. Salvia SL, Musante L, Lannigan J, Gigliotti JC, Le TH, Erdbrügger U (2020) T cell-derived extracellular vesicles are elevated in essential HTN. Am J Physiol-Ren Physiol 319:F868–F875. https://doi.org/10.1152/ajprenal.00433.2020

    Article  CAS  Google Scholar 

  37. Otani K, Yokoya M, Kodama T, Hori K, Matsumoto K, Okada M, Yamawaki H (2018) Plasma exosomes regulate systemic blood pressure in rats. Biochem Biophys Res Commun 503:776–783. https://doi.org/10.1016/j.bbrc.2018.06.075

    Article  CAS  PubMed  Google Scholar 

  38. Ren X-S, Tong Y, Qiu Y, Ye C, Wu N, Xiong X-Q, Wang J-J, Han Y, Zhou Y-B, Zhang F et al (2019) MiR155-5p in adventitial fibroblasts-derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensin-converting enzyme expression. J Extracell Vesicles 9:1698795–1698795. https://doi.org/10.1080/20013078.2019.1698795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Labiós M, Martínez M, Gabriel F, Guiral V, Muñoz A, Aznar J (2004) Effect of eprosartan on cytoplasmic free calcium mobilization, platelet activation, and microparticle formation in hypertension. Am J Hypertens 17:757–763. https://doi.org/10.1016/j.amjhyper.2004.05.010

    Article  CAS  PubMed  Google Scholar 

  40. Martínez Silvestre M (2005) The effects of eprosartan on cytoplasmic free calcium mobilisation, platelet activation and microparticle formation in hypertension. Could they be relevant to stroke prevention? J Ren Angiotensin Aldosterone Syst 6:S1–S3. https://doi.org/10.1177/14703203050060010101

    Article  Google Scholar 

  41. Nomura S, Kanazawa S, Fukuhara S (2002) Effects of efonidipine on platelet and monocyte activation markers in hypertensive patients with and without type 2 diabetes mellitus. J Hum Hypertens 16:539–547. https://doi.org/10.1038/sj.jhh.1001447

    Article  CAS  PubMed  Google Scholar 

  42. Amabile N, Cheng S, Renard JM, Larson MG, Ghorbani A, McCabe E, Griffin G, Guerin C, Ho JE, Shaw SY et al (2014) Association of circulating endothelial microparticles with cardiometabolic risk factors in the framingham heart study. Eur Heart J 35:2972–2979. https://doi.org/10.1093/eurheartj/ehu153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu S-S, Zhang H-G, Zhang Q-J, Xiu R-J (2014) Circulating CD62P small microparticles levels are increased in hypertension. Int J Clin Exp Pathol 7:5324–5326

    PubMed  PubMed Central  Google Scholar 

  44. Lazaridis A, Gavriilaki E, Nikolaidou B, Yiannaki E, Dolgyras P, Anyfanti P, Triantafyllou A, Koletsos N, Tzimos C, Markala D et al (2021) A study of endothelial and platelet microvesicles across different hypertension phenotypes. J Hum Hypertens. https://doi.org/10.1038/s41371-021-00531-6

    Article  PubMed  Google Scholar 

  45. Wang JM, Su C, Wang Y, Huang YJ, Yang Z, Chen L, Wu F, Xu SY, Tao J (2008) Elevated circulating endothelial microparticles and brachial–ankle pulse wave velocity in well-controlled hypertensive patients. J Hum Hypertens 23:307. https://doi.org/10.1038/jhh.2008.137

    Article  PubMed  Google Scholar 

  46. Lip GY, Blann AD (2000) Does hypertension confer a prothrombotic state? Virchow’s triad revisited. Circulation 101:218–220

    Article  CAS  PubMed  Google Scholar 

  47. Park JB, Charbonneau F, Schiffrin EL (2001) Correlation of endothelial function in large and small arteries in human essential hypertension. J Hypertens 19:415–420

    Article  CAS  PubMed  Google Scholar 

  48. Yang S, Zhong Q, Qiu Z, Chen X, Chen F, Mustafa K, Ding D, Zhou Y, Lin J, Yan S et al (2014) Angiotensin II receptor type 1 autoantibodies promote endothelial microparticles formation through activating p38 MAPK pathway. J Hypertens 32:762–770. https://doi.org/10.1097/hjh.0000000000000083

    Article  CAS  PubMed  Google Scholar 

  49. Brodsky SV, Zhang F, Nasjletti A, Goligorsky MS (2004) Endothelium-derived microparticles impair endothelial function in vitro. Am J Physiol-Heart and Circ Physiol 286:H1910–H1915. https://doi.org/10.1152/ajpheart.01172.2003

    Article  CAS  Google Scholar 

  50. Vanwijk MJ, Svedas E, Boer K, Nieuwland R, Vanbavel E, Kublickiene KR (2002) Isolated microparticles, but not whole plasma, from women with preeclampsia impair endothelium-dependent relaxation in isolated myometrial arteries from healthy pregnant women. Am J Obstet Gynecol 187:1686–1693. https://doi.org/10.1067/mob.2002.127905

    Article  PubMed  Google Scholar 

  51. Hsu C-Y, Huang P-H, Chiang C-H, Leu H-B, Huang C-C, Chen J-W, Lin S-J (2013) Increased circulating endothelial apoptotic microparticle to endothelial progenitor cell ratio is associated with subsequent decline in glomerular filtration rate in hypertensive patients. PLOS ONE 8:e68644–e68644. https://doi.org/10.1371/journal.pone.0068644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Giannotti G, Doerries C, Mocharla PS, Mueller MF, Bahlmann FH, Horvàth T, Jiang H, Sorrentino SA, Steenken N, Manes C et al (2010) Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension. Hypertension 55:1389–1397

    Article  CAS  PubMed  Google Scholar 

  53. Tong Y, Ye C, Ren X-S, Qiu Y, Zang Y-H, Xiong X-Q, Wang J-J, Chen Q, Li Y-H, Kang Y-M et al (2018) Exosome-mediated transfer of ace (angiotensin-converting enzyme) from adventitial fibroblasts of spontaneously hypertensive rats promotes vascular smooth muscle cell migration. Hypertension 72:881–888

    Article  CAS  PubMed  Google Scholar 

  54. Blann AD, Lip GYH, Islim IF, Beevers DG (1997) Evidence of platelet activation in hypertension. J Hum Hypertens 11:607. https://doi.org/10.1038/sj.jhh.1000505

    Article  CAS  PubMed  Google Scholar 

  55. Nantakomol D, Imwong M, Mas-Oodi S, Plabplueng CD, Isarankura-Na-Ayudhya C, Prachayasittikul V, Nuchnoi P (2012) Increase membrane vesiculation in essential hypertension. Lab Med 43:6–9. https://doi.org/10.1309/LM0AKS1ZXDR1UAYW

    Article  Google Scholar 

  56. Osada-Oka M, Shiota M, Izumi Y, Nishiyama M, Tanaka M, Yamaguchi T, Sakurai E, Miura K, Iwao H (2017) Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens Res 40:353–360. https://doi.org/10.1038/hr.2016.163

    Article  CAS  PubMed  Google Scholar 

  57. Woollard KJ, Lumsden NG, Andrews KL, Aprico A, Harris E, Irvine JC, Jefferis A-m, Fang L, Kanellakis P, Bobik A et al (2014) Raised soluble p-selectin moderately accelerates atherosclerotic plaque progression. PLOS ONE 9:e97422. https://doi.org/10.1371/journal.pone.0097422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nomura S, Shouzu A, Omoto S, Nishikawa M, Iwasaka T (2004) Effects of losartan and simvastatin on monocyte-derived microparticles in hypertensive patients with and without type 2 diabetes mellitus. Clin Appl Thromb Hemost 10:133–141

    Article  CAS  PubMed  Google Scholar 

  59. Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, Xiao T, Schafer J, Lee ML, Schmittgen TD et al (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLOS ONE 3:e3694. https://doi.org/10.1371/journal.pone.0003694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Diehl P, Fricke A, Sander L, Stamm J, Bassler N, Htun N, Ziemann M, Helbing T, El-Osta A, Jowett JB et al (2012) Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res 93:633–644. https://doi.org/10.1093/cvr/cvs007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fabbiano F, Corsi J, Gurrieri E, Trevisan C, Notarangelo M, D’Agostino VG (2020) RNA packaging into extracellular vesicles: an orchestra of RNA-binding proteins? J Extracell Vesicles 10:e12043–e12043. https://doi.org/10.1002/jev2.12043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stahl PD, Raposo G (2019) Extracellular vesicles: exosomes and microvesicles, integrators of homeostasis. Physiology 34:169–177. https://doi.org/10.1152/physiol.00045.2018

    Article  CAS  PubMed  Google Scholar 

  63. de la Cuesta F, Baldan-Martin M, Moreno-Luna R, Alvarez-Llamas G, Gonzalez-Calero L, Mourino-Alvarez L, Sastre-Oliva T, López JA, Vázquez J, Ruiz-Hurtado G et al (2017) Kalirin and CHD7: novel endothelial dysfunction indicators in circulating extracellular vesicles from hypertensive patients with albuminuria. Oncotarget 8(9):15553–15562. https://doi.org/10.18632/oncotarget.14948

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kone BC, Kuncewicz T, Zhang W, Yu Z-Y (2003) Protein interactions with nitric oxide synthases: controlling the right time, the right place, and the right amount of nitric oxide. Am J Physiol-Ren Physiol 285:F178–F190. https://doi.org/10.1152/ajprenal.00048.2003

    Article  CAS  Google Scholar 

  65. Vion A-C, Ramkhelawon B, Loyer X, Chironi G, Devue C, Loirand G, Tedgui A, Lehoux S, Boulanger CM (2013) Shear stress regulates endothelial microparticle release. Circ Res 112:1323–1333

    Article  CAS  PubMed  Google Scholar 

  66. Boyd NH, Walker K, Ayokanmbi A, Gordon ER, Whetsel J, Smith CM, Sanchez RG, Lubin FD, Chakraborty A, Tran AN et al (2019) Chromodomain helicase DNA-binding protein 7 is suppressed in the perinecrotic/ischemic microenvironment and is a novel regulator of glioblastoma angiogenesis. St Cell 37:453–462. https://doi.org/10.1002/stem.2969

    Article  CAS  Google Scholar 

  67. Lakkappa N, Xu J, Mukerjee S, Lazartigues E (2021) ADAM17-enriched exosomes contribute to neuronal activation in hypertension. FASEB J. https://doi.org/10.1096/fasebj.2021.35.S1.03104

    Article  Google Scholar 

  68. Gooz M (2010) ADAM-17: the enzyme that does it all. Crit Rev Biochem Mol Biol 45:146–169. https://doi.org/10.3109/10409231003628015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Göoz P, Göoz M, Baldys A, Hoffman S (2009) ADAM-17 regulates endothelial cell morphology, proliferation, and in vitro angiogenesis. Biochem Biophys Res Commun 380:33–38. https://doi.org/10.1016/j.bbrc.2009.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nicolaou A, Zhao Z, Northoff BH, Sass K, Herbst A, Kohlmaier A, Chalaris A, Wolfrum C, Weber C, Steffens S et al (2017) Adam17 deficiency promotes atherosclerosis by enhanced TNFR2 signaling in mice. Arterioscler Thromb Vasc Biol 37:247–257

    Article  CAS  PubMed  Google Scholar 

  71. Liu X, Yuan W, Yang L, Li J, Cai J (2019) miRNA profiling of exosomes from spontaneous hypertensive rats using next-generation sequencing. J Cardiovasc Transl Res 12:75–83. https://doi.org/10.1007/s12265-017-9784-7

    Article  PubMed  Google Scholar 

  72. Zou X, Wang J, Chen C, Tan X, Huang Y, Jose PA, Yang J, Zeng C (2019) Secreted monocyte miR-27a, via mesenteric arterial mas receptor-eNOS pathway, causes hypertension. Am J Hypertens 33:31–42. https://doi.org/10.1093/ajh/hpz112

    Article  CAS  PubMed Central  Google Scholar 

  73. Tong Y, Ye C, Zheng F, Bo JH, Wu LL, Han Y, Zhou YB, Xiong XQ, Chen Q, Li YH et al (2021) Extracellular vesicle-mediated miR135a-5p transfer in hypertensive rat contributes to vascular smooth muscle cell proliferation via targeting FNDC5. Vascul Pharmacol. https://doi.org/10.1016/j.vph.2021.106864

    Article  PubMed  Google Scholar 

  74. Wang L, Bao H, Wang K-X, Zhang P, Yao Q-P, Chen X-H, Huang K, Qi Y-X, Jiang Z-L (2017) Secreted miR-27a induced by cyclic stretch modulates the proliferation of endothelial cells in hypertension via GRK6. Sci Rep 7:41058–41058. https://doi.org/10.1038/srep41058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Perez-Hernandez J, Riffo-Campos AL, Ortega A, Martinez-Arroyo O, Perez-Gil D, Olivares D, Solaz E, Martinez F, Martínez-Hervás S, Chaves FJ et al (2021) Urinary- and plasma-derived exosomes reveal a distinct microRNA signature associated with albuminuria in hypertension. Hypertension 77:960–971

    Article  CAS  PubMed  Google Scholar 

  76. Gu J, Zhang H, Ji B, Jiang H, Zhao T, Jiang R, Zhang Z, Tan S, Ahmed A, Gu Y (2017) Vesicle miR-195 derived from endothelial cells inhibits expression of serotonin transporter in vessel smooth muscle cells. Sci Rep 7:43546–43546. https://doi.org/10.1038/srep43546

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wu N, Ye C, Zheng F, Wan G-W, Wu L-L, Chen Q, Li Y-H, Kang Y-M, Zhu G-Q (2020) MiR155-5p Inhibits cell migration and oxidative stress in vascular smooth muscle cells of spontaneously hypertensive rats. Antioxidants 9:204. https://doi.org/10.3390/antiox9030204

    Article  CAS  PubMed Central  Google Scholar 

  78. Gonzalez-Calero L, Martínez PJ, Martin-Lorenzo M, Baldan-Martin M, Ruiz-Hurtado G, de la Cuesta F, Calvo E, Segura J, Lopez JA, Vázquez J et al (2017) Urinary exosomes reveal protein signatures in hypertensive patients with albuminuria. Oncotarget 8:44217–44231. https://doi.org/10.18632/oncotarget.17787

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kwon SH, Tang H, Saad A, Woollard JR, Lerman A, Textor SC, Lerman LO (2016) Differential expression of microRNAs in urinary extracellular vesicles obtained from hypertensive patients. Am J Kidney Dis 68:331–332. https://doi.org/10.1053/j.ajkd.2016.01.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jusic A, Devaux Y (2019) Noncoding RNAs in hypertension. Hypertension 74:477–492

    Article  CAS  PubMed  Google Scholar 

  81. Cengiz M, Yavuzer S, Kılıçkıran Avcı B, Yürüyen M, Yavuzer H, Dikici SA, Karataş ÖF, Özen M, Uzun H, Öngen Z (2015) Circulating miR-21 and eNOS in subclinical atherosclerosis in patients with hypertension. Clin Exp Hypertens 37:643–649. https://doi.org/10.3109/10641963.2015.1036064

    Article  CAS  PubMed  Google Scholar 

  82. Shu X, Mao Y, Li Z, Wang W, Chang Y, Liu S, Li XQ (2019) MicroRNA-93 regulates angiogenesis in peripheral arterial disease by targeting CDKN1A. Mol Med Rep 19:5195–5202. https://doi.org/10.3892/mmr.2019.10196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Choi Y-C, Yoon S, Jeong Y, Yoon J, Baek K (2011) Regulation of vascular endothelial growth factor signaling by miR-200b. Mol Cells 32:77–82. https://doi.org/10.1007/s10059-011-1042-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Perez-Hernandez J, Olivares D, Forner MJ, Ortega A, Solaz E, Martinez F, Chaves FJ, Redon J, Cortes R (2018) Urinary exosome miR-146a is a potential marker of albuminuria in essential hypertension. J Transl Med 16:228–228. https://doi.org/10.1186/s12967-018-1604-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cheng HS, Sivachandran N, Lau A, Boudreau E, Zhao JL, Baltimore D, Delgado-Olguin P, Cybulsky MI, Fish JE (2013) MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med 5:1017–1034. https://doi.org/10.1002/emmm.201202318

    Article  CAS  PubMed  Google Scholar 

  86. Chiva-Blanch G, Sala-Vila A, Crespo J, Ros E, Estruch R, Badimon L (2020) The Mediterranean diet decreases prothrombotic microvesicle release in asymptomatic individuals at high cardiovascular risk. Clin Nutr 39:3377–3384. https://doi.org/10.1016/j.clnu.2020.02.027

    Article  CAS  PubMed  Google Scholar 

  87. Santelli A, Sun IO, Eirin A, Abumoawad AM, Woollard JR, Lerman A, Textor SC, Puranik AS, Lerman LO (2019) Senescent kidney cells in hypertensive patients release urinary extracellular vesicles. J Am Heart Assoc 8:e012584–e012584. https://doi.org/10.1161/JAHA.119.012584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Textor SC, Lerman L (2010) Renovascular hypertension and ischemic nephropathy. Am J Hypertens 23:1159–1169. https://doi.org/10.1038/ajh.2010.174

    Article  CAS  PubMed  Google Scholar 

  89. Lerman LO, Nath KA, Rodriguez-Porcel M, Krier JD, Schwartz RS, Napoli C, Romero JC (2001) Increased oxidative stress in experimental renovascular hypertension. Hypertension 37:541–546

    Article  CAS  PubMed  Google Scholar 

  90. Kwon SH, Woollard JR, Saad A, Garovic VD, Zand L, Jordan KL, Textor SC, Lerman LO (2017) Elevated urinary podocyte-derived extracellular microvesicles in renovascular hypertensive patients. Nephrol Dial Transplant 32:800–807. https://doi.org/10.1093/ndt/gfw077

    Article  CAS  PubMed  Google Scholar 

  91. Sun IO, Santelli A, Abumoawad A, Eirin A, Ferguson CM, Woollard JR, Lerman A, Textor SC, Puranik AS, Lerman LO (2018) Loss of renal peritubular capillaries in hypertensive patients is detectable by urinary endothelial microparticle levels. Hypertension 72:1180–1188. https://doi.org/10.1161/HYPERTENSIONAHA.118.11766

    Article  CAS  PubMed  Google Scholar 

  92. Faure V, Dou L, Sabatier F, Cerini C, Sampol J, Berland Y, Brunet P, Dignat-George F (2006) Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost 4:566–573. https://doi.org/10.1111/j.1538-7836.2005.01780.x

    Article  CAS  PubMed  Google Scholar 

  93. Amabile N, Guérin AP, Leroyer A, Mallat Z, Nguyen C, Boddaert J, London GM, Tedgui A, Boulanger CM (2005) Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J Am Soc Nephrol 16:3381–3388. https://doi.org/10.1681/asn.2005050535

    Article  CAS  PubMed  Google Scholar 

  94. Anderson WP, Ramsey DE, Takata M (1990) Development of hypertension from unilateral renal artery stenosis in conscious dogs. Hypertension 16:441–451

    Article  CAS  PubMed  Google Scholar 

  95. Pisitkun T, Shen R-F, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 101:13368–13373. https://doi.org/10.1073/pnas.0403453101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, Hall DR, Warren CE, Adoyi G, Ishaku S (2018) Hypertensive disorders of pregnancy. Hypertension 72:24–43

    Article  CAS  PubMed  Google Scholar 

  97. Maher GM, O’Keeffe GW, Kenny LC, Kearney PM, Dinan TG, Khashan AS (2017) Hypertensive disorders of pregnancy and risk of neurodevelopmental disorders in the offspring: a systematic review and meta-analysis protocol. BMJ Open 7:e018313. https://doi.org/10.1136/bmjopen-2017-018313

    Article  PubMed  PubMed Central  Google Scholar 

  98. Marques FK, Campos FMF, Filho OAM, Carvalho AT, Dusse LMS, Gomes KB (2012) Circulating microparticles in severe preeclampsia. Clin Chim Acta 414:253–258. https://doi.org/10.1016/j.cca.2012.09.023

    Article  CAS  PubMed  Google Scholar 

  99. Ling L, Huang H, Zhu L, Mao T, Shen Q, Zhang H (2014) Evaluation of plasma endothelial microparticles in pre-eclampsia. J Int Med Res 42:42–51. https://doi.org/10.1177/0300060513504362

    Article  CAS  PubMed  Google Scholar 

  100. Hu C-C, Katerelos M, Choy S-W, Crossthwaite A, Walker SP, Pell G, Lee M, Cook N, Mount PF, Paizis K et al (2018) Pre-eclampsia is associated with altered expression of the renal sodium transporters NKCC2, NCC and ENaC in urinary extracellular vesicles. PLOS ONE 13:e0204514–e0204514. https://doi.org/10.1371/journal.pone.0204514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stanhewicz AE (2018) Residual vascular dysfunction in women with a history of preeclampsia. Am J Physiol Regul Integr Comp Physiol 315:R1062–R1071. https://doi.org/10.1152/ajpregu.00204.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Salomon C, Torres MJ, Kobayashi M, Scholz-Romero K, Sobrevia L, Dobierzewska A, Illanes SE, Mitchell MD, Rice GE (2014) A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLOS ONE 9:e98667. https://doi.org/10.1371/journal.pone.0098667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen Y, Huang P, Han C, Li J, Liu L, Zhao Z, Gao Y, Qin Y, Xu Q, Yan Y et al (2021) Association of placenta-derived extracellular vesicles with pre-eclampsia and associated hypercoagulability: a clinical observational study. BJOG 128:1037–1046. https://doi.org/10.1111/1471-0528.16552

    Article  CAS  PubMed  Google Scholar 

  104. Han C, Wang C, Chen Y, Wang J, Xu X, Hilton T, Cai W, Zhao Z, Wu Y, Li K et al (2020) Placenta-derived extracellular vesicles induce preeclampsia in mouse models. Haematologica 105:1686–1694. https://doi.org/10.3324/haematol.2019.226209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Truong G, Guanzon D, Kinhal V, Elfeky O, Lai A, Longo S, Nuzhat Z, Palma C, Scholz-Romero K, Menon R et al (2017) Oxygen tension regulates the miRNA profile and bioactivity of exosomes released from extravillous trophoblast cells—liquid biopsies for monitoring complications of pregnancy. PLOS ONE 12:e0174514–e0174514. https://doi.org/10.1371/journal.pone.0174514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Göhner C, Schlembach D, Schleussner E, Markert UR, Fitzgerald JS (2013) PP009. Hypoxia alters syncytiotrophoblastic microparticles (STBM)-related coagulation capacities. Pregnancy Hypertens 3:70. https://doi.org/10.1016/j.preghy.2013.04.037

    Article  PubMed  Google Scholar 

  107. Salem M, Kamal S, El Sherbiny W, Abdel Aal AA (2015) Flow cytometric assessment of endothelial and platelet microparticles in preeclampsia and their relation to disease severity and doppler parameters. Hematology 20:154–159. https://doi.org/10.1179/1607845414Y.0000000178

    Article  PubMed  Google Scholar 

  108. Petrozella L, Mahendroo M, Timmons B, Roberts S, McIntire D, Alexander JM (2012) Endothelial microparticles and the antiangiogenic state in preeclampsia and the postpartum period. Am J Obstet Gynecol 207:140.e20-140.e26. https://doi.org/10.1016/j.ajog.2012.06.011

    Article  CAS  Google Scholar 

  109. Bretelle F, Sabatier F, Desprez D, Camoin L, Grunebaum L, Combes V, D’Ercole C, Dignat-George F (2003) Circulating microparticles: a marker of procoagulant state in normal pregnancy and pregnancy complicated by preeclampsia or intrauterine growth restriction. Thromb Haemost 89:486–492

    Article  CAS  PubMed  Google Scholar 

  110. Campello E, Spiezia L, Radu CM, Dhima S, Visentin S, Valle FD, Tormene D, Woodhams B, Cosmi E, Simioni P (2015) Circulating microparticles in umbilical cord blood in normal pregnancy and pregnancy with preeclampsia. Thromb Res 136:427–431. https://doi.org/10.1016/j.thromres.2015.05.029

    Article  CAS  PubMed  Google Scholar 

  111. Gonzalez-Quintero VH, Smarkusky LP, Jimenez JJ, Mauro LM, Jy W, Hortsman LL, O’Sullivan MJ, Ahn YS (2004) Elevated plasma endothelial microparticles: preeclampsia versus gestational hypertension. Am J Obstet Gynecol 191:1418–1424. https://doi.org/10.1016/j.ajog.2004.06.044

    Article  CAS  PubMed  Google Scholar 

  112. Pillay P, Maharaj N, Moodley J, Mackraj I (2016) Placental exosomes and pre-eclampsia: maternal circulating levels in normal pregnancies and early and late onset pre-eclamptic pregnancies. Placenta 46:18–25. https://doi.org/10.1016/j.placenta.2016.08.078

    Article  CAS  PubMed  Google Scholar 

  113. Chen Y, Huang Y, Jiang R, Teng Y (2012) Syncytiotrophoblast-derived microparticle shedding in early-onset and late-onset severe pre-eclampsia. Int J Gynecol Obstet 119:234–238. https://doi.org/10.1016/j.ijgo.2012.07.010

    Article  Google Scholar 

  114. Goswami D, Tannetta DS, Magee LA, Fuchisawa A, Redman CW, Sargent IL, von Dadelszen P (2006) Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction. Placenta 27:56–61. https://doi.org/10.1016/j.placenta.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  115. Reyna-Villasmil E, Mejia-Montilla J, Reyna-Villasmil N, Torres-Cepeda D, Pena-Paredes E, Santos-Bolivar J, Perozo-Romero J (2011) Endothelial microparticles in preeclampsia and eclampsia. Med Clin (Barc) 136:522–526. https://doi.org/10.1016/j.medcli.2010.07.026

    Article  Google Scholar 

  116. Cerneca F, Ricci G, Simeone R, Malisano M, Alberico S, Guaschino S (1997) Coagulation and fibrinolysis changes in normal pregnancy. Increased levels of procoagulants and reduced levels of inhibitors during pregnancy induce a hypercoagulable state, combined with a reactive fibrinolysis. Eur J Obstet Gynecol Reprod Biol 73:31–36. https://doi.org/10.1016/s0301-2115(97)02734-6

    Article  CAS  PubMed  Google Scholar 

  117. Brenner B (2004) Haemostatic changes in pregnancy. Thromb Res 114:409–414. https://doi.org/10.1016/j.thromres.2004.08.004

    Article  CAS  PubMed  Google Scholar 

  118. Prisco D, Ciuti G, Falciani M (2009) Hemostatic changes in normal pregnancy. Nephrol Rev. https://doi.org/10.4081/hmr.v1i10.340

    Article  Google Scholar 

  119. Zhang Y, Hua Z, Zhang K, Meng K, Hu Y (2009) Therapeutic effects of anticoagulant agents on preeclampsia in a murine model induced by phosphatidylserine/phosphatidylcholine microvesicles. Placenta 30:1065–1070. https://doi.org/10.1016/j.placenta.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  120. Omatsu K, Kobayashi T, Murakami Y, Suzuki M, Ohashi R, Sugimura M, Kanayama N (2005) Phosphatidylserine/phosphatidylcholine microvesicles can induce preeclampsia-like changes in pregnant mice. Semin Thromb Hemost 31:314–320

    Article  CAS  PubMed  Google Scholar 

  121. Vinayagam V, Bobby Z, Habeebullah S, Chaturvedula L, Bharadwaj SK (2016) Plasma markers of endothelial dysfunction in patients with hypertensive disorders of pregnancy: a pilot study in a South Indian population. J Matern Fetal Neonatal Med 29:2077–2082. https://doi.org/10.3109/14767058.2015.1075200

    Article  CAS  PubMed  Google Scholar 

  122. Motta-Mejia C, Kandzija N, Zhang W, Mhlomi V, Cerdeira AS, Burdujan A, Tannetta D, Dragovic R, Sargent IL, Redman CW et al (2017) Placental vesicles carry active endothelial nitric oxide synthase and their activity is reduced in preeclampsia. Hypertension 70:372–381. https://doi.org/10.1161/HYPERTENSIONAHA.117.09321

    Article  CAS  PubMed  Google Scholar 

  123. Verma S, Pillay P, Naicker T, Moodley J, Mackraj I (2018) Placental hypoxia inducible factor −1α & CHOP immuno-histochemical expression relative to maternal circulatory syncytiotrophoblast micro-vesicles in preeclamptic and normotensive pregnancies. Eur J Obstet Gynecol Reprod Biol 220:18–24. https://doi.org/10.1016/j.ejogrb.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  124. Maduray K, Moodley J, Mackraj I (2020) The impact of circulating exosomes derived from early and late onset pre-eclamptic pregnancies on inflammatory cytokine secretion by BeWo cells. Eur J Obstet Gynecol Reprod Biol 247:156–162. https://doi.org/10.1016/j.ejogrb.2020.02.032

    Article  CAS  PubMed  Google Scholar 

  125. Collett GP, Redman CW, Sargent IL, Vatish M (2018) Endoplasmic reticulum stress stimulates the release of extracellular vesicles carrying danger-associated molecular pattern (DAMP) molecules. Oncotarget 9:6707–6717. https://doi.org/10.18632/oncotarget.24158

    Article  PubMed  PubMed Central  Google Scholar 

  126. Hu Y, Yan R, Zhang C, Zhou Z, Liu M, Wang C, Zhang H, Dong L, Zhou T, Wu Y et al (2018) High-mobility group box 1 from hypoxic trophoblasts promotes endothelial microparticle production and thrombophilia in preeclampsia. Arterioscler Thromb Vasc Biol 38:1381–1391. https://doi.org/10.1161/ATVBAHA.118.310940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dutta S, Lai A, Scholz-Romero K, Shiddiky MJA, Yamauchi Y, Mishra JS, Rice GE, Hyett J, Kumar S, Salomon C (2020) Hypoxia-induced small extracellular vesicle proteins regulate proinflammatory cytokines and systemic blood pressure in pregnant rats. Clin Sci 134:593–607. https://doi.org/10.1042/CS20191155

    Article  CAS  Google Scholar 

  128. Paisley KE, Beaman M, Tooke JE, Mohamed-Ali V, Lowe GDO, Shore AC (2003) Endothelial dysfunction and inflammation in asymptomatic proteinuria. Kidney Int 63:624–633. https://doi.org/10.1046/j.1523-1755.2003.00768.x

    Article  PubMed  Google Scholar 

  129. Cai W, Duan X-M, Liu Y, Yu J, Tang Y-L, Liu Z-L, Jiang S, Zhang C-P, Liu J-Y, Xu J-X (2017) Uric acid induces endothelial dysfunction by activating the HMGB1/RAGE signaling pathway. Biomed Res Int 2017:4391920–4391920. https://doi.org/10.1155/2017/4391920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mikhailova VA, Ovchinnikova OM, Zainulina MS, Sokolov DI, Sel’kov SA, (2014) Detection of microparticles of leukocytic origin in the peripheral blood in normal pregnancy and preeclampsia. Bull Exp Biol Med 157:751–756. https://doi.org/10.1007/s10517-014-2659-x

    Article  CAS  PubMed  Google Scholar 

  131. Kohli S, Ranjan S, Hoffmann J, Kashif M, Daniel EA, Al-Dabet MdM, Bock F, Nazir S, Huebner H, Mertens PR et al (2016) Maternal extracellular vesicles and platelets promote preeclampsia via inflammasome activation in trophoblasts. Blood 128:2153–2164. https://doi.org/10.1182/blood-2016-03-705434

    Article  CAS  PubMed  Google Scholar 

  132. Tannetta DS, Hunt K, Jones CI, Davidson N, Coxon CH, Ferguson D, Redman CW, Gibbins JM, Sargent IL, Tucker KL (2015) Syncytiotrophoblast extracellular vesicles from pre-eclampsia placentas differentially affect platelet function. PLOS ONE 10:e0142538–e0142538. https://doi.org/10.1371/journal.pone.0142538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gardiner C, Tannetta DS, Simms CA, Harrison P, Redman CWG, Sargent IL (2011) Syncytiotrophoblast microvesicles released from pre-eclampsia placentae exhibit increased tissue factor activity. PLOS ONE 6:e26313–e26313. https://doi.org/10.1371/journal.pone.0026313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li H, Han L, Yang Z, Huang W, Zhang X, Gu Y, Li Y, Liu X, Zhou L, Hu J et al (2015) Differential proteomic analysis of syncytiotrophoblast extracellular vesicles from early-onset severe preeclampsia, using 8-Plex iTRAQ labeling coupled with 2D nano LC-MS/MS. Cell Physiol Biochem 36:1116–1130. https://doi.org/10.1159/000430283

    Article  CAS  PubMed  Google Scholar 

  135. Shomer E, Katzenell S, Zipori Y, Sammour RN, Isermann B, Brenner B, Aharon A (2013) Microvesicles of women with gestational hypertension and preeclampsia affect human trophoblast fate and endothelial function. Hypertension 62:893–898

    Article  CAS  PubMed  Google Scholar 

  136. Baig S, Kothandaraman N, Manikandan J, Rong L, Ee KH, Hill J, Lai CW, Tan WY, Yeoh F, Kale A et al (2014) Proteomic analysis of human placental syncytiotrophoblast microvesicles in preeclampsia. Clin Proteomics 11:40

    Article  PubMed  PubMed Central  Google Scholar 

  137. Jia R, Li J, Rui C, Ji H, Ding H, Lu Y, De W, Sun L (2015) Comparative proteomic profile of the human umbilical cord blood exosomes between normal and preeclampsia pregnancies with high-resolution mass spectrometry. Cell Physiol Biochem 36:2299–2306. https://doi.org/10.1159/000430193

    Article  CAS  PubMed  Google Scholar 

  138. Gupta AK, Holzgreve W, Hahn S (2008) Decrease in lipid levels of syncytiotrophoblast micro-particles reduced their potential to inhibit endothelial cell proliferation. Arch Gynecol Obstet 277:115–119. https://doi.org/10.1007/s00404-007-0425-2

    Article  PubMed  Google Scholar 

  139. Baig S, Lim JY, Fernandis AZ, Wenk MR, Kale A, Su LL, Biswas A, Vasoo S, Shui G, Choolani M (2013) Lipidomic analysis of human placental syncytiotrophoblast microvesicles in adverse pregnancy outcomes. Placenta 34:436–442. https://doi.org/10.1016/j.placenta.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  140. Biró O, Alasztics B, Molvarec A, Joó J, Nagy B, Rigó J Jr (2017) Various levels of circulating exosomal total-miRNA and miR-210 hypoxamiR in different forms of pregnancy hypertension. Pregnancy Hypertens 10:207–212. https://doi.org/10.1016/j.preghy.2017.09.002

    Article  PubMed  Google Scholar 

  141. Cronqvist T, Tannetta D, Mörgelin M, Belting M, Sargent I, Familari M, Hansson SR (2017) Syncytiotrophoblast derived extracellular vesicles transfer functional placental miRNAs to primary human endothelial cells. Sci Rep 7:4558–4558. https://doi.org/10.1038/s41598-017-04468-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lok CA, Böing AN, Sargent IL, Sooranna SR, van der Post JA, Nieuwland R, Sturk A (2008) Circulating platelet-derived and placenta-derived microparticles expose Flt-1 in preeclampsia. Reprod Sci 15:1002–1010. https://doi.org/10.1177/1933719108324133

    Article  CAS  PubMed  Google Scholar 

  143. Contractor SF, Sooranna SR (1986) Monoclonal antibodies to cytotrophoblast and syncytiotrophoblast of human placenta. J Dev Physiol 8:277–282

    CAS  PubMed  Google Scholar 

  144. Pap E, Pállinger É, Falus A, Kiss AA, Kittel Á, Kovács P, Buzás EI (2008) T lymphocytes are targets for platelet- and trophoblast-derived microvesicles during pregnancy. Placenta 29:826–832. https://doi.org/10.1016/j.placenta.2008.06.006

    Article  CAS  PubMed  Google Scholar 

  145. Gill M, Motta-Mejia C, Kandzija N, Cooke W, Zhang W, Cerdeira AS, Bastie C, Redman C, Vatish M (2019) Placental syncytiotrophoblast-derived extracellular vesicles carry active NEP (Neprilysin) and are increased in preeclampsia. Hypertension 73:1112–1119. https://doi.org/10.1161/HYPERTENSIONAHA.119.12707

    Article  CAS  PubMed  Google Scholar 

  146. Bayes-Genis A, Barallat J, Richards AM (2016) A test in context: neprilysin: function, inhibition, and biomarker. J Am Coll Cardiol 68:639–653. https://doi.org/10.1016/j.jacc.2016.04.060

    Article  CAS  PubMed  Google Scholar 

  147. Biró O, Fóthi Á, Alasztics B, Nagy B, Orbán TI, Rigó J Jr (2019) Circulating exosomal and argonaute-bound microRNAs in preeclampsia. Gene 692:138–144. https://doi.org/10.1016/j.gene.2019.01.012

    Article  CAS  PubMed  Google Scholar 

  148. Shen L, Li Y, Li R, Diao Z, Yany M, Wu M, Sun H, Yan G, Hu Y (2018) Placenta-associated serum exosomal miR-155 derived from patients with preeclampsia inhibits eNOS expression in human umbilical vein endothelial cells. Int J Mol Med 41:1731–1739. https://doi.org/10.3892/ijmm.2018.3367

    Article  CAS  PubMed  Google Scholar 

  149. Sandrim V, Luizon M, Palei A, Tanus-Santos J, Cavalli R (2016) Circulating microRNA expression profiles in pre-eclampsia: evidence of increased miR-885-5p levels. BJOG 123:2120–2128. https://doi.org/10.1111/1471-0528.13903

    Article  CAS  PubMed  Google Scholar 

  150. Rodriguez-Rius A, Lopez S, Martinez-Perez A, Souto JC, Soria JM (2020) Identification of a plasma microRNA profile associated with venous thrombosis. Arterioscler Thromb Vasc Biol 40:1392–1399. https://doi.org/10.1161/atvbaha.120.314092

    Article  CAS  PubMed  Google Scholar 

  151. Wang Y, Du X, Wang J (2020) Transfer of miR-15a-5p by placental exosomes promotes pre-eclampsia progression by regulating PI3K/AKT signaling pathway via CDK1. Mol Immunol 128:277–286. https://doi.org/10.1016/j.molimm.2020.10.019

    Article  CAS  PubMed  Google Scholar 

  152. Hromadnikova I, Dvorakova L, Kotlabova K, Krofta L (2019) The prediction of gestational hypertension, preeclampsia and fetal growth restriction via the first trimester screening of plasma exosomal C19MC microRNAs. Int J Mol Sci 20:2972. https://doi.org/10.3390/ijms20122972

    Article  CAS  PubMed Central  Google Scholar 

  153. Cao M, Wen J, Bu C, Li C, Lin Y, Zhang H, Gu Y, Shi Z, Zhang Y, Long W et al (2021) Differential circular RNA expression profiles in umbilical cord blood exosomes from preeclampsia patients. BMC Pregnancy Childbirth 21:303. https://doi.org/10.1186/s12884-021-03777-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yang Z, Shan N, Deng Q, Wang Y, Hou Y, Mei J, Wu Z (2021) Extracellular vesicle-derived microRNA-18b ameliorates preeclampsia by enhancing trophoblast proliferation and migration via Notch2/TIM3/mTORC1 axis. J Cell Mol Med 25:4583–4595. https://doi.org/10.1111/jcmm.16234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lan NSH, Massam BD, Kulkarni SS, Lang CC (2018) Pulmonary arterial hypertension: pathophysiology and treatment. Diseases 6:38. https://doi.org/10.3390/diseases6020038

    Article  CAS  PubMed Central  Google Scholar 

  156. de la Cuesta F, Passalacqua I, Rodor J, Bhushan R, Denby L, Baker AH (2019) Extracellular vesicle cross-talk between pulmonary artery smooth muscle cells and endothelium during excessive TGF-β signalling: implications for PAH vascular remodelling. Cell Commun Signal 17:143–143. https://doi.org/10.1186/s12964-019-0449-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhao L, Luo H, Li X, Li T, He J, Qi Q, Liu Y, Yu Z (2017) Exosomes derived from human pulmonary artery endothelial cells shift the balance between proliferation and apoptosis of smooth muscle cells. Cardiology 137:43–53. https://doi.org/10.1159/000453544

    Article  CAS  PubMed  Google Scholar 

  158. Oliveira SDS, Chen J, Castellon M, Mao M, Raj JU, Comhair S, Erzurum S, Silva CLM, Machado RF, Bonini MG et al (2019) Injury-induced shedding of extracellular vesicles depletes endothelial cells of cav-1 (caveolin-1) and enables TGF-β (transforming growth factor-β)-dependent pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 39:1191–1202. https://doi.org/10.1161/ATVBAHA.118.312038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tual-Chalot S, Guibert C, Muller B, Savineau J-P, Andriantsitohaina R, Martinez MC (2010) Circulating microparticles from pulmonary hypertensive rats induce endothelial dysfunction. Am J Respir Crit Care Med 182:261–268. https://doi.org/10.1164/rccm.200909-1347OC

    Article  CAS  PubMed  Google Scholar 

  160. Zhang S, Liu J, Zheng K, Chen L, Sun Y, Yao Z, Sun Y, Lin Y, Lin K, Yuan L (2021) Exosomal miR-211 contributes to pulmonary hypertension via attenuating CaMK1/PPAR-γaxis. Vascul Pharmacol 136:106820. https://doi.org/10.1016/j.vph.2020.106820

    Article  CAS  PubMed  Google Scholar 

  161. Bacha NC, Levy M, Guerin CL, Le Bonniec B, Harroche A, Szezepanski I, Renard JM, Gaussem P, Israel-Biet D, Boulanger CM et al (2019) Treprostinil treatment decreases circulating platelet microvesicles and their procoagulant activity in pediatric pulmonary hypertension. Pediatr Pulmonol 54:66–72. https://doi.org/10.1002/ppul.24190

    Article  PubMed  Google Scholar 

  162. Ogawa A, Matsubara H (2020) Increased levels of platelet-derived microparticles in pulmonary hypertension. Thromb Res 195:120–124. https://doi.org/10.1016/j.thromres.2020.07.030

    Article  CAS  PubMed  Google Scholar 

  163. Amabile N, Heiss C, Real WM, Minasi P, McGlothlin D, Rame EJ, Grossman W, Marco TD, Yeghiazarians Y (2008) Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am J Respir Crit Care Med 177:1268–1275. https://doi.org/10.1164/rccm.200710-1458OC

    Article  CAS  PubMed  Google Scholar 

  164. Pamuk GE, Turgut B, Pamuk ON, Vural O, Demir M, Cakir N (2007) Increased circulating platelet-leucocyte complexes in patients with primary Raynaud’s phenomenon and Raynaud’s phenomenon secondary to systemic sclerosis: a comparative study. Blood Coagul Fibrinolysis 18:297–302. https://doi.org/10.1097/MBC.0b013e328010bd05

    Article  PubMed  Google Scholar 

  165. Khandagale A, Åberg M, Wikström G, Lind SB, Shevchenko G, Björklund E, Siegbahn A, Christersson C (2020) Role of extracellular vesicles in pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 40:2293–2309

    Article  CAS  PubMed  Google Scholar 

  166. Kosanovic D, Deo U, Gall H, Selvakumar B, Herold S, Weiss A, Petrovic A, Sydykov A, Ghofrani HA, Schermuly RT (2019) Enhanced circulating levels of CD3 cells-derived extracellular vesicles in different forms of pulmonary hypertension. Pulm Circ 9:2045894019864357–2045894019864357. https://doi.org/10.1177/2045894019864357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lin Z-B, Ci H-B, Li Y, Cheng T-P, Liu D-H, Wang Y-S, Xu J, Yuan H-X, Li H-M, Chen J et al (2017) Endothelial microparticles are increased in congenital heart diseases and contribute to endothelial dysfunction. J Transl Med 15:4–4. https://doi.org/10.1186/s12967-016-1087-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Blair LA, Haven AK, Bauer NN (2016) Circulating microparticles in severe pulmonary arterial hypertension increase intercellular adhesion molecule-1 expression selectively in pulmonary artery endothelium. Respir Res 17:133–133. https://doi.org/10.1186/s12931-016-0445-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rossi E, Bernabeu C, Smadja DM (2019) Endoglin as an adhesion molecule in mature and progenitor endothelial cells: a function beyond TGF-β. Front Med. https://doi.org/10.3389/fmed.2019.00010

    Article  Google Scholar 

  170. Bakouboula B, Morel O, Faure A, Zobairi F, Jesel L, Trinh A, Zupan M, Canuet M, Grunebaum L, Brunette A et al (2008) Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension. Am J Respir Crit Care Med 177:536–543. https://doi.org/10.1164/rccm.200706-840OC

    Article  CAS  PubMed  Google Scholar 

  171. Belik D, Tsang H, Wharton J, Howard L, Bernabeu C, Wojciak-Stothard B (2016) Endothelium-derived microparticles from chronically thromboembolic pulmonary hypertensive patients facilitate endothelial angiogenesis. J Biomed Sci 23:4. https://doi.org/10.1186/s12929-016-0224-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Aliotta JM, Pereira M, Amaral A, Sorokina A, Igbinoba Z, Hasslinger A, El-Bizri R, Rounds SI, Quesenberry PJ, Klinger JR (2013) Induction of pulmonary hypertensive changes by extracellular vesicles from monocrotaline-treated mice. Cardiovasc Res 100:354–362. https://doi.org/10.1093/cvr/cvt184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Aliotta JM, Pereira M, Wen S, Dooner MS, Del Tatto M, Papa E, Goldberg LR, Baird GL, Ventetuolo CE, Quesenberry PJ et al (2016) Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovasc Res 110:319–330. https://doi.org/10.1093/cvr/cvw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lipps C, Northe P, Figueiredo R, Rohde M, Brahmer A, Krämer-Albers E-M, Liebetrau C, Wiedenroth CB, Mayer E, Kriechbaum SD et al (2019) Non-invasive approach for evaluation of pulmonary hypertension using extracellular vesicle-associated small non-coding RNA. Biomolecules 9:666. https://doi.org/10.3390/biom9110666

    Article  CAS  PubMed Central  Google Scholar 

  175. Deng L, Blanco FJ, Stevens H, Lu R, Caudrillier A, McBride M, McClure JD, Grant J, Thomas M, Frid M et al (2015) MicroRNA-143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension. Circ Res 117:870–883. https://doi.org/10.1161/CIRCRESAHA.115.306806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Watts JA, Lee YY, Gellar MA, Fulkerson MB, Hwang SI, Kline JA (2012) Proteomics of microparticles after experimental pulmonary embolism. Thromb Res 130:122–128. https://doi.org/10.1016/j.thromres.2011.09.016

    Article  CAS  PubMed  Google Scholar 

  177. Amabile N, Heiss C, Chang V, Angeli FS, Damon L, Rame EJ, McGlothlin D, Grossman W, De Marco T, Yeghiazarians Y (2009) Increased CD62e(+) endothelial microparticle levels predict poor outcome in pulmonary hypertension patients. J Heart Lung Transpl 28:1081–1086. https://doi.org/10.1016/j.healun.2009.06.005

    Article  Google Scholar 

  178. Zhang S, Liu X, Ge LL, Li K, Sun Y, Wang F, Han Y, Sun C, Wang J, Jiang W et al (2020) Mesenchymal stromal cell-derived exosomes improve pulmonary hypertension through inhibition of pulmonary vascular remodeling. Respir Res 21:71–71. https://doi.org/10.1186/s12931-020-1331-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhang Z, Ge L, Zhang S, Wang J, Jiang W, Xin Q, Luan Y (2020) The protective effects of MSC-EXO against pulmonary hypertension through regulating Wnt5a/BMP signalling pathway. J Cell Mol Med 24:13938–13948. https://doi.org/10.1111/jcmm.16002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-Gonzalez A, Kourembanas S (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126:2601–2611. https://doi.org/10.1161/CIRCULATIONAHA.112.114173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Willis GR, Fernandez-Gonzalez A, Anastas J, Vitali SH, Liu X, Ericsson M, Kwong A, Mitsialis SA, Kourembanas S (2018) Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med 197:104–116. https://doi.org/10.1164/rccm.201705-0925OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Chaubey S, Thueson S, Ponnalagu D, Alam MA, Gheorghe CP, Aghai Z, Singh H, Bhandari V (2018) Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6. Stem Cell Res Ther 9:173–173. https://doi.org/10.1186/s13287-018-0903-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gąsecka A, Banaszkiewicz M, Nieuwland R, van der Pol E, Hajji N, Mutwil H, Rogula S, Rutkowska W, Pluta K, Eyileten C et al (2021) Prostacyclin analogues inhibit platelet reactivity, extracellular vesicle release and thrombus formation in patients with pulmonary arterial hypertension. J Clin Med 10:1024. https://doi.org/10.3390/jcm10051024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Paul O, Tao JQ, Guo X, Chatterjee S (2021) Chapter 1—The vascular system: components, signaling, and regulation. In: Chatterjee S (ed) Endothelial signaling in vascular dysfunction and disease. Academic Press, Cambridge, pp 3–13

    Chapter  Google Scholar 

  185. Carracedo J, Alique M, Vida C, Bodega G, Ceprián N, Morales E, Praga M, de Sequera P, Ramírez R (2020) Mechanisms of cardiovascular disorders in patients with chronic kidney disease: a process related to accelerated senescence. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2020.00185

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

PAB conceived this paper, performed the literature search, drafted and revised the manuscript, and approved the final version of this manuscript.

Corresponding author

Correspondence to Paul A. Brown.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Ethical approval

As this is a review article, ethical approval was not required.

Consent to publish

As this is a review article, consent was not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, P.A. Differential and targeted vesiculation: pathologic cellular responses to elevated arterial pressure. Mol Cell Biochem 477, 1023–1040 (2022). https://doi.org/10.1007/s11010-021-04351-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04351-7

Keywords

Navigation