Skip to main content

Advertisement

Log in

Atherosclerosis: nexus of vascular dynamics and cellular cross talks

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cardiovascular diseases (CVDs) are the foremost cause of mortality worldwide. Atherosclerosis is the underlying pathology behind CVDs. Atherosclerosis is manifested predominantly by lipid deposition, plaque formation, and inflammation in vascular intima. Initiation and progression of plaque require many years. With aging, atherosclerotic plaques become vulnerable. Localization of these plaques in the coronary artery leads to myocardial infarction. A complete understanding of the pathophysiology of this multifaceted disease is necessary to achieve the clinical goal to provide early diagnosis and the best therapeutics. The triggering factors of atherosclerosis are biomechanical forces, hyperlipidemia, and chronic inflammatory response. The current review focuses on crucial determinants involved in the disease, such as location, hemodynamic factors, oxidation of low-density lipoproteins, and the role of endothelial cells, vascular smooth muscle cells, and immune cells, and better therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable

Code availability

Not applicable.

References

  1. Wang S, Ren J (2018) Obesity paradox in aging: from prevalence to pathophysiology. Prog Cardiovasc Dis 61:182–189. https://doi.org/10.1016/j.pcad.2018.07.011

    Article  PubMed  Google Scholar 

  2. Curtiss LK (2009) Reversing atherosclerosis? N Engl J Med 360:1144–1146. https://doi.org/10.1056/NEJMcibr0810383

    Article  CAS  PubMed  Google Scholar 

  3. Morbiducci U, Kok AM, Kwak BR et al (2016) Atherosclerosis at arterial bifurcations: evidence for the role of haemodynamics and geometry. Thromb Haemost 115:484–492. https://doi.org/10.1160/TH15-07-0597

    Article  PubMed  Google Scholar 

  4. Kwak BR, Bäck M, Bochaton-Piallat M-L et al (2014) Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J 35:3013–3020. https://doi.org/10.1093/eurheartj/ehu353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Phan TG, Beare RJ, Jolley D et al (2012) Carotid artery anatomy and geometry as risk factors for carotid atherosclerotic disease. Stroke 43:1596–1601. https://doi.org/10.1161/STROKEAHA.111.645499

    Article  PubMed  Google Scholar 

  6. Warboys C (2011) The role of blood flow in determining the sites of atherosclerotic plaques. F1000 Medicine Reports 3:. https://doi.org/10.3410/M3-5

  7. Lu D, Kassab GS (2011) Role of shear stress and stretch in vascular mechanobiology. J R Soc Interface 8:1379–1385. https://doi.org/10.1098/rsif.2011.0177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng C (2005) Shear stress affects the intracellular distribution of eNOS: direct demonstration by a novel in vivo technique. Blood 106:3691–3698. https://doi.org/10.1182/blood-2005-06-2326

    Article  CAS  PubMed  Google Scholar 

  9. Dhawan SS, Avati Nanjundappa RP, Branch JR et al (2010) Shear stress and plaque development. Expert Rev Cardiovasc Ther 8:545–556. https://doi.org/10.1586/erc.10.28

    Article  PubMed  PubMed Central  Google Scholar 

  10. Versluis A, Bank AJ, Douglas WH (2006) Fatigue and plaque rupture in myocardial infarction. J Biomech 39:339–347. https://doi.org/10.1016/j.jbiomech.2004.10.041

    Article  PubMed  Google Scholar 

  11. Brooks AR, Lelkes PI, Rubanyi GM (2002) Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow. Physiol Genomics 9:27–41. https://doi.org/10.1152/physiolgenomics.00075.2001

    Article  CAS  PubMed  Google Scholar 

  12. Yang J, Cho K, Kim J et al (2014) Wall shear stress in hypertensive patients is associated with carotid vascular deformation assessed by speckle tracking strain imaging. Clinical Hypertension 20:10. https://doi.org/10.1186/2056-5909-20-10

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brown AJ, Teng Z, Evans PC et al (2016) Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat Rev Cardiol 13:210–220. https://doi.org/10.1038/nrcardio.2015.203

    Article  PubMed  Google Scholar 

  14. Sakakura K, Nakano M, Otsuka F et al (2013) Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ 22:399–411. https://doi.org/10.1016/j.hlc.2013.03.001

    Article  PubMed  Google Scholar 

  15. Meydani M (2001) Vitamin E and atherosclerosis: beyond prevention of LDL oxidation. J Nutr 131:366S-368S

    Article  CAS  PubMed  Google Scholar 

  16. Dugas TR, Morel DW, Harrison EH (1998) Impact of LDL carotenoid and alpha-tocopherol content on LDL oxidation by endothelial cells in culture. J Lipid Res 39:999–1007

    Article  CAS  PubMed  Google Scholar 

  17. Hevonoja T, Pentikäinen MO, Hyvönen MT, et al (2000) Structure of low density lipoprotein (LDL) particles: Basis for understanding molecular changes in modified LDL. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1488:189–210. https://doi.org/10.1016/S1388-1981(00)00123-2

  18. Itabe H (2009) Oxidative modification of LDL: its pathological role in atherosclerosis. Clinic Rev Allerg Immunol 37:4–11. https://doi.org/10.1007/s12016-008-8095-9

    Article  CAS  Google Scholar 

  19. Fogelstrand P, Borén J (2016) Catch and release: NG2-coated vascular smooth muscle cells capture lipoproteins for macrophages. Arterioscler Thromb Vasc Biol 36:7–8. https://doi.org/10.1161/ATVBAHA.115.306798

    Article  CAS  PubMed  Google Scholar 

  20. Mundi S, Massaro M, Scoditti E et al (2018) Endothelial permeability, LDL deposition, and cardiovascular risk factors—a review. Cardiovasc Res 114:35–52. https://doi.org/10.1093/cvr/cvx226

    Article  CAS  PubMed  Google Scholar 

  21. Yoshida H, Kisugi R (2010) Mechanisms of LDL oxidation. Clin Chim Acta 411:1875–1882. https://doi.org/10.1016/j.cca.2010.08.038

    Article  CAS  PubMed  Google Scholar 

  22. Parthasarathy S, Raghavamenon A, Garelnabi MO, Santanam N (2010) Oxidized low-density lipoprotein. In: Uppu RM, Murthy SN, Pryor WA, Parinandi NL (eds) Free radicals and antioxidant protocols. Humana Press, Totowa, NJ, pp 403–417

    Chapter  Google Scholar 

  23. Arai H, Berlett BS, Chock PB, Stadtman ER (2005) Effect of bicarbonate on iron-mediated oxidation of low-density lipoprotein. PNAS 102:10472–10477. https://doi.org/10.1073/pnas.0504685102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Satchell L, Leake DS (2012) Oxidation of low-density lipoprotein by iron at lysosomal pH: implications for atherosclerosis. Biochemistry 51:3767–3775. https://doi.org/10.1021/bi2017975

    Article  CAS  PubMed  Google Scholar 

  25. Steinberg D (1997) Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 272:20963–20966. https://doi.org/10.1074/jbc.272.34.20963

    Article  CAS  PubMed  Google Scholar 

  26. Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–355. https://doi.org/10.1016/j.cell.2011.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maingrette F, Renier G (2005) Linoleic Acid Increases Lectin-Like Oxidized LDL Receptor-1 (LOX-1) expression in human aortic endothelial cells. Diabetes 54:1506–1513. https://doi.org/10.2337/diabetes.54.5.1506

    Article  CAS  PubMed  Google Scholar 

  28. Thakkar S, Wang X, Khaidakov M et al (2015) Structure-based design targeted at LOX-1, a receptor for oxidized low-density lipoprotein. Sci Rep. https://doi.org/10.1038/srep16740

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chistiakov DA, Melnichenko AA, Myasoedova VA et al (2017) Mechanisms of foam cell formation in atherosclerosis. J Mol Med 95:1153–1165. https://doi.org/10.1007/s00109-017-1575-8

    Article  CAS  PubMed  Google Scholar 

  30. Parks BW, Lusis AJ (2013) Macrophage accumulation in atherosclerosis. N Engl J Med 369:2352–2353. https://doi.org/10.1056/NEJMcibr1312709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Robbins CS, Hilgendorf I, Weber GF et al (2013) Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 19:1166–1172. https://doi.org/10.1038/nm.3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ghattas A, Griffiths HR, Devitt A et al (2013) Monocytes in coronary artery disease and atherosclerosis: where are we now? J Am Coll Cardiol 62:1541–1551. https://doi.org/10.1016/j.jacc.2013.07.043

    Article  CAS  PubMed  Google Scholar 

  33. Jaipersad AS, Lip GYH, Silverman S, Shantsila E (2014) The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 63:1–11. https://doi.org/10.1016/j.jacc.2013.09.019

    Article  CAS  PubMed  Google Scholar 

  34. Rocha VZ, Libby P (2009) Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol 6:399–409. https://doi.org/10.1038/nrcardio.2009.55

    Article  CAS  PubMed  Google Scholar 

  35. Ouimet M, Marcel YL (2012) Regulation of lipid droplet cholesterol efflux from macrophage foam cells. Arterioscler Thromb Vasc Biol 32:575–581. https://doi.org/10.1161/ATVBAHA.111.240705

    Article  CAS  PubMed  Google Scholar 

  36. Glass CK, Witztum JL (2001) Atherosclerosis. the road ahead. Cell 104:503–516

    Article  CAS  PubMed  Google Scholar 

  37. Sekiya M, Osuga J-I, Igarashi M et al (2011) The role of neutral cholesterol ester hydrolysis in macrophage foam cells. J Atheroscler Thromb 18:359–364

    Article  CAS  PubMed  Google Scholar 

  38. Ghosh S (2012) Early steps in reverse cholesterol transport: cholesteryl ester hydrolase and other hydrolases. Curr Opinion Endocrinol Diabetes Obesity 19:136–141. https://doi.org/10.1097/MED.0b013e3283507836

    Article  CAS  Google Scholar 

  39. Yuan Y, Li P, Ye J (2012) Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell 3:173–181. https://doi.org/10.1007/s13238-012-2025-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trogan E, Feig JE, Dogan S et al (2006) Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc Natl Acad Sci 103:3781–3786. https://doi.org/10.1073/pnas.0511043103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gerszten RE, Tager AM (2012) The monocyte in atherosclerosis—should I stay or should I go now? N Engl J Med 366:1734–1736. https://doi.org/10.1056/NEJMcibr1200164

    Article  CAS  PubMed  Google Scholar 

  42. Mudau M, Genis A, Lochner A, Strijdom H (2012) Endothelial dysfunction : the early predictor of atherosclerosis. Cardiovasc J Afr 23:222–231. https://doi.org/10.5830/CVJA-2011-068

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tabas I, García-Cardeña G, Owens GK (2015) Recent insights into the cellular biology of atherosclerosis. J Cell Biol 209:13–22. https://doi.org/10.1083/jcb.201412052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cunningham KS, Gotlieb AI (2005) The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 85:9–23. https://doi.org/10.1038/labinvest.3700215

    Article  CAS  PubMed  Google Scholar 

  45. Hofmann A, Brunssen C, Poitz DM et al (2017) Lectin-like oxidized low-density lipoprotein receptor-1 promotes endothelial dysfunction in LDL receptor knockout background. Atheroscler Suppl 30:294–302. https://doi.org/10.1016/j.atherosclerosissup.2017.05.020

    Article  PubMed  Google Scholar 

  46. Gimbrone MA, García-Cardeña G (2016) Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 118:620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Davignon J (2004) Role of endothelial dysfunction in atherosclerosis. Circulation. https://doi.org/10.1161/01.CIR.0000131515.03336.f8

    Article  PubMed  Google Scholar 

  48. Evrard SM, Lecce L, Michelis KC et al (2016) Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun 7:11853. https://doi.org/10.1038/ncomms11853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen P-Y, Qin L, Baeyens N et al (2015) Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Investig 125:4514–4528. https://doi.org/10.1172/JCI82719

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bennett MR, Sinha S, Owens GK (2016) Vascular smooth muscle cells in atherosclerosis. Circ Res 118:692–702. https://doi.org/10.1161/CIRCRESAHA.115.306361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Newby A (2006) Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res 69:614–624. https://doi.org/10.1016/j.cardiores.2005.08.002

    Article  CAS  PubMed  Google Scholar 

  52. Ketelhuth DFJ, Bäck M (2011) The role of matrix metalloproteinases in atherothrombosis. Curr Atheroscler Rep 13:162–169. https://doi.org/10.1007/s11883-010-0159-7

    Article  CAS  PubMed  Google Scholar 

  53. Ushakumary MG, Wang M, V H, et al (2019) Discoidin domain Receptor 2: A determinant of metabolic syndrome-associated arterial fibrosis in non-human primates. PLoS ONE 14:e0225911. https://doi.org/10.1371/journal.pone.0225911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maiellaro K, Taylor W (2007) The role of the adventitia in vascular inflammation. Cardiovasc Res 75:640–648. https://doi.org/10.1016/j.cardiores.2007.06.023

    Article  CAS  PubMed  Google Scholar 

  55. Benditt EP (1977) The origin of atherosclerosis. Sci Am 236:74–85

    Article  CAS  PubMed  Google Scholar 

  56. Ferrara N, Gerber H-P, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676. https://doi.org/10.1038/nm0603-669

    Article  CAS  PubMed  Google Scholar 

  57. al GM et Segmental heterogeneity of vasa vasorum neovascularization in human coronary atherosclerosis. - PubMed - NCBI. https://www.ncbi.nlm.nih.gov/pubmed/20129528/. Accessed 26 Nov 2017

  58. Gössl M, Versari D, Mannheim D et al (2007) Increased spatial vasa vasorum density in the proximal LAD in hypercholesterolemia—Implications for vulnerable plaque-development. Atherosclerosis 192:246–252. https://doi.org/10.1016/j.atherosclerosis.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  59. Parma L, Baganha F, Quax PHA, de Vries MR (2017) Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur J Pharmacol 816:107–115. https://doi.org/10.1016/j.ejphar.2017.04.028

    Article  CAS  PubMed  Google Scholar 

  60. Badimon L, Vilahur G (2014) Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med 276:618–632. https://doi.org/10.1111/joim.12296

    Article  CAS  PubMed  Google Scholar 

  61. Bakogiannis C, Sachse M, Stamatelopoulos K, Stellos K (2017) Platelet-derived chemokines in inflammation and atherosclerosis. Cytokine. https://doi.org/10.1016/j.cyto.2017.09.013

    Article  PubMed  Google Scholar 

  62. Camera M, Brambilla M, Facchinetti L et al (2012) Tissue Factor and Atherosclerosis: Not only vessel wall-derived TF, but also platelet-associated TF. Thromb Res 129:279–284. https://doi.org/10.1016/j.thromres.2011.11.028

    Article  CAS  PubMed  Google Scholar 

  63. Costopoulos C, Huang Y, Brown AJ et al (2017) Plaque rupture in coronary atherosclerosis is associated with increased plaque structural stress. JACC Cardiovasc Imag. https://doi.org/10.1016/j.jcmg.2017.04.017

    Article  Google Scholar 

  64. Lee JM, Choi G, Hwang D et al (2017) Impact of longitudinal lesion geometry on location of plaque rupture and clinical presentations. JACC Cardiovasc Imaging 10:677–688. https://doi.org/10.1016/j.jcmg.2016.04.012

    Article  PubMed  Google Scholar 

  65. Pagiatakis C, Galaz R, Tardif J-C, Mongrain R (2015) A comparison between the principal stress direction and collagen fiber orientation in coronary atherosclerotic plaque fibrous caps. Med Biol Eng Compu 53:545–555. https://doi.org/10.1007/s11517-015-1257-z

    Article  Google Scholar 

  66. Lee K, Santibanez-Koref M, Polvikoski T et al (2013) Increased expression of fatty acid binding protein 4 and leptin in resident macrophages characterises atherosclerotic plaque rupture. Atherosclerosis 226:74–81. https://doi.org/10.1016/j.atherosclerosis.2012.09.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vergallo R, Crea F (2020) Atherosclerotic plaque healing. N Engl J Med 383:846–857. https://doi.org/10.1056/NEJMra2000317

    Article  CAS  PubMed  Google Scholar 

  68. Vergallo R, Porto I, D’Amario D et al (2019) Coronary atherosclerotic phenotype and plaque healing in patients with recurrent acute coronary syndromes compared with patients with long-term clinical stability: an in vivo optical coherence tomography study. JAMA Cardiol 4:321. https://doi.org/10.1001/jamacardio.2019.0275

    Article  PubMed  PubMed Central  Google Scholar 

  69. Koren MJ, Jones PH, Robinson JG et al (2020) A comparison of ezetimibe and evolocumab for atherogenic lipid reduction in four patient populations: a pooled efficacy and safety analysis of three phase 3 studies. Cardiol Ther 9:447–465. https://doi.org/10.1007/s40119-020-00181-8

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jeries H, Volkova N, Grajeda-Iglesias C et al (2020) Prednisone and its active metabolite prednisolone attenuate lipid accumulation in macrophages. J Cardiovasc Pharmacol Ther 25:174–186. https://doi.org/10.1177/1074248419883591

    Article  CAS  PubMed  Google Scholar 

  71. Ma J, Chen X (2021) Anti-inflammatory therapy for coronary atherosclerotic heart disease: unanswered questions behind existing successes. Front Cardiovasc Med 7:631398. https://doi.org/10.3389/fcvm.2020.631398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pillai SC, Borah A, Jacob EM, Kumar DS (2021) Nanotechnological approach to delivering nutraceuticals as promising drug candidates for the treatment of atherosclerosis. Drug Delivery 28:550–568. https://doi.org/10.1080/10717544.2021.1892241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ahmad F, Mitchell RD, Houben T et al (2021) Cysteamine decreases low-density lipoprotein oxidation, causes regression of atherosclerosis, and improves liver and muscle function in low-density lipoprotein receptor-deficient mice. JAHA. https://doi.org/10.1161/JAHA.120.017524

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gupta KK, Ali S, Sanghera RS (2019) Pharmacological options in atherosclerosis: a review of the existing evidence. Cardiol Ther 8:5–20. https://doi.org/10.1007/s40119-018-0123-0

    Article  CAS  PubMed  Google Scholar 

  75. Bäck M, Hansson GK (2015) Anti-inflammatory therapies for atherosclerosis. Nat Rev Cardiol 12:199–211. https://doi.org/10.1038/nrcardio.2015.5

    Article  CAS  PubMed  Google Scholar 

  76. Olszowy-Tomczyk M (2020) Synergistic, antagonistic and additive antioxidant effects in the binary mixtures. Phytochem Rev 19:63–103. https://doi.org/10.1007/s11101-019-09658-4

    Article  CAS  Google Scholar 

  77. Dasagrandhi D, R ASK, Muthuswamy A, et al (2018) Ischemia/reperfusion injury in male guinea pigs: An efficient model to investigate myocardial damage in cardiovascular complications. Biomed Pharmacother 99:469–479. https://doi.org/10.1016/j.biopha.2018.01.087

    Article  CAS  PubMed  Google Scholar 

  78. Ridker PM, Everett BM, Thuren T et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131. https://doi.org/10.1056/NEJMoa1707914

    Article  CAS  PubMed  Google Scholar 

  79. Yang J, Zhang L, Yu C et al (2014) Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomarker Research 2:1. https://doi.org/10.1186/2050-7771-2-1

    Article  PubMed  PubMed Central  Google Scholar 

  80. Idzkowska E, Eljaszewicz A, Miklasz P et al (2015) The role of different monocyte subsets in the pathogenesis of atherosclerosis and acute coronary syndromes. Scand J Immunol 82:163–173. https://doi.org/10.1111/sji.12314

    Article  CAS  PubMed  Google Scholar 

  81. Wildgruber M, Aschenbrenner T, Wendorff H et al (2016) The “Intermediate” CD14++CD16+ monocyte subset increases in severe peripheral artery disease in humans. Sci Rep. https://doi.org/10.1038/srep39483

    Article  PubMed  PubMed Central  Google Scholar 

  82. Stansfield BK, Ingram DA (2015) Clinical significance of monocyte heterogeneity. Clin Transl Med. https://doi.org/10.1186/s40169-014-0040-3

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cros J, Cagnard N, Woollard K et al (2010) Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33:375–386. https://doi.org/10.1016/j.immuni.2010.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thomas G, Tacke R, Hedrick CC, Hanna RN (2015) Nonclassical patrolling monocyte function in the vasculature. Arterioscler Thromb Vasc Biol 35:1306–1316. https://doi.org/10.1161/ATVBAHA.114.304650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chinetti-Gbaguidi G, Colin S, Staels B (2015) Macrophage subsets in atherosclerosis. Nat Rev Cardiol 12:10–17. https://doi.org/10.1038/nrcardio.2014.173

    Article  CAS  PubMed  Google Scholar 

  86. Colin S, Chinetti-Gbaguidi G, Staels B (2014) Macrophage phenotypes in atherosclerosis. Immunol Rev 262:153–166. https://doi.org/10.1111/imr.12218

    Article  CAS  PubMed  Google Scholar 

  87. Wilson HM (2010) Macrophages heterogeneity in atherosclerosis - implications for therapy. J Cell Mol Med 14:2055–2065. https://doi.org/10.1111/j.1582-4934.2010.01121.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gui T, Shimokado A, Sun Y et al (2012) Diverse roles of macrophages in atherosclerosis: from inflammatory biology to biomarker discovery. Mediators Inflamm. https://doi.org/10.1155/2012/693083

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bobryshev YV, Ivanova EA, Chistiakov DA et al (2016) Macrophages and their role in atherosclerosis: pathophysiology and transcriptome analysis. Biomed Res Int. https://doi.org/10.1155/2016/9582430

    Article  PubMed  PubMed Central  Google Scholar 

  90. Vinchi F, Muckenthaler MU, Da Silva MC et al (2014) Atherogenesis and iron: from epidemiology to cellular level. Front Pharmacol. https://doi.org/10.3389/fphar.2014.00094

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tse K, Tse H, Sidney J et al (2013) T cells in atherosclerosis. Int Immunol 25:615–622. https://doi.org/10.1093/intimm/dxt043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Okada R, Kondo T, Matsuki F et al (2008) Phenotypic classification of human CD4+ T cell subsets and their differentiation. Int Immunol 20:1189–1199. https://doi.org/10.1093/intimm/dxn075

    Article  CAS  PubMed  Google Scholar 

  93. Ammirati E, Moroni F, Magnoni M, Camici PG (2015) The role of T and B cells in human atherosclerosis and atherothrombosis. Clin Exp Immunol 179:173–187. https://doi.org/10.1111/cei.12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Iwata H, Manabe I, Nagai R (2013) Lineage of bone marrow-derived cells in atherosclerosis. Circ Res 112:1634–1647. https://doi.org/10.1161/circresaha.113.301384

    Article  CAS  PubMed  Google Scholar 

  95. Chistiakov DA, Orekhov AN, Bobryshev YV (2016) Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells. Immunobiology 221:1014–1033. https://doi.org/10.1016/j.imbio.2016.05.010

    Article  CAS  PubMed  Google Scholar 

  96. Brucklacher-Waldert V, Steinbach K, Lioznov M et al (2009) Phenotypical characterization of human Th17 cells unambiguously identified by surface IL-17A expression. J Immunol 183:5494–5501. https://doi.org/10.4049/jimmunol.0901000

    Article  CAS  PubMed  Google Scholar 

  97. Gotsman I, Sharpe AH, Lichtman AH (2008) T-cell costimulation and coinhibition in atherosclerosis. Circ Res 103:1220–1231. https://doi.org/10.1161/CIRCRESAHA.108.182428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dietel B, Cicha I, Voskens CJ et al (2013) Decreased numbers of regulatory T cells are associated with human atherosclerotic lesion vulnerability and inversely correlate with infiltrated mature dendritic cells. Atherosclerosis 230:92–99. https://doi.org/10.1016/j.atherosclerosis.2013.06.014

    Article  CAS  PubMed  Google Scholar 

  99. Zhuang J, Han Y, Xu D et al (2017) Comparison of circulating dendritic cell and monocyte subsets at different stages of atherosclerosis: insights from optical coherence tomography. BMC Cardiovasc Disord 17:270. https://doi.org/10.1186/s12872-017-0702-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Daissormont ITMN, Christ A, Temmerman L et al (2011) Plasmacytoid dendritic cells protect against atherosclerosis by tuning T-cell proliferation and activity. Circ Res 109:1387–1395. https://doi.org/10.1161/CIRCRESAHA.111.256529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV (2015) Myeloid dendritic cells: Development, functions, and role in atherosclerotic inflammation. Immunobiology 220:833–844. https://doi.org/10.1016/j.imbio.2014.12.010

    Article  CAS  PubMed  Google Scholar 

  102. Selathurai A, Deswaerte V, Kanellakis P et al (2014) Natural killer (NK) cells augment atherosclerosis by cytotoxic-dependent mechanisms. Cardiovasc Res 102:128–137. https://doi.org/10.1093/cvr/cvu016

    Article  CAS  PubMed  Google Scholar 

  103. van Puijvelde G, van Wanrooij E, Hauer A et al (2009) Effect of natural killer T cell activation on initiation of atherosclerosis. Thromb Haemost 102:223–230. https://doi.org/10.1160/TH09-01-0020

    Article  CAS  PubMed  Google Scholar 

  104. Montaldo E, Zotto GD, Chiesa MD et al (2013) Human NK cell receptors/markers: A tool to analyze NK cell development, subsets and function: Human NK Cell Receptors/Markers. Cytometry A 83A:702–713. https://doi.org/10.1002/cyto.a.22302

    Article  Google Scholar 

  105. Ionita MG, van den Borne P, Catanzariti LM et al (2010) High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions. Arterioscler Thromb Vasc Biol 30:1842–1848. https://doi.org/10.1161/ATVBAHA.110.209296

    Article  CAS  PubMed  Google Scholar 

  106. Getz GS, Reardon CA (2017) Natural killer T cells in atherosclerosis. Nat Rev Cardiol 14:304–314. https://doi.org/10.1038/nrcardio.2017.2

    Article  CAS  PubMed  Google Scholar 

  107. Sun J, Sukhova GK, Wolters PJ et al (2007) Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med 13:719–724. https://doi.org/10.1038/nm1601

    Article  CAS  PubMed  Google Scholar 

  108. Smith DD, Tan X, Raveendran VV et al (2012) Mast cell deficiency attenuates progression of atherosclerosis and hepatic steatosis in apolipoprotein E-null mice. Am J Physiol-Heart Circulatory Physiol 302:H2612–H2621. https://doi.org/10.1152/ajpheart.00879.2011

    Article  CAS  Google Scholar 

  109. Li Y (2001) Mast cells/basophils in the peripheral blood of allergic individuals who are HIV-1 susceptible due to their surface expression of CD4 and the chemokine receptors CCR3, CCR5, and CXCR4. Blood 97:3484–3490. https://doi.org/10.1182/blood.V97.11.3484

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to all the researchers whose work was not cited due to space limitations.

Funding

This work was financially supported by the Food and Nutrition project, Department of Biotechnology, India: Grant BT/PR6327/FNS/20/606/2012. ICMR Grant No: 2019-2605/CMB/Adhoc-BMS ; RUSA 2.0, Biologicals Sciences, Bharathidasan University, India.

Author information

Authors and Affiliations

Authors

Contributions

Divya Dasagrandhi has conceptualized, did the literature search, and has written the first draft of the manuscript. Anusuyadevi Muthuswamy provided valuable suggestions and corrected the manuscript. Jayachandran Kesavan Swaminathan added valuable suggestions, and monitored and corrected the manuscript.

Corresponding author

Correspondence to Jayachandran Kesavan Swaminathan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasagrandhi, D., Muthuswamy, A. & Swaminathan, J.K. Atherosclerosis: nexus of vascular dynamics and cellular cross talks. Mol Cell Biochem 477, 571–584 (2022). https://doi.org/10.1007/s11010-021-04307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04307-x

Keywords

Navigation