Skip to main content
Log in

The roles of microRNAs played in lung diseases via regulating cell apoptosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a type of endogenous non-coding short-chain RNA, which plays a crucial role in the regulation of many essential cellular functions, including cellular migration, proliferation, invasion, autophagy, oxidative stress, apoptosis, and differentiation. The lung can be damaged by pathogenic microorganisms, as well as physical or chemical factors. Research has confirmed that miRNAs and lung cell apoptosis can affect the development and progression of several lung diseases. This article reviews the role of miRNAs in the development of lung disease through regulating host cell apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Moghadasi M, Alivand M, Fardi M, Moghadam KS, Solali S (2020) Emerging molecular functions of microRNA-124: cancer pathology and therapeutic implications. Pathol Res Pract 216(3):152827. https://doi.org/10.1016/j.prp.2020.152827

    Article  CAS  PubMed  Google Scholar 

  2. Lin Y, Deng W, Pang J, Kemper T, Hu J, Yin J, Zhang J, Lu M (2017) The microRNA-99 family modulates hepatitis B virus replication by promoting IGF-1R/PI3K/Akt/mTOR/ULK1 signaling-induced autophagy. Cell Microbiol. https://doi.org/10.1111/cmi.12709

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shukla GC, Singh J, Barik S (2011) MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol 3(3):83–92

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Q, Ye B, Wang P, Yao F, Zhang C, Yu G (2019) Overview of microRNA-199a regulation in cancer. Cancer Manag Res 11:10327–10335. https://doi.org/10.2147/CMAR.S231971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854. https://doi.org/10.1016/0092-8674(93)90529-y

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, Jiang J, Liu W, Wang H, Zhao L, Liu S, Li P, Zhang S, Sun C, Wu Y, Yu S, Li X, Zhang H, Qian H, Zhang D, Guo F, Zhai Q, Ding Q, Wang L, Ying H (2018) microRNA-378 promotes autophagy and inhibits apoptosis in skeletal muscle. Proc Natl Acad Sci U S A 115(46):E10849–E10858. https://doi.org/10.1073/pnas.1803377115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pei Y, Yao Q, Li Y, Zhang X, Xie B (2019) microRNA-211 regulates cell proliferation, apoptosis and migration/invasion in human osteosarcoma via targeting EZRIN. Cell Mol Biol Lett 24:48. https://doi.org/10.1186/s11658-019-0173-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hui Y, Yin Y (2018) MicroRNA-145 attenuates high glucose-induced oxidative stress and inflammation in retinal endothelial cells through regulating TLR4/NF-κB signaling. Life Sci 207:212–218. https://doi.org/10.1016/j.lfs.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  9. D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43(6):582–592. https://doi.org/10.1002/cbin.11137

    Article  PubMed  Google Scholar 

  10. Hao XJ, Xu CZ, Wang JT, Li XJ, Wang MM, Gu YH, Liang ZG (2018) miR-21 promotes proliferation and inhibits apoptosis of hepatic stellate cells through targeting PTEN/PI3K/AKT pathway. J Recept Signal Transduct Res 38(5–6):455–461. https://doi.org/10.1080/10799893.2019.1585452

    Article  CAS  PubMed  Google Scholar 

  11. Liu HY, Zhang YY, Zhu BL, Feng FZ, Yan H, Zhang HY, Zhou B (2019) miR-21 regulates the proliferation and apoptosis of ovarian cancer cells through PTEN/PI3K/AKT. Eur Rev Med Pharmacol 23(10):4149–4155. https://doi.org/10.26355/eurrev_201905_17917

    Article  Google Scholar 

  12. Shanesazzade Z, Peymani M, Ghaedi K, Nasr Esfahani MH (2018) miR-34a/BCL-2 signaling axis contributes to apoptosis in MPP+ -induced SH-SY5Y cells. Mol Genet Genom Med 6(6):975–981. https://doi.org/10.1002/mgg3.469

    Article  CAS  Google Scholar 

  13. Su G, Sun G, Liu H, Shu L, Liang Z (2018) Downregulation of miR-34a promotes endothelial cell growth and suppresses apoptosis in atherosclerosis by regulating Bcl-2. Heart Vessels 33(10):1185–1194. https://doi.org/10.1007/s00380-018-1169-6

    Article  PubMed  Google Scholar 

  14. Porotto M, Ferren M, Chen YW, Siu Y, Makhsous N, Rima B, Briese T, Greninger AL, Snoeck HW, Moscona A (2019) Authentic modeling of human respiratory virus infection in human pluripotent stem cell-derived lung organoids. MBio 10(3):e00723-e1719. https://doi.org/10.1128/mBio.00723-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mandell LA (2015) Community-acquired pneumonia: An overview. Postgrad Med 127(6):607–615. https://doi.org/10.1080/00325481.2015.1074030

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xu X, Zhu Q, Niu F, Zhang R, Wang Y, Wang W, Sun D, Wang X, Wang A (2018) A2BAR activation attenuates acute lung injury by inhibiting alveolar epithelial cell apoptosis both in vivo and in vitro. Am J Physiol Cell Physiol 315(4):C558–C570. https://doi.org/10.1152/ajpcell.00294.2017

    Article  CAS  PubMed  Google Scholar 

  17. Sun YF, Kan Q, Yang Y, Zhang YH, Shen JX, Zhang C, Zhou XY (2018) Knockout of microRNA-26a promotes lung development and pulmonary surfactant synthesis. Mol Med Rep 17(4):5988–5995. https://doi.org/10.3892/mmr.2018.8602

    Article  CAS  PubMed  Google Scholar 

  18. Hetta HF, Zahran AM, El-Mahdy RI, Nabil EE, Esmaeel HM, Elkady OA, Elkady A, Mohareb DA, Mahmoud Mostafa M, John J (2019) Assessment of circulating miRNA-17 and miRNA-222 expression profiles as non-invasive biomarkers in Egyptian patients with non-small-cell lung cancer. Asian Pac J Cancer Prev 20(6):1927–1933. https://doi.org/10.31557/APJCP.2019.20.6.1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang D, Lee H, Wang X, Groot M, Sharma L, Dela Cruz CS, Jin Y (2019) A potential role of microvesicle-containing miR-223/142 in lung inflammation. Thorax 74(9):865–874. https://doi.org/10.1136/thoraxjnl-2018-212994

    Article  PubMed  Google Scholar 

  20. Yang K, Zou Z, Wu Y, Hu G (2020) MiR-195 suppression alleviates apoptosis and oxidative stress in CCl4-induced ALI in mice by targeting Pim-1. Exp Mol Pathol 115:104438. https://doi.org/10.1016/j.yexmp.2020.104438

    Article  CAS  PubMed  Google Scholar 

  21. Amri J, Molaee N, Karami H (2019) Up-regulation of MiRNA-125a-5p inhibits cell proliferation and increases EGFR-TKI induced apoptosis in lung cancer cells. Asian Pac J Cancer Prev 20(11):3361–3367. https://doi.org/10.31557/APJCP.2019.20.11.3361

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Jin H, Yu H, Wang B, Tang J (2017) miRNA-1284 inhibits cell growth and induces apoptosis of lung cancer cells. Mol Med Rep 16(3):3049–3054. https://doi.org/10.3892/mmr.2017.6949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang L, Nazarova EV, Russell DG (2019) Mycobacterium tuberculosis: bacterial fitness within the host macrophage. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.BAI-0001-2019

    Article  PubMed  Google Scholar 

  24. Xi X, Zhang C, Han W, Zhao H, Zhang H, Jiao J (2015) MicroRNA-223 is upregulated in active tuberculosis patients and inhibits apoptosis of macrophages by targeting FOXO3. Genet Test Mol Biomarkers 19(12):650–656. https://doi.org/10.1089/gtmb.2015.0090

    Article  CAS  PubMed  Google Scholar 

  25. Liang S, Song Z, Wu Y, Gao Y, Gao M, Liu F, Wang F, Zhang Y (2018) MicroRNA-27b modulates inflammatory response and apoptosis during Mycobacterium tuberculosis Infection. J Immunol 200(10):3506–3518. https://doi.org/10.4049/jimmunol.1701448

    Article  CAS  PubMed  Google Scholar 

  26. Zhao Z, Hao J, Li X, Chen Y, Qi X (2019) MiR-21-5p regulates mycobacterial survival and inflammatory responses by targeting Bcl-2 and TLR4 in Mycobacterium tuberculosis-infected macrophages. FEBS Lett 593(12):1326–1335. https://doi.org/10.1002/1873-3468.13438

    Article  CAS  PubMed  Google Scholar 

  27. Senichkin VV, Streletskaia AY, Zhivotovsky B, Kopeina GS (2019) Molecular comprehension of Mcl-1: from gene structure to cancer therapy. Trends Cell Biol 29(7):549–562. https://doi.org/10.1016/j.tcb.2019.03.004

    Article  CAS  PubMed  Google Scholar 

  28. Zhang D, Yi Z, Fu Y (2019) Downregulation of miR-20b-5p facilitates Mycobacterium tuberculosis survival in RAW 264.7 macrophages via attenuating the cell apoptosis by Mcl-1 upregulation. J Cell Biochem 120(4):5889–5896. https://doi.org/10.1002/jcb.27874

    Article  CAS  PubMed  Google Scholar 

  29. Sun Q, Shen X, Wang P, Ma J, Sha W (2019) Targeting cyclophilin-D by miR-1281 protects human macrophages from Mycobacterium tuberculosis-induced programmed necrosis and apoptosis. Aging (Albany NY) 11(24):12661–12673. https://doi.org/10.18632/aging.102593

    Article  CAS  Google Scholar 

  30. Huang J, Jiao J, Xu W, Zhao H, Zhang C, Shi Y, Xiao Z (2015) MiR-155 is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO3. Mol Med Rep 12(5):7102–7108. https://doi.org/10.3892/mmr.2015.4250

    Article  CAS  PubMed  Google Scholar 

  31. Li X, Yuan Z, Chen J, Wang T, Shen Y, Chen L, Wen F (2019) Microarray analysis reveals the changes of circular RNA expression and molecular mechanism in acute lung injury mouse model. J Cell Biochem 120(10):16658–16667. https://doi.org/10.1002/jcb.28924

    Article  CAS  PubMed  Google Scholar 

  32. Hagiwara J, Yamada M, Motoda N, Yokota H (2020) Intravenous immunoglobulin attenuates cecum ligation and puncture-induced acute lung injury by inhibiting apoptosis of alveolar epithelial cells. J Nippon Med Sch 87(3):129–137. https://doi.org/10.1272/jnms.JNMS.2020_87-303

    Article  CAS  PubMed  Google Scholar 

  33. Li W, Qiu X, Jiang H, Han Y, Wei D, Liu J (2016) Downregulation of miR-181a protects mice from LPS-induced acute lung injury by targeting Bcl-2. Biomed Pharmacother 84:1375–1382. https://doi.org/10.1016/j.biopha.2016.10.065

    Article  CAS  PubMed  Google Scholar 

  34. Ju M, Liu B, He H, Gu Z, Liu Y, Su Y, Zhu D, Cang J, Luo Z (2018) MicroRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting inflammation and apoptosis through modulating TLR4/MyD88/NF-κB pathway. Cell Cycle 17(16):2001–2018. https://doi.org/10.1080/15384101.2018.1509635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xie W, Lu Q, Wang K, Lu J, Gu X, Zhu D, Liu F, Guo Z (2018) miR-34b-5p inhibition attenuates lung inflammation and apoptosis in an LPS-induced acute lung injury mouse model by targeting progranulin. J Cell Physiol 233(9):6615–6631. https://doi.org/10.1002/jcp.26274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pan W, Wei N, Xu W, Wang G, Gong F, Li N (2019) MicroRNA-124 alleviates the lung injury in mice with septic shock through inhibiting the activation of the MAPK signaling pathway by downregulating MAPK14. Int Immunopharmacol 76:105835. https://doi.org/10.1016/j.intimp.2019.105835

    Article  CAS  PubMed  Google Scholar 

  37. Fang Y, Gao F, Hao J, Liu Z (2017) microRNA-1246 mediates lipopolysaccharide-induced pulmonary endothelial cell apoptosis and acute lung injury by targeting angiotensin-converting enzyme 2. Am J Transl Res 9(3):1287–1296

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ke XF, Fang J, Wu XN, Yu CH (2014) MicroRNA-203 accelerates apoptosis in LPS-stimulated alveolar epithelial cells by targeting PIK3CA. Biochem Biophys Res Commun 450(4):1297–1303. https://doi.org/10.1016/j.bbrc.2014.06.125

    Article  CAS  PubMed  Google Scholar 

  39. Thompson BT, Chambers RC, Liu KD (2017) Acute respiratory distress syndrome. N Engl J Med 377(6):562–572. https://doi.org/10.1056/NEJMra1608077

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y, Guan H, Zhang JL, Zheng Z, Wang HT, Tao K, Han SC, Su LL, Hu D (2018) Acute downregulation of miR-199a attenuates sepsis-induced acute lung injury by targeting SIRT1. Am J Physiol Cell Physiol 314(4):C449–C455. https://doi.org/10.1152/ajpcell.00173.2017

    Article  CAS  PubMed  Google Scholar 

  41. Cheng D, Zhu C, Liang Y, Xing Y, Shi C (2020) MiR-424 overexpression protects alveolar epithelial cells from LPS-induced apoptosis and inflammation by targeting FGF2 via the NF-κB pathway. Life Sci 242:117213. https://doi.org/10.1016/j.lfs.2019.117213

    Article  CAS  PubMed  Google Scholar 

  42. Zhu M, An Y, Zhang X, Wang Z, Duan H (2019) Experimental pulmonary fibrosis was suppressed by microRNA-506 through NF-kappa-mediated apoptosis and inflammation. Cell Tissue Res 378(2):255–265. https://doi.org/10.1007/s00441-019-03054-2

    Article  CAS  PubMed  Google Scholar 

  43. Hoy H, Lynch T, Beck M (2019) Surgical treatment of lung cancer. Crit Care Nurs Clin N Am 31(3):303–313. https://doi.org/10.1016/j.cnc.2019.05.002

    Article  Google Scholar 

  44. Shen M, Cai L, Jiang K, Xu W, Chen Y, Xu Z (2018) The therapeutic role of inhibition of miR-328 on pulmonary carcinoma induced by chlamydia pneumoniae through targeting histone H2AX. Cancer Biomark. https://doi.org/10.3233/CBM-181999

    Article  PubMed  Google Scholar 

  45. Wang J, Sheng Z, Cai Y (2019) Effects of microRNA-513b on cell proliferation, apoptosis, invasion, and migration by targeting HMGB3 through regulation of mTOR signaling pathway in non-small-cell lung cancer. J Cell Physiol 234(7):10934–10941. https://doi.org/10.1002/jcp.27921

    Article  CAS  PubMed  Google Scholar 

  46. Li Q, Wu X, Guo L, Shi J, Li J (2019) MicroRNA-7-5p induces cell growth inhibition, cell cycle arrest and apoptosis by targeting PAK2 in non-small cell lung cancer. FEBS Open Bio 9(11):1983–1993. https://doi.org/10.1002/2211-5463.12738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen W, Li X (2020) MiR-222-3p promotes cell proliferation and inhibits apoptosis by targeting PUMA (BBC3) in non-small cell lung cancer. Technol Cancer Res Treat 19:1533033820922558. https://doi.org/10.1177/1533033820922558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu M, Han T, Shi S, Chen E (2018) Long noncoding RNA HAGLROS regulates cell apoptosis and autophagy in lipopolysaccharides-induced WI-38 cells via modulating miR-100/NF-κB axis. Biochem Biophys Res Commun 500(3):589–596. https://doi.org/10.1016/j.bbrc.2018.04.109

    Article  CAS  PubMed  Google Scholar 

  49. Quan B, Zhang H, Xue R (2019) miR-141 alleviates LPS-induced inflammation injury in WI-38 fibroblasts by up-regulation of NOX2. Life Sci 216:271–278. https://doi.org/10.1016/j.lfs.2018.11.056

    Article  CAS  PubMed  Google Scholar 

  50. Zhang L, Dong L, Tang Y, Li M, Zhang M (2020) MiR-146b protects against the inflammation injury in pediatric pneumonia through MyD88/NF-κB signaling pathway. Infect Dis (Lond) 52(1):23–32. https://doi.org/10.1080/23744235.2019.1671987

    Article  CAS  Google Scholar 

  51. Wang Q, Li D, Han Y, Ding X, Xu T, Tang B (2017) MicroRNA-146 protects A549 and H1975 cells from LPS-induced apoptosis and inflammation injury. J Biosci 42(4):637–645. https://doi.org/10.1007/s12038-017-9715-4

    Article  CAS  PubMed  Google Scholar 

  52. Guo J, Cheng Y (2018) MicroRNA-1247 inhibits lipopolysaccharides-induced acute pneumonia in A549 cells via targeting CC chemokine ligand 16. Biomed Pharmacother 104:60–68. https://doi.org/10.1016/j.biopha.2018.05.012

    Article  CAS  PubMed  Google Scholar 

  53. Fei S, Cao L, Pan L (2018) microRNA-3941 targets IGF2 to control LPS-induced acute pneumonia in A549 cells. Mol Med Rep 17(3):4019–4026. https://doi.org/10.3892/mmr.2017.8369

    Article  CAS  PubMed  Google Scholar 

  54. Banno A, Reddy AT, Lakshmi SP, Reddy RC (2020) Bidirectional interaction of airway epithelial remodeling and inflammation in asthma. Clin Sci (Lond) 134(9):1063–1079. https://doi.org/10.1042/CS20191309

    Article  CAS  Google Scholar 

  55. Shi ZG, Sun Y, Wang KS, Jia JD, Yang J, Li YN (2019) Effects of miR-26a/miR-146a/miR-31 on airway inflammation of asthma mice and asthma children. Eur Rev Med Pharmacol Sci 23(12):5432–5440. https://doi.org/10.26355/eurrev_201906_18212

    Article  PubMed  Google Scholar 

  56. An SS, Bai TR, Bates JH, Black JL, Brown RH, Brusasco V, Chitano P, Deng L, Dowell M, Eidelman DH, Fabry B, Fairbank NJ, Ford LE, Fredberg JJ, Gerthoffer WT, Gilbert SH, Gosens R, Gunst SJ, Halayko AJ, Ingram RH, Irvin CG, James AL, Janssen LJ, King GG, Knight DA, Lauzon AM, Lakser OJ, Ludwig MS, Lutchen KR, Maksym GN, Martin JG, Mauad T, McParland BE, Mijailovich SM, Mitchell HW, Mitchell RW, Mitzner W, Murphy TM, Paré PD, Pellegrino R, Sanderson MJ, Schellenberg RR, Seow CY, Silveira PS, Smith PG, Solway J, Stephens NL, Sterk PJ, Stewart AG, Tang DD, Tepper RS, Tran T, Wang L (2007) Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. Eur Respir J 29(5):834–860. https://doi.org/10.1183/09031936.00112606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Borger P, Tamm M, Black JL, Roth M (2006) Asthma: is it due to an abnormal airway smooth muscle cell? Am J Respir Crit Care Med 174(4):367–372. https://doi.org/10.1164/rccm.200501-082PP

    Article  CAS  PubMed  Google Scholar 

  58. Li P, Lang X, Xia S (2019) Elevated expression of microRNA-378 in children with asthma aggravates airway remodeling by promoting the proliferation and apoptosis resistance of airway smooth muscle cells. Exp Ther Med 17(3):1529–1536. https://doi.org/10.3892/etm.2018.7141

    Article  CAS  PubMed  Google Scholar 

  59. Zhang H, Sun Z, Yu L, Sun J (2017) MiR-139-5p inhibits proliferation and promoted apoptosis of human airway smooth muscle cells by downregulating the Brg1 gene. Respir Physiol Neurobiol 246:9–16. https://doi.org/10.1016/j.resp.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  60. Yan YR, Luo Y, Zhong M, Shao L (2019) MiR-216a inhibits proliferation and promotes apoptosis of human airway smooth muscle cells by targeting JAK2. J Asthma 56(9):938–946. https://doi.org/10.1080/02770903.2018.1509991

    Article  CAS  PubMed  Google Scholar 

  61. Chen H, Guo SX, Zhang S, Li XD, Wang H, Li XW (2020) MiRNA-620 promotes TGF-β1-induced proliferation of airway smooth muscle cell through controlling PTEN/AKT signaling pathway. Kaohsiung J Med Sci 36(11):869–877. https://doi.org/10.1002/kjm2.12260

    Article  CAS  PubMed  Google Scholar 

  62. Gao Y, Wang B, Luo H, Zhang Q, Xu M (2018) miR-217 represses TGF-β1-induced airway smooth muscle cell proliferation and migration through targeting ZEB1. Biomed Pharmacother 108:27–35. https://doi.org/10.1016/j.biopha.2018.09.030

    Article  CAS  PubMed  Google Scholar 

  63. Chen M, Shi J, Zhang W, Huang L, Lin X, Lv Z, Zhang W, Liang R, Jiang S (2017) MiR-23b controls TGF-β1 induced airway smooth muscle cell proliferation via direct targeting of Smad3. Pulm Pharmacol Ther 42:33–42. https://doi.org/10.1016/j.pupt.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  64. Chen M, Huang L, Zhang W, Shi J, Lin X, Lv Z, Zhang W, Liang R, Jiang S (2016) MiR-23b controls TGF-β1 induced airway smooth muscle cell proliferation via TGFβR2/p-Smad3 signals. Mol Immunol 70:84–93. https://doi.org/10.1016/j.molimm.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  65. Bruzzaniti S, Bocchino M, Santopaolo M, Calì G, Stanziola AA, D’Amato M, Esposito A, Barra E, Garziano F, Micillo T, Zuchegna C, Romano A, De Simone S, Zuccarelli B, Mottola M, De Rosa V, Porcellini A, Perna F, Matarese G, Galgani M (2019) An immunometabolic pathomechanism for chronic obstructive pulmonary disease. Proc Natl Acad Sci USA 116(31):15625–15634. https://doi.org/10.1073/pnas.1906303116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xue H, Li MX (2018) MicroRNA-150 protects against cigarette smoke-induced lung inflammation and airway epithelial cell apoptosis through repressing p53: microRNA-150 in CS-induced lung inflammation. Hum Exp Toxicol 37(9):920–928. https://doi.org/10.1177/0960327117741749

    Article  CAS  PubMed  Google Scholar 

  67. Shen W, Liu J, Fan M, Wang S, Zhang Y, Wen L, Wang R, Wei W, Li N, Zhang Y, Zhao G (2018) MiR-3202 protects smokers from chronic obstructive pulmonary disease through inhibiting FAIM2: an in vivo and in vitro study. Exp Cell Res 362(2):370–377. https://doi.org/10.1016/j.yexcr.2017.11.038

    Article  CAS  PubMed  Google Scholar 

  68. Sun Y, An N, Li J, Xia J, Tian Y, Zhao P, Liu X, Huang H, Gao J, Zhang X (2019) miRNA-206 regulates human pulmonary microvascular endothelial cell apoptosis via targeting in chronic obstructive pulmonary disease. J Cell Biochem 120(4):6223–6236. https://doi.org/10.1002/jcb.27910

    Article  CAS  PubMed  Google Scholar 

  69. Zhuang Y, Dai J, Wang Y, Zhang H, Li X, Wang C, Cao M, Liu Y, Cai H, Zhang D, Wang Y (2016) MiR-338* suppresses fibrotic pathogenesis in pulmonary fibrosis through targeting LPA1. Am J Transl Res 8(7):3197–3205

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Li JX, Li Y, Xia T, Rong FY (2021) miR-21 exerts anti-proliferative and pro-apoptotic effects in LPS-induced WI-38 cells via directly targeting TIMP3. Cell Biochem Biophys. https://doi.org/10.1007/s12013-021-00987-w

    Article  PubMed  Google Scholar 

  71. Dai WJ, Qiu J, Sun J, Ma CL, Huang N, Jiang Y, Zeng J, Ren BC, Li WC, Li YH (2019) Downregulation of microRNA-9 reduces inflammatory response and fibroblast proliferation in mice with idiopathic pulmonary fibrosis through the ANO1-mediated TGF-β-Smad3 pathway. J Cell Physiol 234(3):2552–2565. https://doi.org/10.1002/jcp.26961

    Article  CAS  PubMed  Google Scholar 

  72. Xie T, Liang J, Geng Y, Liu N, Kurkciyan A, Kulur V, Leng D, Deng N, Liu Z, Song J, Chen P, Noble PW, Jiang D (2017) MicroRNA-29c prevents pulmonary fibrosis by regulating epithelial cell renewal and apoptosis. Am J Respir Cell Mol Biol 57(6):721–732. https://doi.org/10.1165/rcmb.2017-0133OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mao C, Zhang J, Lin S, Jing L, Xiang J, Wang M, Wang B, Xu P, Liu W, Song X, Lv C (2014) MiRNA-30a inhibits AECs-II apoptosis by blocking mitochondrial fission dependent on Drp-1. J Cell Mol Med 18(12):2404–2416. https://doi.org/10.1111/jcmm.12420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou Y, Chai X (2020) Protective effect of bicyclol against pulmonary fibrosis via regulation of microRNA-455-3p in rats. J Cell Biochem 121(1):651–660. https://doi.org/10.1002/jcb.29310

    Article  CAS  PubMed  Google Scholar 

  75. Kim D, George MP (2019) Pulmonary hypertension. Med Clin North Am 103(3):413–423. https://doi.org/10.1016/j.mcna.2018.12.002

    Article  PubMed  Google Scholar 

  76. Foshat M, Boroumand N (2017) The evolving classification of pulmonary hypertension. Arch Pathol Lab Med 141(5):696–703. https://doi.org/10.5858/arpa.2016-0035-RA

    Article  CAS  PubMed  Google Scholar 

  77. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43(12 Suppl S):13S-24S. https://doi.org/10.1016/j.jacc.2004.02.029

    Article  CAS  PubMed  Google Scholar 

  78. Bueno-Beti C, Hadri L, Hajjar RJ, Sassi Y (2018) The sugen 5416/hypoxia mouse model of pulmonary arterial hypertension. Methods Mol Biol 1816:243–252. https://doi.org/10.1007/978-1-4939-8597-5_19

    Article  CAS  PubMed  Google Scholar 

  79. Lu Z, Li S, Zhao S, Fa X (2016) Upregulated miR-17 regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation and apoptosis by targeting mitofusin 2. Med Sci Monit 22:3301–3308. https://doi.org/10.12659/msm.900487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhao M, Chen N, Li X, Lin L (2019) MiR-629 regulates hypoxic pulmonary vascular remodelling by targeting FOXO3 and PERP. J Cell Mol Med 23(8):5165–5175. https://doi.org/10.1111/jcmm.14385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang Y, Xu J (2016) MiR-140-5p regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and differentiation by targeting Dnmt1 and promoting SOD2 expression. Biochem Biophys Res Commun 473(1):342–348. https://doi.org/10.1016/j.bbrc.2016.03.116

    Article  CAS  PubMed  Google Scholar 

  82. Yang YZ, Zhang YF, Yang L, Xu J, Mo XM, Peng W (2018) miR-760 mediates hypoxia-induced proliferation and apoptosis of human pulmonary artery smooth muscle cells via targeting TLR4. Int J Mol Med 42(5):2437–2446. https://doi.org/10.3892/ijmm.2018.3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xiao R, Su Y, Feng T, Sun M, Liu B, Zhang J, Lu Y, Li J, Wang T, Zhu L, Hu Q (2017) Monocrotaline induces endothelial injury and pulmonary hypertension by targeting the extracellular calcium-sensing receptor. J Am Heart Assoc 6(4):e004865. https://doi.org/10.1161/JAHA.116.004865

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cai Z, Li J, Zhuang Q, Zhang X, Yuan A, Shen L, Kang K, Qu B, Tang Y, Pu J, Gou D, Shen J (2018) MiR-125a-5p ameliorates monocrotaline-induced pulmonary arterial hypertension by targeting the TGF-β1 and IL-6/STAT3 signaling pathways. Exp Mol Med 50(4):1–11. https://doi.org/10.1038/s12276-018-0068-3

    Article  CAS  PubMed  Google Scholar 

  85. Zhang W, Li Y, Xi X, Zhu G, Wang S, Liu Y, Song M (2020) MicroRNA-15a-5p induces pulmonary artery smooth muscle cell apoptosis in a pulmonary arterial hypertension model via the VEGF/p38/MMP-2 signaling pathway. Int J Mol Med 45(2):461–474. https://doi.org/10.3892/ijmm.2019.4434

    Article  CAS  PubMed  Google Scholar 

  86. Pépin G, Ferrand J, Gantier MP (2017) Assessing the off-target effects of miRNA inhibitors on innate immune toll-like receptors. Methods Mol Biol 1517:127–135. https://doi.org/10.1007/978-1-4939-6563-2_9

    Article  CAS  PubMed  Google Scholar 

  87. Tasaka S, Kamata H, Miyamoto K, Nakano Y, Shinoda H, Kimizuka Y, Fujiwara H, Hasegawa N, Fujishima S, Miyasho T, Ishizaka A (2009) Intratracheal synthetic CpG oligodeoxynucleotide causes acute lung injury with systemic inflammatory response. Respir Res 10(1):84. https://doi.org/10.1186/1465-9921-10-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kezic JM, McMenamin PG (2019) Systemic exposure to CpG-ODN elicits low-grade inflammation in the retina. Exp Eye Res 186:107708. https://doi.org/10.1016/j.exer.2019.107708

    Article  CAS  PubMed  Google Scholar 

  89. Seok H, Lee H, Jang ES, Chi SW (2018) Evaluation and control of miRNA-like off-target repression for RNA interference. Cell Mol Life Sci 75(5):797–814. https://doi.org/10.1007/s00018-017-2656-0

    Article  CAS  PubMed  Google Scholar 

  90. Grueter CE, van Rooij E, Johnson BA, DeLeon SM, Sutherland LB, Qi X, Gautron L, Elmquist JK, Bassel-Duby R, Olson EN (2012) A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell 149(3):671–683. https://doi.org/10.1016/j.cell.2012.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Smith KM, Guerau-de-Arellano M, Costinean S, Williams JL, Bottoni A, Mavrikis Cox G, Satoskar AR, Croce CM, Racke MK, Lovett-Racke AE, Whitacre CC (2012) miR-29ab1 deficiency identifies a negative feedback loop controlling Th1 bias that is dysregulated in multiple sclerosis. J Immunol 189(4):1567–1576. https://doi.org/10.4049/jimmunol.1103171

    Article  CAS  PubMed  Google Scholar 

  92. Wang Y, Zhang X, Li H, Yu J, Ren X (2013) The role of miRNA-29 family in cancer. Eur J Cell Biol 92(3):123–128. https://doi.org/10.1016/j.ejcb.2012.11.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hunan Province (2020JJ4527, 2019JJ50494), the Scientific Research Fund of Hunan Provincial Education Department (20A438) and the Fund of Hunan Key Laboratory (2019TP1027).

Author information

Authors and Affiliations

Authors

Contributions

QH had the idea for the article and drafted the manuscript. QH, LC, QB, TT, YZ, ZL and CL performed the literature search and revised the manuscript. LC and SC critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shenghua Chen or Lili Chen.

Ethics declarations

Competing interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Chen, L., Bai, Q. et al. The roles of microRNAs played in lung diseases via regulating cell apoptosis. Mol Cell Biochem 476, 4265–4275 (2021). https://doi.org/10.1007/s11010-021-04242-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04242-x

Keywords

Navigation