Skip to main content

Assessing the Off-Target Effects of miRNA Inhibitors on Innate Immune Toll-Like Receptors

  • Protocol
  • First Online:
Drug Target miRNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1517))

Abstract

MicroRNAs (miRNAs) are involved in most cellular processes and are deregulated in several diseases. Antisense miRNA oligonucleotides (AMOs) therefore present novel therapeutic opportunities. Currently, in vivo delivery of AMOs often relies on high doses of nucleic acids, with nonspecific uptake by most tissues. Critically, AMOs accumulate in phagocytic cells where they can interfere with immune functions, such as the activation of Toll-Like Receptors (TLRs). In this chapter, we describe a method to assess the possible off-target effects of AMOs on TLR7, 8, and 9 sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524. doi:10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  2. Erhard F, Haas J, Lieber D, Malterer G, Jaskiewicz L, Zavolan M, Dolken L, Zimmer R (2014) Widespread context dependency of microRNA-mediated regulation. Genome Res 24(6):906–919. doi:10.1101/gr.166702.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15(20):2654–2659. doi:10.1101/gad.927801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rose SD, Kim DH, Amarzguioui M, Heidel JD, Collingwood MA, Davis ME, Rossi JJ, Behlke MA (2005) Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res 33(13):4140–4156. doi:10.1093/nar/gki732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Filipowicz W (2005) RNAi: the nuts and bolts of the RISC machine. Cell 122(1):17–20. doi:10.1016/j.cell.2005.06.023

    Article  CAS  PubMed  Google Scholar 

  6. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63. doi:10.1038/nature07228

    Article  CAS  PubMed  Google Scholar 

  7. Hartig SM, Hamilton MP, Bader DA, McGuire SE (2015) The miRNA interactome in metabolic homeostasis. Trends Endocrinol Metab. doi:10.1016/j.tem.2015.09.006

    PubMed  PubMed Central  Google Scholar 

  8. Yang Q, Zhang RW, Sui PC, He HT, Ding L (2015) Dysregulation of non-coding RNAs in gastric cancer. World J Gastroenterol 21(39):10956–10981. doi:10.3748/wjg.v21.i39.10956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mizuguchi Y, Takizawa T, Yoshida H, Uchida E (2015) Dysregulated microRNAs in progression of hepatocellular carcinoma: a systematic review. Hepatol Res 46(5):391–406. doi:10.1111/hepr.12606

    Article  PubMed  Google Scholar 

  10. Hutvagner G, Simard MJ, Mello CC, Zamore PD (2004) Sequence-specific inhibition of small RNA function. PLoS Biol 2(4), E98. doi:10.1371/journal.pbio.0020098

    Article  PubMed  PubMed Central  Google Scholar 

  11. Meister G, Landthaler M, Dorsett Y, Tuschl T (2004) Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10(3):544–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baigude H, Rana TM (2014) Strategies to antagonize miRNA functions in vitro and in vivo. Nanomedicine (Lond) 9(16):2545–2555. doi:10.2217/nnm.14.162

    Article  CAS  Google Scholar 

  13. Beavers KR, Nelson CE, Duvall CL (2015) MiRNA inhibition in tissue engineering and regenerative medicine. Adv Drug Deliv Rev 88:123–137. doi:10.1016/j.addr.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  14. Janssen HL, Kauppinen S, Hodges MR (2013) HCV infection and miravirsen. N Engl J Med 369(9):878. doi:10.1056/NEJMc1307787

    CAS  PubMed  Google Scholar 

  15. Lennox KA, Behlke MA (2011) Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther 18(12):1111–1120. doi:10.1038/gt.2011.100

    Article  CAS  PubMed  Google Scholar 

  16. Lennox KA, Owczarzy R, Thomas DM, Walder JA, Behlke MA (2013) Improved performance of anti-miRNA oligonucleotides using a novel non-nucleotide modifier. Mol Ther Nucleic Acids 2:e117. doi:10.1038/mtna.2013.46

    Article  PubMed  PubMed Central  Google Scholar 

  17. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjarn M, Hansen HF, Berger U, Gullans S, Kearney P, Sarnow P, Straarup EM, Kauppinen S (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452(7189):896–899. doi:10.1038/nature06783

    Article  CAS  PubMed  Google Scholar 

  18. Khan AA, Betel D, Miller ML, Sander C, Leslie CS, Marks DS (2009) Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol 27(6):549–555. doi:10.1038/nbt.1543

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with 'antagomirs'. Nature 438(7068):685–689. doi:10.1038/nature04303

    Article  PubMed  Google Scholar 

  20. Butler M, Stecker K, Bennett CF (1997) Cellular distribution of phosphorothioate oligodeoxynucleotides in normal rodent tissues. Lab Invest 77(4):379–388

    CAS  PubMed  Google Scholar 

  21. Lendvai G, Velikyan I, Bergstrom M, Estrada S, Laryea D, Valila M, Salomaki S, Langstrom B, Roivainen A (2005) Biodistribution of 68Ga-labelled phosphodiester, phosphorothioate, and 2′-O-methyl phosphodiester oligonucleotides in normal rats. Eur J Pharm Sci 26(1):26–38. doi:10.1016/j.ejps.2005.04.017

    Article  CAS  PubMed  Google Scholar 

  22. White PJ, Anastasopoulos F, Pouton CW, Boyd BJ (2009) Overcoming biological barriers to in vivo efficacy of antisense oligonucleotides. Expert Rev Mol Med 11, e10. doi:10.1017/S1462399409001021

    Article  PubMed  Google Scholar 

  23. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303(5663):1529–1531. doi:10.1126/science.1093616

    Article  CAS  PubMed  Google Scholar 

  24. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303(5663):1526–1529. doi:10.1126/science.1093620

    Article  CAS  PubMed  Google Scholar 

  25. Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S, Akira S, Wagner H, Lipford GB (2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A 98(16):9237–9242. doi:10.1073/pnas.161293498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408(6813):740–745. doi:10.1038/35047123

    Article  CAS  PubMed  Google Scholar 

  27. Chuang TH, Ulevitch RJ (2000) Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw 11(3):372–378

    CAS  PubMed  Google Scholar 

  28. Juliano R, Bauman J, Kang H, Ming X (2009) Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm 6(3):686–695. doi:10.1021/mp900093r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, Akira S, Chang B, Duramad O, Coffman RL (2005) Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 202(8):1131–1139. doi:10.1084/jem.20050914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hamm S, Latz E, Hangel D, Muller T, Yu P, Golenbock D, Sparwasser T, Wagner H, Bauer S (2010) Alternating 2′-O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist. Immunobiology 215(7):559–569. doi:10.1016/j.imbio.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  31. Sarvestani ST, Stunden HJ, Behlke MA, Forster SC, McCoy CE, Tate MD, Ferrand J, Lennox KA, Latz E, Williams BR, Gantier MP (2015) Sequence-dependent off-target inhibition of TLR7/8 sensing by synthetic microRNA inhibitors. Nucleic Acids Res 43(2):1177–1188. doi:10.1093/nar/gku1343

    Article  CAS  PubMed  Google Scholar 

  32. Gorden KK, Qiu X, Battiste JJ, Wightman PP, Vasilakos JP, Alkan SS (2006) Oligodeoxynucleotides differentially modulate activation of TLR7 and TLR8 by imidazoquinolines. J Immunol 177(11):8164–8170

    Article  CAS  PubMed  Google Scholar 

  33. Ferrand J, Gantier MP (2015) Assessing the inhibitory activity of oligonucleotides on TLR7 sensing, vol Toll-like receptors. Methods Mol Biol 1390:79–90

    Article  Google Scholar 

  34. Zhou R, Li X, Hu G, Gong AY, Drescher KM, Chen XM (2012) MiR-16 targets transcriptional corepressor SMRT and modulates NF-kappaB-regulated transactivation of interleukin-8 gene. PLoS One 7(1):30772. doi:10.1371/journal.pone.0030772

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Frances Cribbin for her help with the redaction of this chapter. The authors are supported by funding from the Australian NHMRC (1062683 and 1081167 to M.P.G.); the Australian Research Council (140100594 Future Fellowship to M.P.G.); and the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Gantier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pépin, G., Ferrand, J., Gantier, M.P. (2017). Assessing the Off-Target Effects of miRNA Inhibitors on Innate Immune Toll-Like Receptors. In: Schmidt, M. (eds) Drug Target miRNA. Methods in Molecular Biology, vol 1517. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6563-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6563-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6561-8

  • Online ISBN: 978-1-4939-6563-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics