Skip to main content
Log in

Single dose of synthetic microRNA-199a or microRNA-149 mimic does not improve cardiac function in a murine model of myocardial infarction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Intramyocardial injection of synthetic microRNAs (miRs) has recently been reported to be beneficial after myocardial infarction (MI). We conducted a randomized blinded study to evaluate the efficacy and reproducibility of this strategy in a mouse model of reperfused MI using rigorous methodology. Mice undergoing a 60-min coronary occlusion followed by reperfusion were randomly assigned to control miR, hsa-miR-199a-3p, hsa-miR-149-3p, or hsa-miR-149-5p mimic treatment. Intramyocardial injections of miRs were performed in the border zone right after reperfusion. At 8 weeks after MI, there were no significant differences in ejection fraction (EF) among groups (EF = 27.1 ± 0.4% in control group [n = 6] and 25.9 ± 0.5%, 26.0 ± 0.8%, and 26.6 ± 0.6% in hsa-miR-199a-3p, hsa-miR-149-3p, or hsa-miR-149-5p groups, respectively [n = 9 each]). Net change (delta) in EF at 8 weeks compared with day 3 after MI was − 4.1% in control and − 3.2%, − 2.4%, and − 0.4% in the miR-treated groups (P = NS). Assessment of cardiac function by hemodynamic studies (a method independent of echocardiography) confirmed that there was no difference in left ventricular systolic or diastolic function among groups. Consistent with the functional data, histological analysis showed no difference in scar size, cardiomyocyte area, capillary density, collagen content, or apoptosis among groups. In conclusion, this randomized, blinded study demonstrates that intramyocardial injection of a single dose of synthetic hsa-miR-199a-3p, hsa-miR-149-3p, or hsa-miR-149-5p mimic does not improve cardiac function or remodeling in a murine model of reperfused MI. The strategy of using synthetic miR mimics for cardiac repair after MI needs to be evaluated with rigorous preclinical studies before its potential clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data and material are available from the corresponding author on reasonable request.

Abbreviations

miR:

MicroRNA

MI:

Myocardial infarction

LCA:

Left coronary artery

I/R:

Ischemia/reperfusion

ECG:

Electrocardiography

BrdU:

5-Bromo-2′-deoxyuridine

LV:

Left ventricle

EDV:

End-diastolic volume

ESV:

End-systolic volume

SV:

Stroke volume

EF:

Ejection fraction

PV loop:

Pressure–volume loop

Ees:

End-systolic elastance

Tau:

Relaxation time constant

IZ:

Infarct zone

BZ:

Border zone

RZ:

Remote zone

EdU:

Ethynyl-29-deoxyuridine

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  2. Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282. https://doi.org/10.1038/nrg3162

    Article  CAS  PubMed  Google Scholar 

  3. Uchida S, Bolli R (2018) Short and long noncoding RNAs regulate the epigenetic status of cells. Antioxid Redox Signal 29:832–845. https://doi.org/10.1089/ars.2017.7262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Condorelli G, Latronico MV, Dorn GW 2nd (2010) microRNAs in heart disease: putative novel therapeutic targets? Eur Heart J 31:649–658. https://doi.org/10.1093/eurheartj/ehp573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van Rooij E, Marshall WS, Olson EN (2008) Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res 103:919–928. https://doi.org/10.1161/CIRCRESAHA.108.183426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Olson EN (2014) MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci Transl Med 6:239ps3. https://doi.org/10.1126/scitranslmed.3009008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boon RA, Dimmeler S (2015) MicroRNAs in myocardial infarction. Nat Rev Cardiol 12:135–142. https://doi.org/10.1038/nrcardio.2014.207

    Article  CAS  PubMed  Google Scholar 

  8. Lesizza P, Prosdocimo G, Martinelli V, Sinagra G, Zacchigna S, Giacca M (2017) Single-dose intracardiac injection of pro-regenerative MicroRNAs improves cardiac function after myocardial infarction. Circ Res 120:1298–1304. https://doi.org/10.1161/CIRCRESAHA.116.309589

    Article  CAS  PubMed  Google Scholar 

  9. Gao F, Kataoka M, Liu N, Liang T, Huang ZP, Gu F, Ding J, Liu J, Zhang F, Ma Q, Wang Y, Zhang M, Hu X, Kyselovic J, Hu X, Pu WT, Wang J, Chen J, Wang DZ (2019) Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. Nat Commun 10:1802. https://doi.org/10.1038/s41467-019-09530-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramirez FD, Motazedian P, Jung RG, Di Santo P, MacDonald ZD, Moreland R, Simard T, Clancy AA, Russo JJ, Welch VA, Wells GA, Hibbert B (2017) Methodological rigor in preclinical cardiovascular studies: targets to enhance reproducibility and promote research translation. Circ Res 120:1916–1926. https://doi.org/10.1161/CIRCRESAHA.117.310628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bolli R (2021) CAESAR’s legacy: a new era of rigor in preclinical studies of cardioprotection. Basic Res Cardiol 116:33. https://doi.org/10.1007/s00395-021-00874-8

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bolli R (2019) Paul simpson and scientific rigor. Circ Res 124:194. https://doi.org/10.1161/CIRCRESAHA.118.314621

    Article  CAS  PubMed  Google Scholar 

  13. Bolli R (2017) New initiatives to improve the rigor and reproducibility of articles published in circulation research. Circ Res 121:472–479. https://doi.org/10.1161/CIRCRESAHA.117.311678

    Article  CAS  PubMed  Google Scholar 

  14. Bolli R (2015) Reflections on the irreproducibility of scientific papers. Circ Res 117:665–666. https://doi.org/10.1161/CIRCRESAHA.115.307496

    Article  CAS  PubMed  Google Scholar 

  15. Jones SP, Tang XL, Guo Y, Steenbergen C, Lefer DJ, Kukreja RC, Kong M, Li Q, Bhushan S, Zhu X, Du J, Nong Y, Stowers HL, Kondo K, Hunt GN, Goodchild TT, Orr A, Chang CC, Ockaili R, Salloum FN, Bolli R (2015) The NHLBI-sponsored Consortium for preclinicAl assESsment of cARdioprotective therapies (CAESAR): a new paradigm for rigorous, accurate, and reproducible evaluation of putative infarct-sparing interventions in mice, rabbits, and pigs. Circ Res 116:572–586. https://doi.org/10.1161/CIRCRESAHA.116.305462

    Article  CAS  PubMed  Google Scholar 

  16. Lefer DJ, Bolli R (2011) Development of an NIH consortium for preclinicAl AssESsment of CARdioprotective therapies (CAESAR): a paradigm shift in studies of infarct size limitation. J Cardiovasc Pharmacol Ther 16:332–339. https://doi.org/10.1177/1074248411414155

    Article  PubMed  Google Scholar 

  17. Bolli R, Becker L, Gross G, Mentzer R Jr, Balshaw D, Lathrop DA, NHLBI Working Group on the Translation of Therapies for Protecting the Heart from Ischemia (2004) Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res 95:125–134. https://doi.org/10.1161/01.RES.0000137171.97172.d7

    Article  CAS  PubMed  Google Scholar 

  18. Lindsey ML, Bolli R, Canty JM Jr, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G (2018) Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 314:H812–H838. https://doi.org/10.1152/ajpheart.00335.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lindsey ML, Kassiri Z, Virag JAI, de Castro Bras LE, Scherrer-Crosbie M (2018) Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol 314:H733–H752. https://doi.org/10.1152/ajpheart.00339.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zacchigna S, Paldino A, Falcao-Pires I, Daskalopoulos EP, Dal Ferro M, Vodret S, Lesizza P, Cannata A, Miranda-Silva D, Lourenco AP, Pinamonti B, Sinagra G, Weinberger F, Eschenhagen T, Carrier L, Kehat I, Tocchetti CG, Russo M, Ghigo A, Cimino J, Hirsch E, Dawson D, Ciccarelli M, Oliveti M, Linke WA, Cuijpers I, Heymans S, Hamdani N, de Boer M, Duncker D, Kuster D, van der Velden J, Beauloye C, Bertrand L, Mayr M, Giacca M, Leuschner F, Backs J, Thum T, Working Group on Myocardial Function of the European Society of C (2020) Toward standardization of echocardiography for the evaluation of left ventricular function in adult rodents: a position paper of the ESC Working Group on Myocardial Function. Cardiovasc Res. https://doi.org/10.1093/cvr/cvaa110

    Article  PubMed  PubMed Central  Google Scholar 

  21. Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492:376–381. https://doi.org/10.1038/nature11739

    Article  CAS  PubMed  Google Scholar 

  22. Gabisonia K, Prosdocimo G, Aquaro GD, Carlucci L, Zentilin L, Secco I, Ali H, Braga L, Gorgodze N, Bernini F, Burchielli S, Collesi C, Zandona L, Sinagra G, Piacenti M, Zacchigna S, Bussani R, Recchia FA, Giacca M (2019) MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569:418–422. https://doi.org/10.1038/s41586-019-1191-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Torrini C, Cubero RJ, Dirkx E, Braga L, Ali H, Prosdocimo G, Gutierrez MI, Collesi C, Licastro D, Zentilin L, Mano M, Zacchigna S, Vendruscolo M, Marsili M, Samal A, Giacca M (2019) Common regulatory pathways mediate activity of MicroRNAs inducing cardiomyocyte proliferation. Cell Rep 27:2759-2771 e5. https://doi.org/10.1016/j.celrep.2019.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu M, Xu L, Wang M, Guo T, Luo F, Su N, Yi S, Chen T (2018) miR149 promotes the myocardial differentiation of mouse bone marrow stem cells by targeting Dab2. Mol Med Rep 17:8502–8509. https://doi.org/10.3892/mmr.2018.8903

    Article  CAS  PubMed  Google Scholar 

  25. Ding SL, Wang JX, Jiao JQ, Tu X, Wang Q, Liu F, Li Q, Gao J, Zhou QY, Gu DF, Li PF (2013) A pre-microRNA-149 (miR-149) genetic variation affects miR-149 maturation and its ability to regulate the Puma protein in apoptosis. J Biol Chem 288:26865–26877. https://doi.org/10.1074/jbc.M112.440453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 105:13027–13032. https://doi.org/10.1073/pnas.0805038105

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mehra P, Guo Y, Nong Y, Lorkiewicz P, Nasr M, Li Q, Muthusamy S, Bradley JA, Bhatnagar A, Wysoczynski M, Bolli R, Hill BG (2018) Cardiac mesenchymal cells from diabetic mice are ineffective for cell therapy-mediated myocardial repair. Basic Res Cardiol 113:46. https://doi.org/10.1007/s00395-018-0703-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo Y, Wysoczynski M, Nong Y, Tomlin A, Zhu X, Gumpert AM, Nasr M, Muthusamy S, Li H, Book M, Khan A, Hong KU, Li Q, Bolli R (2017) Repeated doses of cardiac mesenchymal cells are therapeutically superior to a single dose in mice with old myocardial infarction. Basic Res Cardiol 112:18. https://doi.org/10.1007/s00395-017-0606-5

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cai C, Guo Y, Teng L, Nong Y, Tan M, Book MJ, Zhu X, Wang XL, Du J, Wu WJ, Xie W, Hong KU, Li Q, Bolli R (2015) Preconditioning human cardiac stem cells with an HO-1 inducer exerts beneficial effects after cell transplantation in the infarcted murine heart. Stem Cells 33:3596–3607. https://doi.org/10.1002/stem.2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guo Y, Tukaye DN, Wu WJ, Zhu X, Book M, Tan W, Jones SP, Rokosh G, Narumiya S, Li Q, Bolli R (2012) The COX-2/PGI2 receptor axis plays an obligatory role in mediating the cardioprotection conferred by the late phase of ischemic preconditioning. PLoS ONE 7:e41178. https://doi.org/10.1371/journal.pone.0041178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo Y, Flaherty MP, Wu WJ, Tan W, Zhu X, Li Q, Bolli R (2012) Genetic background, gender, age, body temperature, and arterial blood pH have a major impact on myocardial infarct size in the mouse and need to be carefully measured and/or taken into account: results of a comprehensive analysis of determinants of infarct size in 1,074 mice. Basic Res Cardiol 107:288. https://doi.org/10.1007/s00395-012-0288-y

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guo Y, Wu WJ, Qiu Y, Tang XL, Yang Z, Bolli R (1998) Demonstration of an early and a late phase of ischemic preconditioning in mice. Am J Physiol 275:H1375–H1387

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo Y, Nong Y, Li Q, Tomlin A, Kahlon A, Gumpert A, Slezak J, Zhu X, Bolli R (2020) Comparison of one and three intraventricular injections of cardiac progenitor cells in a murine model of chronic ischemic cardiomyopathy. Stem Cell Rev Rep. https://doi.org/10.1007/s12015-020-10063-0

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nong Y, Guo Y, Tomlin A, Zhu X, Wysoczynski M, Li Q, Bolli R (2021) Echocardiography-guided percutaneous left ventricular intracavitary injection as a cell delivery approach in infarcted mice. Mol Cell Biochem 476:2135–2148. https://doi.org/10.1007/s11010-021-04077-6

    Article  CAS  PubMed  Google Scholar 

  35. Hong KU, Guo Y, Li QH, Cao P, Al-Maqtari T, Vajravelu BN, Du J, Book MJ, Zhu X, Nong Y, Bhatnagar A, Bolli R (2014) c-kit+ Cardiac stem cells alleviate post-myocardial infarction left ventricular dysfunction despite poor engraftment and negligible retention in the recipient heart. PLoS ONE 9:e96725. https://doi.org/10.1371/journal.pone.0096725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hong KU, Li QH, Guo Y, Patton NS, Moktar A, Bhatnagar A, Bolli R (2013) A highly sensitive and accurate method to quantify absolute numbers of c-kit+ cardiac stem cells following transplantation in mice. Basic Res Cardiol 108:346. https://doi.org/10.1007/s00395-013-0346-0

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li Q, Guo Y, Wu WJ, Ou Q, Zhu X, Tan W, Yuan F, Chen N, Dawn B, Luo L, O’Brien E, Bolli R (2011) Gene transfer as a strategy to achieve permanent cardioprotection I: rAAV-mediated gene therapy with inducible nitric oxide synthase limits infarct size 1 year later without adverse functional consequences. Basic Res Cardiol 106:1355–1366. https://doi.org/10.1007/s00395-011-0207-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Q, Guo Y, Tan W, Ou Q, Wu WJ, Sturza D, Dawn B, Hunt G, Cui C, Bolli R (2007) Cardioprotection afforded by inducible nitric oxide synthase gene therapy is mediated by cyclooxygenase-2 via a nuclear factor-kappaB dependent pathway. Circulation 116:1577–1584. https://doi.org/10.1161/CIRCULATIONAHA.107.689810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li Q, Guo Y, Tan W, Stein AB, Dawn B, Wu WJ, Zhu X, Lu X, Xu X, Siddiqui T, Tiwari S, Bolli R (2006) Gene therapy with iNOS provides long-term protection against myocardial infarction without adverse functional consequences. Am J Physiol Heart Circ Physiol 290:H584–H589. https://doi.org/10.1152/ajpheart.00855.2005

    Article  CAS  PubMed  Google Scholar 

  40. Li Q, Guo Y, Xuan YT, Lowenstein CJ, Stevenson SC, Prabhu SD, Wu WJ, Zhu Y, Bolli R (2003) Gene therapy with inducible nitric oxide synthase protects against myocardial infarction via a cyclooxygenase-2-dependent mechanism. Circ Res 92:741–748. https://doi.org/10.1161/01.RES.0000065441.72685.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wysoczynski M, Guo Y, Moore JB, Muthusamy S, Li Q, Nasr M, Li H, Nong Y, Wu W, Tomlin AA, Zhu X, Hunt G, Gumpert AM, Book MJ, Khan A, Tang XL, Bolli R (2017) Myocardial reparative properties of cardiac mesenchymal cells isolated on the basis of adherence. J Am Coll Cardiol 69:1824–1838. https://doi.org/10.1016/j.jacc.2017.01.048

    Article  PubMed  PubMed Central  Google Scholar 

  42. Audam TN, Nong Y, Tomlin A, Jurkovic A, Li H, Zhu X, Long BW, Zheng YW, Weirick T, Brittian KR, Riggs DW, Gumpert A, Uchida S, Guo Y, Wysoczynski M, Jones SP (2020) Cardiac mesenchymal cells from failing and nonfailing hearts limit ventricular dilation when administered late after infarction. Am J Physiol Heart Circ Physiol 319:H109–H122. https://doi.org/10.1152/ajpheart.00114.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li Q, Bolli R, Qiu Y, Tang XL, Guo Y, French BA (2001) Gene therapy with extracellular superoxide dismutase protects conscious rabbits against myocardial infarction. Circulation 103:1893–1898

    Article  CAS  Google Scholar 

  44. Li RC, Ping P, Zhang J, Wead WB, Cao X, Gao J, Zheng Y, Huang S, Han J, Bolli R (2000) PKCepsilon modulates NF-kappaB and AP-1 via mitogen-activated protein kinases in adult rabbit cardiomyocytes. Am J Physiol Heart Circ Physiol 279:H1679–H1689. https://doi.org/10.1152/ajpheart.2000.279.4.H1679

    Article  CAS  PubMed  Google Scholar 

  45. Tang XL, Qiu Y, Park SW, Sun JZ, Kalya A, Bolli R (1996) Time course of late preconditioning against myocardial stunning in conscious pigs. Circ Res 79:424–434. https://doi.org/10.1161/01.res.79.3.424

    Article  CAS  PubMed  Google Scholar 

  46. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191. https://doi.org/10.3758/bf03193146

    Article  PubMed  Google Scholar 

  47. Zangi L, Hajjar RJ (2017) Synthetic MicroRNAs stimulate cardiac repair. Circ Res 120:1222–1223. https://doi.org/10.1161/CIRCRESAHA.117.310863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, Snitow M, Morley M, Li D, Petrenko N, Zhou S, Lu M, Gao E, Koch WJ, Stewart KM, Morrisey EE (2015) A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med 7:279ra38. https://doi.org/10.1126/scitranslmed.3010841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang CK, Kafert-Kasting S, Thum T (2020) Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ Res 126:663–678. https://doi.org/10.1161/CIRCRESAHA.119.315856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lucas T, Bonauer A, Dimmeler S (2018) RNA therapeutics in cardiovascular disease. Circ Res 123:205–220. https://doi.org/10.1161/CIRCRESAHA.117.311311

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health grants P01 HL078825 (RB) and UM1 HL113530 (RB).

Author information

Authors and Affiliations

Authors

Contributions

RB designed experiments, supervised study, and revised manuscript. YN performed experiments, analyzed data, and wrote manuscript. YG supervised findings. AG, QL, AT, and XZ performed experiments and analyzed data.

Corresponding author

Correspondence to Roberto Bolli.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

All animal procedures were performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the University of Louisville Institutional Animal Care and Use Committee (protocol number:14034).

Consent to participate

All the participants for the study have signed the written-informed consent.

Consent for publication

All of the authors have approved the final version of this manuscript and have consented to the submission of this manuscript to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

11010_2021_4227_MOESM2_ESM.tif

Supplementary file2 Gross measurements of body weight, lung weight, and LV mass. A. Body weight measured at each time point during the 8 wks of follow-up. B. Lung weight to body weight ratio at euthanasia and organs harvesting. C. LV mass measured after the heart was sectioned into three transverse slices. D. LV mass to body weight ratio. Data are mean ± SEM. (TIF 637 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nong, Y., Guo, Y., Gumpert, A. et al. Single dose of synthetic microRNA-199a or microRNA-149 mimic does not improve cardiac function in a murine model of myocardial infarction. Mol Cell Biochem 476, 4093–4106 (2021). https://doi.org/10.1007/s11010-021-04227-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04227-w

Keywords

Navigation