Skip to main content
Log in

Epigenetic regulation by DNA methyltransferases during torpor in the thirteen-lined ground squirrel Ictidomys tridecemlineatus

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The thirteen-lined ground squirrel, Ictidomys tridecemlineatus, is a mammal capable of lowering its Tb to almost 0 °C while undergoing deep torpor bouts over the winter. To decrease its metabolic rate to such a drastic extent, the squirrel must undergo multiple physiological, biological, and molecular alterations including downregulation of almost all nonessential processes. Epigenetic regulation allows for a dynamic range of transient phenotypes, allowing the squirrel to downregulate energy-expensive and nonessential pathways during torpor. DNA methylation is a prominent form of epigenetic regulation; therefore, the DNA methyltransferase (DNMT) family of enzymes were studied by measuring expression and activity levels of the five major proteins during torpor bouts. Additionally, specific cytosine marks on genomic DNA were quantified to further elucidate DNA methylation during hibernation. A tissue-specific response was observed that highlighted variant degrees of DNA methylation and DNMT expression/activity, demonstrating that DNA methylation is a highly complex form of epigenetic regulation and likely one of many regulatory mechanisms that enables metabolic rate depression in response to torpor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supporting materials.

References

  1. Martín-Subero JI (2011) How epigenomics brings phenotype into being. Pediatr Endocrinol Rev PER 9(Suppl 1):506–510

    PubMed  Google Scholar 

  2. Caiafa P, Zampieri M (2005) DNA methylation and chromatin structure: the puzzling CpG islands. J Cell Biochem 94:257–265. https://doi.org/10.1002/jcb.20325

    Article  CAS  PubMed  Google Scholar 

  3. Xu F, Mao C, Ding Y et al (2010) Molecular and enzymatic profiles of mammalian DNA methyltransferases: structures and targets for drugs. Curr Med Chem 17:4052–4071. https://doi.org/10.2174/092986710793205372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koivunen P, Laukka T (2018) The TET enzymes. Cell Mol Life Sci CMLS 75:1339–1348. https://doi.org/10.1007/s00018-017-2721-8

    Article  CAS  PubMed  Google Scholar 

  5. Shi D-Q, Ali I, Tang J, Yang W-C (2017) New insights into 5hmC DNA modification: generation, distribution and function. Front Genet 8:100. https://doi.org/10.3389/fgene.2017.00100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479. https://doi.org/10.1038/nature12750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Al-Mahdawi S, Virmouni SA, Pook MA (2014) The emerging role of 5-hydroxymethylcytosine in neurodegenerative diseases. Front Neurosci. https://doi.org/10.3389/fnins.2014.00397

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lyko F (2018) The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet 19:81–92. https://doi.org/10.1038/nrg.2017.80

    Article  CAS  PubMed  Google Scholar 

  9. Howlett KF, McGee SL (2016) Epigenetic regulation of skeletal muscle metabolism. Clin Sci Lond Engl 1979 130:1051–1063. https://doi.org/10.1042/CS20160115

    Article  CAS  Google Scholar 

  10. Wijenayake S, Storey KB (2016) The role of DNA methylation during anoxia tolerance in a freshwater turtle (Trachemys scripta elegans). J Comp Physiol [B] 186:333–342. https://doi.org/10.1007/s00360-016-0960-x

    Article  CAS  Google Scholar 

  11. Alvarado S, Mak T, Liu S et al (2015) Dynamic changes in global and gene-specific DNA methylation during hibernation in adult thirteen-lined ground squirrels, Ictidomys tridecemlineatus. J Exp Biol 218:1787–1795. https://doi.org/10.1242/jeb.116046

    Article  PubMed  Google Scholar 

  12. Storey KB (2015) Regulation of hypometabolism: insights into epigenetic controls. J Exp Biol 218:150–159. https://doi.org/10.1242/jeb.106369

    Article  PubMed  Google Scholar 

  13. Zhao Y, Chen M, Storey KB et al (2015) DNA methylation levels analysis in four tissues of sea cucumber Apostichopus japonicus based on fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) during aestivation. Comp Biochem Physiol B Biochem Mol Biol 181:26–32. https://doi.org/10.1016/j.cbpb.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  14. Alvarado S, Fernald RD, Storey KB, Szyf M (2014) The dynamic nature of DNA methylation: a role in response to social and seasonal variation. Integr Comp Biol 54:68–76. https://doi.org/10.1093/icb/icu034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lang-Ouellette D, Morin P (2014) Differential expression of miRNAs with metabolic implications in hibernating thirteen-lined ground squirrels, Ictidomys tridecemlineatus. Mol Cell Biochem 394:291–298. https://doi.org/10.1007/s11010-014-2105-4

    Article  CAS  PubMed  Google Scholar 

  16. Storey KB, Storey JM (2013) Molecular biology of freezing tolerance. Compr Physiol 3:1283–1308. https://doi.org/10.1002/cphy.c130007

    Article  PubMed  Google Scholar 

  17. Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181. https://doi.org/10.1152/physrev.00008.2003

    Article  CAS  PubMed  Google Scholar 

  18. Morin P, Storey KB (2006) Evidence for a reduced transcriptional state during hibernation in ground squirrels. Cryobiology 53:310–318. https://doi.org/10.1016/j.cryobiol.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  19. Srere HK, Wang LC, Martin SL (1992) Central role for differential gene expression in mammalian hibernation. Proc Natl Acad Sci USA 89:7119–7123. https://doi.org/10.1073/pnas.89.15.7119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu C-W, Storey KB (2012) Regulation of the mTOR signaling network in hibernating thirteen-lined ground squirrels. J Exp Biol 215:1720–1727. https://doi.org/10.1242/jeb.066225

    Article  CAS  PubMed  Google Scholar 

  21. Abnous K, Dieni CA, Storey KB (2012) Suppression of MAPKAPK2 during mammalian hibernation. Cryobiology 65:235–241. https://doi.org/10.1016/j.cryobiol.2012.06.009

    Article  CAS  PubMed  Google Scholar 

  22. Tessier SN, Storey KB (2010) Expression of myocyte enhancer factor-2 and downstream genes in ground squirrel skeletal muscle during hibernation. Mol Cell Biochem 344:151–162. https://doi.org/10.1007/s11010-010-0538-y

    Article  CAS  PubMed  Google Scholar 

  23. Tessier SN, Storey KB (2012) Myocyte enhancer factor-2 and cardiac muscle gene expression during hibernation in thirteen-lined ground squirrels. Gene 501:8–16. https://doi.org/10.1016/j.gene.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  24. Fujii G, Nakamura Y, Tsukamoto D et al (2006) CpG methylation at the USF-binding site is important for the liver-specific transcription of the chipmunk HP-27 gene. Biochem J 395:203–209. https://doi.org/10.1042/BJ20051802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yuan L, Geiser F, Lin B et al (2015) Down but not out: the role of microRNAs in hibernating bats. PLoS ONE. https://doi.org/10.1371/journal.pone.0135064

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wu C-W, Biggar KK, Luu BE et al (2016) Analysis of microRNA expression during the torpor-arousal cycle of a mammalian hibernator, the 13-lined ground squirrel. Physiol Genomics 48:388–396. https://doi.org/10.1152/physiolgenomics.00005.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tessier SN, Luu BE, Smith JC, Storey KB (2017) The role of global histone post-translational modifications during mammalian hibernation. Cryobiology 75:28–36. https://doi.org/10.1016/j.cryobiol.2017.02.008

    Article  CAS  PubMed  Google Scholar 

  28. Tessier SN, Storey KB (2014) To be or not to be: the regulation of mRNA fate as a survival strategy during mammalian hibernation. Cell Stress Chaperones 19:763–776. https://doi.org/10.1007/s12192-014-0512-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tessier SN, Audas TE, Wu C-W et al (2014) The involvement of mRNA processing factors TIA-1, TIAR, and PABP-1 during mammalian hibernation. Cell Stress Chaperones 19:813–825. https://doi.org/10.1007/s12192-014-0505-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Frigault JJ, Lang-Ouellette D, Morin P (2016) Up-regulation of long non-coding RNA TUG1 in hibernating thirteen-lined ground squirrels. Genomics Proteomics Bioinform 14:113–118. https://doi.org/10.1016/j.gpb.2016.03.004

    Article  Google Scholar 

  31. Biggar Y, Storey KB (2014) Global DNA modifications suppress transcription in brown adipose tissue during hibernation. Cryobiology 69:333–338. https://doi.org/10.1016/j.cryobiol.2014.08.008

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Storey KB (2016) RBioplot: an easy-to-use R pipeline for automated statistical analysis and data visualization in molecular biology and biochemistry. PeerJ 4:e2436. https://doi.org/10.7717/peerj.2436

    Article  PubMed  PubMed Central  Google Scholar 

  33. Storey KB (2010) Out cold: biochemical regulation of mammalian hibernation—a mini-review. Gerontology 56:220–230. https://doi.org/10.1159/000228829

    Article  PubMed  Google Scholar 

  34. Wang LCH, Lee TF (2011) Torpor and hibernation in mammals: metabolic, physiological, and biochemical adaptations. In: Comprehensive physiology. American Cancer Society, pp 507–532

  35. Laget S, Miotto B, Chin HG et al (2014) MBD4 cooperates with DNMT1 to mediate methyl-DNA repression and protects mammalian cells from oxidative stress. Epigenetics 9:546–556. https://doi.org/10.4161/epi.27695

    Article  PubMed  PubMed Central  Google Scholar 

  36. Deplus R, Brenner C, Burgers WA et al (2002) Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res 30:3831–3838. https://doi.org/10.1093/nar/gkf509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tessier SN, Zhang J, Biggar KK et al (2015) Regulation of the PI3K/AKT pathway and fuel utilization during primate torpor in the gray mouse lemur, microcebus murinus. Genomics Proteomics Bioinformatics 13:91–102. https://doi.org/10.1016/j.gpb.2015.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Logan SM, Tessier SN, Tye J, Storey KB (2016) Response of the JAK-STAT pathway to mammalian hibernation in 13-lined ground squirrel striated muscle. Mol Cell Biochem 414:115–127. https://doi.org/10.1007/s11010-016-2665-6

    Article  CAS  PubMed  Google Scholar 

  39. Wilbur SM, Barnes BM, Kitaysky AS, Williams CT (2019) Tissue-specific telomere dynamics in hibernating arctic ground squirrels (Urocitellus parryii). J Exp Biol. https://doi.org/10.1242/jeb.204925

    Article  PubMed  PubMed Central  Google Scholar 

  40. Logan SM, Storey KB (2016) Tissue-specific response of carbohydrate-responsive element binding protein (ChREBP) to mammalian hibernation in 13-lined ground squirrels. Cryobiology 73:103–111. https://doi.org/10.1016/j.cryobiol.2016.09.002

    Article  CAS  PubMed  Google Scholar 

  41. Jansen HT, Trojahn S, Saxton MW et al (2019) Hibernation induces widespread transcriptional remodeling in metabolic tissues of the grizzly bear. Commun Biol 2:1–10. https://doi.org/10.1038/s42003-019-0574-4

    Article  CAS  Google Scholar 

  42. Nelson OL, Rourke BC (2013) Increase in cardiac myosin heavy-chain (MyHC) alpha protein isoform in hibernating ground squirrels, with echocardiographic visualization of ventricular wall hypertrophy and prolonged contraction. J Exp Biol 216:4678–4690. https://doi.org/10.1242/jeb.088773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nelson OL, Robbins CT, Wu Y, Granzier H (2008) Titin isoform switching is a major cardiac adaptive response in hibernating grizzly bears. Am J Physiol Heart Circ Physiol 295:H366-371. https://doi.org/10.1152/ajpheart.00234.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barrows ND, Nelson OL, Robbins CT, Rourke BC (2011) Increased cardiac alpha-myosin heavy chain in left atria and decreased myocardial insulin-like growth factor (Igf-I) expression accompany low heart rate in hibernating grizzly bears. Physiol Biochem Zool PBZ 84:1–17. https://doi.org/10.1086/657589

    Article  CAS  PubMed  Google Scholar 

  45. Ren W, Gao L, Song J (2018) Structural basis of DNMT1 and DNMT3A-mediated DNA methylation. Genes. https://doi.org/10.3390/genes9120620

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wu C-W, Storey KB (2012) Pattern of cellular quiescence over the hibernation cycle in liver of thirteen-lined ground squirrels. Cell Cycle Georget Tex 11:1714–1726. https://doi.org/10.4161/cc.19799

    Article  CAS  Google Scholar 

  47. Jeltsch A, Jurkowska RZ (2014) New concepts in DNA methylation. Trends Biochem Sci 39:310–318. https://doi.org/10.1016/j.tibs.2014.05.002

    Article  CAS  PubMed  Google Scholar 

  48. Zhang J, Hawkins LJ, Storey KB (2020) DNA methylation and regulation of DNA methyltransferases in a freeze-tolerant vertebrate. Biochem Cell Biol Biochim Biol Cell 98:145–153. https://doi.org/10.1139/bcb-2019-0091

    Article  CAS  Google Scholar 

  49. Goll MG, Kirpekar F, Maggert KA et al (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311:395–398. https://doi.org/10.1126/science.1120976

    Article  CAS  PubMed  Google Scholar 

  50. Jeltsch A, Ehrenhofer-Murray A, Jurkowski TP et al (2017) Mechanism and biological role of Dnmt2 in nucleic acid methylation. RNA Biol 14:1108–1123. https://doi.org/10.1080/15476286.2016.1191737

    Article  PubMed  Google Scholar 

  51. Pacaud R, Sery Q, Oliver L et al (2014) DNMT3L interacts with transcription factors to target DNMT3L/DNMT3B to specific DNA sequences: role of the DNMT3L/DNMT3B/p65-NFκB complex in the (de-)methylation of TRAF1. Biochimie 104:36–49. https://doi.org/10.1016/j.biochi.2014.05.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by a discovery grant from the Natural Science and Engineering Research Council of Canada (#6793) awarded to KBS. KBS holds the Canada Research Chair in Molecular Physiology. SNT held a NSERC postgraduate scholarship. Thanks also to Hanane Hadj-Moussa for guidance on the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SNT and KBS conceptualized and designed the project and SNT conducted all experiments. Data analysis and assembly of the manuscript were carried out by AIF, SNT, and KBS.

Corresponding author

Correspondence to Kenneth B. Storey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tessier, S.N., Ingelson-Filpula, W.A. & Storey, K.B. Epigenetic regulation by DNA methyltransferases during torpor in the thirteen-lined ground squirrel Ictidomys tridecemlineatus. Mol Cell Biochem 476, 3975–3985 (2021). https://doi.org/10.1007/s11010-021-04214-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04214-1

Keywords

Navigation