Skip to main content

Advertisement

Log in

Current updates on precision therapy for breast cancer associated brain metastasis: Emphasis on combination therapy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cancer therapies have undergone a tremendous progress over the past decade. Precision medicine provides a more tailored approach, making the combination of existing therapies more precise. Different types of cancers are characterized by unique biomarkers that are targeted using various genomic approaches by clinicians and companies worldwide to achieve efficient treatment with minimal side effects. Precision medicine has two broad approaches namely stratified and personalized medicine. The driver mutations could vary within a subtype while the same driver mutations could be found across different subtypes. Precision medicine has recently gained a lot of importance for breast cancer therapy. Various kinds of mutations like hotspot mutations, gene alterations, gene amplification mutations are targeted to design a more specific therapy. Apart from these known gene mutations there are various unknown mutations. Thus, tumor heterogeneity can pose a challenge to precision medicine. For breast cancer, one of the most successful models developed in case of precision medicine is the anti-HER2 therapies as HER2 was considered to have the worst prognosis being highly malignant. But now due to the advent of HER2 receptor targeted therapies, it has a good prognosis. Moreover, precision medicine helps in identifying if the drug molecules being used for the treatment of one kind of cancer can be beneficial in the treatment of another kind of cancer as well, considering the signaling pathways and machinery is similar in most of the cancers. This reduces the time for new drug development and is economically more feasible. Precision medicine will prove to be very advantageous in case of brain metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Konig IR, Fuchs O (2017) What is precision medicine? Eur Respir J. https://doi.org/10.1183/13993003.00391-2017

    Article  PubMed  Google Scholar 

  2. Yu KH, Snyder M (2016) omics profiling in precision oncology. Mol Cell Proteom 15:2525–2536. https://doi.org/10.1074/mcp.O116.059253

    Article  CAS  Google Scholar 

  3. Schutte M, Ogilvie LA, Rieke DT, Lange BMH, Yaspo ML, Lehrach H (2017) Cancer precision medicine: why more is more and DNA is not enough. Public Health Genom 20:70–80. https://doi.org/10.1159/000477157

    Article  Google Scholar 

  4. Schoenfeld AJ, Chan JM, Kubota D, Sato H, Rizvi H, Daneshbod Y, Chang JC, Paik PK, Offin M, Arcila ME, Davare MA, Shinde U, Pe’er D, Rekhtman N, Kris MG, Somwar R, Riely GJ, Ladanyi M, Yu HA (2020) Tumor analyses reveal squamous transformation and off-target alterations as early resistance mechanisms to first-line osimertinib in EGFR-mutant lung cancer. Clin Cancer Res 26:2654–2663. https://doi.org/10.1158/1078-0432.ccr-19-3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Belli S, Esposito D, Servetto A, Pesapane A, Formisano L, Bianco R (2020) c-Src and EGFR inhibition in molecular cancer therapy: what else can we improve? Cancers 12:1489

    Article  CAS  Google Scholar 

  6. Lev S (2020) Targeted therapy and drug resistance in triple-negative breast cancer: the EGFR axis. Biochem Soc Trans 48:657–665. https://doi.org/10.1042/bst20191055

    Article  CAS  PubMed  Google Scholar 

  7. Oh D-Y, Bang Y-J (2020) HER2-targeted therapies—a role beyond breast cancer. Nat Rev Clin Oncol 17:33–48. https://doi.org/10.1038/s41571-019-0268-3

    Article  CAS  PubMed  Google Scholar 

  8. Dhritlahre RK, Saneja A (2020) Recent advances in HER2-targeted delivery for cancer therapy. Drug Discov Today. https://doi.org/10.1016/j.drudis.2020.12.014

    Article  PubMed  Google Scholar 

  9. Santolla MF, Maggiolini M (2020) The FGF/FGFR system in breast cancer: oncogenic features and therapeutic perspectives. Cancers 12:3029

    Article  CAS  Google Scholar 

  10. Sobhani N, Fassl A, Mondani G, Generali D, Otto T (2021) Targeting aberrant FGFR signaling to overcome CDK4/6 inhibitor resistance in breast cancer. Cells 10:293

    Article  CAS  Google Scholar 

  11. Sobhani N, Fan C, O.Flores-Villanueva P, Generali D, Li Y (2020) The fibroblast growth factor receptors in breast cancer: from oncogenesis to better treatments. Int J Mol Sci 21:2011

    Article  CAS  Google Scholar 

  12. Fagoonee S, Pellicano R (2020) Promises of fibroblast growth factor receptor-directed therapy in tailored cancer treatment. J Clin Med 9:2570

    Article  CAS  Google Scholar 

  13. Varghese AM, Patel J, Janjigian YY, Meng F, Selcuklu SD, Iyer G, Houck-Loomis B, Harding JJ, O’Reilly EM, Abou-Alfa GK, Lowery MA, Berger MF (2021) Noninvasive detection of polyclonal acquired resistance to FGFR inhibition in patients with cholangiocarcinoma harboring FGFR2 alterations. JCO Precis Oncol. https://doi.org/10.1200/po.20.00178

    Article  PubMed  Google Scholar 

  14. Martellucci S, Clementi L, Sabetta S, Mattei V, Botta L, Angelucci A (2020) Src family kinases as therapeutic targets in advanced solid tumors: what we have learned so far. Cancers 12:1448

    Article  CAS  Google Scholar 

  15. Dosch AR, Dai X, Reyzer ML, Mehra S, Srinivasan S, Willobee BA, Kwon D, Kashikar N, Caprioli R, Merchant NB, Nagathihalli NS (2020) Combined Src/EGFR inhibition targets STAT3 signaling and induces stromal remodeling to improve survival in pancreatic cancer. Mol Cancer Res 18:623–631. https://doi.org/10.1158/1541-7786.mcr-19-0741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nweke EE, Brand M (2020) Downregulation of the let-7 family of microRNAs may promote insulin receptor/insulin-like growth factor signalling pathways in pancreatic ductal adenocarcinoma. Oncol Lett 20:2613–2620. https://doi.org/10.3892/ol.2020.11854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ohishi T, Abe H, Sakashita C, Saqib U, Baig MS, Ohba SI, Inoue H, Watanabe T, Shibasaki M, Kawada M (2020) Inhibition of mitochondria ATP synthase suppresses prostate cancer growth through reduced insulin-like growth factor-1 secretion by prostate stromal cells. Int J Cancer 146:3474–3484. https://doi.org/10.1002/ijc.32959

    Article  CAS  PubMed  Google Scholar 

  18. Hua H, Kong Q, Yin J, Zhang J, Jiang Y (2020) Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy. J Hematol Oncol 13:64. https://doi.org/10.1186/s13045-020-00904-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang L, Li Y, Wang Q, Chen Z, Li X, Wu Z, Hu C, Liao D, Zhang W, Chen Z-S (2020) The PI3K subunits, P110α and P110β are potential targets for overcoming P-gp and BCRP-mediated MDR in cancer. Mol Cancer 19:10. https://doi.org/10.1186/s12943-019-1112-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Braglia L, Zavatti M, Vinceti M, Martelli AM, Marmiroli S (2020) Deregulated PTEN/PI3K/AKT/mTOR signaling in prostate cancer: still a potential druggable target? Biochim et Biophy Acta (BBA)-Mol Cell Res 1867:118731. https://doi.org/10.1016/j.bbamcr.2020.118731

    Article  CAS  Google Scholar 

  21. Reddy D, Kumavath R, Tan TZ, Ampasala DR, Kumar AP (2020) Peruvoside targets apoptosis and autophagy through MAPK Wnt/β-catenin and PI3K/AKT/mTOR signaling pathways in human cancers. Life Sci 241:117147. https://doi.org/10.1016/j.lfs.2019.117147

    Article  CAS  PubMed  Google Scholar 

  22. Aggarwal S (2010) Targeted cancer therapies. Nature Publishing Group, Berlin

    Book  Google Scholar 

  23. NIH (2003) The human genome project

  24. Pereira MA, Malta FSV, Freire MCM, Couto PGP (2017) Application of next-generation sequencing in the era of precision medicine. Applications of RNA-Seq and omics strategies: from microorganisms to human health. InTechOpen, London

    Google Scholar 

  25. Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751

    Article  CAS  Google Scholar 

  26. NIH (2015) Milestones in cancer research and discovery. National Cancer Institute, USA

    Google Scholar 

  27. FDA US (2011) XALKORI (crizotinib) capsules, for oral use

  28. FDA US (2011) CAPRELSA® (vandetanib) tablets for oral use

  29. England G (2018) The 100,000 genomes project

  30. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  31. Team SGP (2015) The Saudi human genome program: an oasis in the desert of Arab medicine is providing clues to genetic disease. IEEE Pulse 6:22–26

    Article  Google Scholar 

  32. ASCO (2017) Cancer progress timeline

  33. Secretary TWHOotP (2015) FACT SHEET: president Obama’s precision medicine initiative

  34. Link H, Fuhrer T, Gerosa L, Zamboni N, Sauer U (2015) Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat Methods 12:1091

    Article  CAS  Google Scholar 

  35. Health G Live Your Healthiest Life

  36. Institute NNC (2017) FDA approves pembrolizumab for tumors with specific genetic features

  37. FDA US (2016) FDA approves first blood test to detect gene mutation associated with non-small cell lung cancer

  38. FDA US (2018) FDA approves lutetium Lu 177 dotatate for treatment of GEP-NETS

  39. FDA US (2018) FDA approves larotrectinib for solid tumors with NTRK gene fusions

  40. Discoveries NRD (2019) FDA new drug approvals in Q2 2019, Zolgensma (onasemnogene abeparvovec)

  41. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C (2019) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18:41

    Article  CAS  Google Scholar 

  42. Mboge MY, Mahon BP, McKenna R, Frost SC (2018) Carbonic anhydrases: role in pH control and cancer. Metabolites 8:19

    Article  Google Scholar 

  43. Said HM, Hagemann C, Carta F, Katzer A, Polat B, Staab A, Scozzafava A, Anacker J, Vince GH, Flentje M (2013) Hypoxia induced CA9 inhibitory targeting by two different sulfonamide derivatives including acetazolamide in human glioblastoma. Bioorg Med Chem 21:3949–3957

    Article  CAS  Google Scholar 

  44. Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H (2017) Combination therapy in combating cancer. Oncotarget 8:38022

    Article  Google Scholar 

  45. Blagosklonny MV, Robey R, Bates S, Fojo T (2000) Pretreatment with DNA-damaging agents permits selective killing of checkpoint-deficient cells by microtubule-active drugs. J Clin Investig 105:533–539

    Article  CAS  Google Scholar 

  46. Brasseur K, Gévry N, Asselin E (2017) Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncotarget 8:4008–4042

    Article  Google Scholar 

  47. Kwon Y-S, Chun S-Y, Nam K-S, Kim S (2015) Lapatinib sensitizes quiescent MDA-MB-231 breast cancer cells to doxorubicin by inhibiting the expression of multidrug resistance-associated protein-1. Oncol Rep 34:884–890

    Article  CAS  Google Scholar 

  48. Mathew J, Perez EA (2011) Trastuzumab emtansine in human epidermal growth factor receptor 2-positive breast cancer: a review. Curr Opin Oncol 23:594–600

    Article  CAS  Google Scholar 

  49. Hashimoto Y, Koyama K, Kamai Y, Hirotani K, Ogitani Y, Zembutsu A, Abe M, Kaneda Y, Maeda N, Shiose Y (2019) A novel HER3-targeting antibody-drug conjugate, U3-1402, exhibits potent therapeutic efficacy through the delivery of cytotoxic payload by efficient internalization. Clin Cancer Res 1745:2019

    Google Scholar 

  50. Costa-Pinheiro P, Montezuma D, Henrique R, Jerónimo C (2015) Diagnostic and prognostic epigenetic biomarkers in cancer. Epigenomics 7:1003–1015

    Article  CAS  Google Scholar 

  51. Aronson SJ, Rehm HL (2015) Building the foundation for genomics in precision medicine. Nature 526:336–342

    Article  CAS  Google Scholar 

  52. Morash M, Mitchell H, Beltran H, Elemento O, Pathak J (2018) The role of next-generation sequencing in precision medicine: a review of outcomes in oncology. J Pers Med 8:30

    Article  Google Scholar 

  53. Alaaeddine R, Fayad M, Nehme E, Bahmad HF, Kobeissy F (2017) The emerging role of proteomics in precision medicine: applications in neurodegenerative diseases and neurotrauma. Personalised Medicine, Springer, Berlin, pp 59–70

    Google Scholar 

  54. Zhou L, Wang K, Li Q, Nice EC, Zhang H, Huang C (2016) Clinical proteomics-driven precision medicine for targeted cancer therapy: current overview and future perspectives. Expert Rev Proteom 13:367–381

    Article  CAS  Google Scholar 

  55. Filipp FV (2017) Precision medicine driven by cancer systems biology. Cancer Metastasis Rev 36:91–108

    Article  Google Scholar 

  56. McGrath S, Ghersi D (2016) Building towards precision medicine: empowering medical professionals for the next revolution. BMC Med Genom 9:23

    Article  Google Scholar 

  57. Naito Y, Urasaki T (2018) Precision medicine in breast cancer. Chin Clin Oncol 7:29

    Article  Google Scholar 

  58. Huang J, Yu J, Tu L, Huang N, Li H, Luo Y (2019) Isocitrate dehydrogenase mutations in glioma: from basic discovery to therapeutics development. Front Oncol. https://doi.org/10.3389/fonc.2019.00506

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cohen AL, Holmen SL, Colman H (2013) IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep 13:345–345. https://doi.org/10.1007/s11910-013-0345-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Galle E, Thienpont B, Cappuyns S, Venken T, Busschaert P, Van Haele M, Van Cutsem E, Roskams T, van Pelt J, Verslype C, Dekervel J, Lambrechts D (2020) DNA methylation-driven EMT is a common mechanism of resistance to various therapeutic agents in cancer. Clin Epigenetics 12:27. https://doi.org/10.1186/s13148-020-0821-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, Spevak W, Zhang C, Zhang Y, Habets G (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467:596

    Article  CAS  Google Scholar 

  62. Krzyszczyk P, Acevedo A, Davidoff EJ, Timmins LM, Marrero-Berrios I, Patel M, White C, Lowe C, Sherba JJ, Hartmanshenn C, O’Neill KM, Balter ML, Fritz ZR, Androulakis IP, Schloss RS, Yarmush ML (2018) The growing role of precision and personalized medicine for cancer treatment. Technology 6:79–100. https://doi.org/10.1142/S2339547818300020

    Article  PubMed  Google Scholar 

  63. Arnedos M, Vicier C, Loi S, Lefebvre C, Michiels S, Bonnefoi H, Andre F (2015) Precision medicine for metastatic breast cancer—limitations and solutions. Nat Rev Clin Oncol 12:693–704. https://doi.org/10.1038/nrclinonc.2015.123

    Article  CAS  PubMed  Google Scholar 

  64. Coyle KM, Boudreau JE, Marcato P (2017) Genetic mutations and epigenetic modifications: driving cancer and informing precision medicine. Biomed Res Int 2017:9620870. https://doi.org/10.1155/2017/9620870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. FDA US (2008) GLEEVEC (imatinib mesylate) tablets for oral use

  66. Adams J, Kauffman M (2004) Development of the proteasome inhibitor VelcadeTM (bortezomib). Cancer Investig 22:304–311

    Article  CAS  Google Scholar 

  67. Li J, Zhao X, Chen L, Guo H, Lv F, Jia K, Yv K, Wang F, Li C, Qian J (2010) Safety and pharmacokinetics of novel selective vascular endothelial growth factor receptor-2 inhibitor YN968D1 in patients with advanced malignancies. BMC Cancer 10:529

    Article  CAS  Google Scholar 

  68. Wang T, Narayanaswamy R, Ren H, Torchilin VP (2016) Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment. Cancer Biol Ther 17:698–707

    Article  CAS  Google Scholar 

  69. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, Lichinitser M, Dummer R, Grange F, Mortier L (2015) Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 372:30–39

    Article  Google Scholar 

  70. Kanemaru Y, Natsumeda M, Okada M, Saito R, Kobayashi D, Eda T, Watanabe J, Saito S, Tsukamoto Y, Oishi M (2019) Dramatic response of BRAF V600E-mutant epithelioid glioblastoma to combination therapy with BRAF and MEK inhibitor: establishment and xenograft of a cell line to predict clinical efficacy. Acta Neuropathol Commun 7:119

    Article  Google Scholar 

  71. Guinde J, Carron R, Tomasini P, Greillier L, Régis J, Barlesi F (2017) Bevacizumab plus radiosurgery for nonsquamous non-small cell lung cancer patients with brain metastases: safe combination? World Neurosurg 107:10471.e1-10474.e4

    Article  Google Scholar 

  72. Xi X, Li T, Huang Y, Sun J, Zhu Y, Yang Y, Lu ZJ (2017) RNA biomarkers: frontier of precision medicine for cancer. Non-coding RNA 3:9

    Article  Google Scholar 

  73. Isgrò MA, Bottoni P, Scatena R (2015) Neuron-specific enolase as a biomarker: biochemical and clinical aspects. Advances in Cancer Biomarkers, Springer, Berlin, pp 125–143

    Google Scholar 

  74. Company OP Crunchbase

  75. NIH (2019) ClinicalTrials.gov. U S National Library of Medicine

Download references

Acknowledgements

Seema Sehrawat acknowledges the funding support from Core Research Grant from Department of Science and Technology (DST-SERB), Govt. of India. Shiv Nadar Foundation is acknowledged for providing the PhD fellowship to Mr. Masoom Raza. Dr. Naveen Kumar is supported as an RA by the DST Grant obtained by Dr. Seema Sehrawat (as PI).

Funding

Funding was provided by Science and Engineering Research Board (Grant No. EMR/2017/003312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Sehrawat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, M., Kumar, N., Nair, U. et al. Current updates on precision therapy for breast cancer associated brain metastasis: Emphasis on combination therapy. Mol Cell Biochem 476, 3271–3284 (2021). https://doi.org/10.1007/s11010-021-04149-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04149-7

Keywords

Navigation