Skip to main content
Log in

MiR-200a with CDC7 as a direct target declines cell viability and promotes cell apoptosis in Wilm’s tumor via Wnt/β-catenin signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MiR-200a acts as a key role in tumor malignant progression. This work purposed to assess the function of miR-200a in Wilm’s tumor. Based on bioinformatics analysis, the expression, prognostic value and related pathways of miR-200a and CDC7 (a potential downstream molecule of miR-200a) in Wilm’s tumor were analyzed. qRT-PCR was conducted to confirm the miR-200a level in Wilm’s tumor cells. The luciferase reporter assay was carried out to verify the binding of miR-200a to 3′-UTR of CDC7. Then, the impacts of miR-200a and CDC7 on cell viability and apoptosis were measured using CCK-8 and flow cytometry assays. Also, western blot was applied to measure the expression of CDC7 as well as Wnt/β-catenin signaling pathway-related proteins and apoptosis proteins. Herein, we revealed that miR-200a was lowly expressed in Wilm’s tumor tissues and cells and the low miR-200a expression is closely bound up with death and poor outcomes. Moreover, miR-200a directly targeted and inhibited CDC7 in Wilm’s tumor cells. Biological function experiments illustrated that overexpression of miR-200a reduced the viability and elevated the apoptosis of Wilm’s tumor cells, while overexpression of CDC7 reversed the inhibitory impact of miR-200a on cell viability and the promoting impact of miR-200a on cell apoptosis. Besides, we revealed that miR-200a/CDC7 axis can decrease the expression of β-Catenin, Cyclin D1 and C-Myc as well as the phosphorylation of GSK-3β, thus inhibiting the Wnt/β-catenin signaling pathway. Furthermore, blocking the Wnt/β-catenin signaling pathway caused an increase on cell apoptosis, while overexpression of CDC7 can reverse these impacts. Collectively, miR-200a/CDC7 axis involved in regulating the malignant phenotype of Wilm’s tumor through Wnt/β-catenin signaling pathway, which provides a theoretical basis for targeted molecular therapy of Wilm’s tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Treger TD, Chowdhury T, Pritchard-Jones K, Behjati S (2019) The genetic changes of Wilms tumour. Nat Rev Nephrol 15:240–251

    Article  PubMed  Google Scholar 

  2. Varan A (2008) Wilms’ tumor in children: an overview. Nephron Clin Pract 108:c83-90

    Article  PubMed  Google Scholar 

  3. Davidoff AM (2012) Wilms tumor. Adv Pediatr 59:247–267

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dome JS, Graf N, Geller JI, Fernandez CV, Mullen EA, Spreafico F et al (2015) Advances in Wilms tumor treatment and biology: progress through international collaboration. J Clin Oncol 33:2999–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sonn G, Shortliffe LM (2008) Management of Wilms tumor: current standard of care. Nat Clin Pract Urol 5:551–560

    Article  PubMed  Google Scholar 

  6. Dix DB, Seibel NL, Chi YY, Khanna G, Gratias E, Anderson JR et al (2018) Treatment of stage IV favorable histology Wilms tumor with lung metastases: a report from the children’s oncology group AREN0533 study. J Clin Oncol 36:1564–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Warmann SW, Nourkami N, Frühwald M, Leuschner I, Schenk JP, Fuchs J et al (2012) Primary lung metastases in pediatric malignant non-Wilms renal tumors: data from SIOP 93–01/GPOH and SIOP 2001/GPOH. Klin Padiatr 224:148–152

    Article  CAS  PubMed  Google Scholar 

  8. Nishinakamura R, Uchiyama Y, Sakaguchi M, Fujimura S (2011) Nephron progenitors in the metanephric mesenchyme. Pediatr Nephrol 26:1463–1467

    Article  PubMed  Google Scholar 

  9. Cone EB, Dalton SS, Van Noord M, Tracy ET, Rice HE, Routh JC (2016) Biomarkers for Wilms tumor: a systematic review. J Urol 196:1530–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Balzano F, Cruciani S, Basoli V, Santaniello S, Facchin F, Ventura C et al (2018) MiR200 and miR302: two big families influencing stem cell behavior. Molecules 23(2):282

    Article  PubMed Central  Google Scholar 

  11. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222

    Article  CAS  PubMed  Google Scholar 

  12. Hosseinahli N, Aghapour M, Duijf PHG, Baradaran B (2018) Treating cancer with microRNA replacement therapy: a literature review. J Cell Physiol 233:5574–5588

    Article  CAS  PubMed  Google Scholar 

  13. Tiwari A, Mukherjee B, Dixit M (2018) MicroRNA key to angiogenesis regulation: miRNA biology and therapy. Curr Cancer Drug Targets 18:266–277

    Article  CAS  PubMed  Google Scholar 

  14. Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y (2018) Nuclear functions of mammalian microRNAs in gene regulation, immunity and cancer. Mol Cancer 17:64

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pasquinelli AE, Hunter S, Bracht J (2005) MicroRNAs: a developing story. Curr Opin Genet Dev 15:200–205

    Article  CAS  PubMed  Google Scholar 

  16. Sellitti DF, Doi SQ (2015) MicroRNAs in renal cell carcinoma. MicroRNA 4:26–35

    Article  CAS  PubMed  Google Scholar 

  17. Huang GL, Sun J, Lu Y, Liu Y, Cao H, Zhang H et al (2019) MiR-200 family and cancer: from a meta-analysis view. Mol Aspects Med 70:57–71

    Article  CAS  PubMed  Google Scholar 

  18. O’brien SJ, Carter JV, Burton JF, Oxford BG, Schmidt MN, Hallion JC et al (2018) The role of the miR-200 family in epithelial-mesenchymal transition in colorectal cancer: a systematic review. Int J Cancer 142:2501–2511

    Article  PubMed  Google Scholar 

  19. Koutsaki M, Libra M, Spandidos DA, Zaravinos A (2017) The miR-200 family in ovarian cancer. Oncotarget 8:66629–66640

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu C, Hu W, Li LL, Wang YX, Zhou Q, Zhang F et al (2018) Roles of miR-200 family members in lung cancer: more than tumor suppressors. Future Oncol 14:2875–2886

    Article  CAS  PubMed  Google Scholar 

  21. Liu P, Chen S, Huang Y, Xu S, Song H, Zhang W et al (2020) LINC00667 promotes Wilms’ tumor metastasis and stemness by sponging miR-200b/c/429 family to regulate IKK-β. Cell Biol Int 44:1382–1393

    Article  CAS  PubMed  Google Scholar 

  22. Zhu H, Zheng T, Yu J, Zhou L, Wang L (2018) LncRNA XIST accelerates cervical cancer progression via upregulating Fus through competitively binding with miR-200a. Biomed Pharmacother 105:789–797

    Article  CAS  PubMed  Google Scholar 

  23. Zou Q, Zhou E, Xu F, Zhang D, Yi W, Yao J (2018) A TP73-AS1/miR-200a/ZEB1 regulating loop promotes breast cancer cell invasion and migration. J Cell Biochem 119:2189–2199

    Article  CAS  PubMed  Google Scholar 

  24. Feng C, Zhao Y, Li Y, Zhang T, Ma Y, Liu Y (2019) LncRNA MALAT1 promotes lung cancer proliferation and gefitinib resistance by acting as a miR-200a sponge. Arch Bronconeumol 55:627–633

    Article  PubMed  Google Scholar 

  25. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moretti F, D’antona P, Finardi E, Barbetta M, Dominioni L, Poli A et al (2017) Systematic review and critique of circulating miRNAs as biomarkers of stage I-II non-small cell lung cancer. Oncotarget 8:94980–94996

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ito S, Taniyami C, Arai N, Masai H (2008) Cdc7 as a potential new target for cancer therapy. Drug News Perspect 21:481–488

    Article  CAS  PubMed  Google Scholar 

  28. Kulkarni AA, Kingsbury SR, Tudzarova S, Hong HK, Loddo M, Rashid M et al (2009) Cdc7 kinase is a predictor of survival and a novel therapeutic target in epithelial ovarian carcinoma. Clin Cancer Res 15:2417–2425

    Article  CAS  PubMed  Google Scholar 

  29. Clarke LE, Fountaine TJ, Hennessy J, Bruggeman RD, Clarke JT, Mauger DT et al (2009) Cdc7 expression in melanomas, Spitz tumors and melanocytic nevi. J Cutan Pathol 36:433–438

    Article  PubMed  Google Scholar 

  30. Rodriguez-Acebes S, Proctor I, Loddo M, Wollenschlaeger A, Rashid M, Falzon M et al (2010) Targeting DNA replication before it starts: Cdc7 as a therapeutic target in p53-mutant breast cancers. Am J Pathol 177:2034–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bonte D, Lindvall C, Liu H, Dykema K, Furge K, Weinreich M (2008) Cdc7-Dbf4 kinase overexpression in multiple cancers and tumor cell lines is correlated with p53 inactivation. Neoplasia 10:920–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu YP, Chen WD, Li WN, Zhang M (2019) Overexpression of FNDC1 relates to poor prognosis and its knockdown impairs cell invasion and migration in gastric cancer. Technol Cancer Res Treat 18:1533033819869928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vijayakumar S, Liu G, Rus IA, Yao S, Chen Y, Akiri G et al (2011) High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/β-catenin target gene, CDC25A. Cancer Cell 19:601–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li A, Omura N, Hong SM, Vincent A, Walter K, Griffith M et al (2010) Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res 70:5226–5237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Elson-Schwab I, Lorentzen A, Marshall CJ (2010) MicroRNA-200 family members differentially regulate morphological plasticity and mode of melanoma cell invasion. PLoS ONE 5(10):e13176

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu Q, Lu RL, Li JX, Rong LJ (2017) MiR-200a and miR-200b target PTEN to regulate the endometrial cancer cell growth in vitro. Asian Pac J Trop Med 10:498–502

    Article  CAS  PubMed  Google Scholar 

  37. Jia C, Zhang Y, Xie Y, Ren Y, Zhang H, Zhou Y et al (2019) miR-200a-3p plays tumor suppressor roles in gastric cancer cells by targeting KLF12. Artif Cells Nanomed Biotechnol 47:3697–3703

    Article  CAS  PubMed  Google Scholar 

  38. Xia H, Ng SS, Jiang S, Cheung WK, Sze J, Bian XW et al (2010) miR-200a-mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion. Biochem Biophys Res Commun 391:535–541

    Article  CAS  PubMed  Google Scholar 

  39. Braun J, Hoang-Vu C, Dralle H, Hüttelmaier S (2010) Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene 29:4237–4244

    Article  CAS  PubMed  Google Scholar 

  40. Saydam O, Shen Y, Würdinger T, Senol O, Boke E, James MF et al (2009) Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway. Mol Cell Biol 29:5923–5940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guo T, Zhang Y, Qu X, Che X, Li C, Fan Y et al (2018) miR-200a enhances TRAIL-induced apoptosis in gastric cancer cells by targeting A20. Cell Biol Int 42:506–514

    Article  CAS  PubMed  Google Scholar 

  42. Guo B, Romero J, Kim BJ, Lee H (2005) High levels of Cdc7 and Dbf4 proteins can arrest cell-cycle progression. Eur J Cell Biol 84:927–938

    Article  CAS  PubMed  Google Scholar 

  43. Kitamura R, Fukatsu R, Kakusho N, Cho YS, Taniyama C, Yamazaki S et al (2011) Molecular mechanism of activation of human Cdc7 kinase: bipartite interaction with Dbf4/activator of S phase kinase (ASK) activation subunit stimulates ATP binding and substrate recognition. J Biol Chem 286:23031–23043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Suzuki T, Tsuzuku J, Hayashi A, Shiomi Y, Iwanari H, Mochizuki Y et al (2012) Inhibition of DNA damage-induced apoptosis through Cdc7-mediated stabilization of Tob. J Biol Chem 287:40256–40265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36:1461–1473

    Article  CAS  PubMed  Google Scholar 

  46. Nusse R, Clevers H (2017) Wnt/β-Catenin signaling, disease, and emerging therapeutic modalities. Cell 169:985–999

    Article  CAS  Google Scholar 

  47. Ni D, Liu J, Hu Y, Liu Y, Gu Y, Zhou Q et al (2019) A1CF-Axin2 signal axis regulates apoptosis and migration in Wilms tumor-derived cells through Wnt/β-catenin pathway. In Vitro Cell Dev Biol Anim 55:252–259

    Article  CAS  PubMed  Google Scholar 

  48. Zhu KR, Sun QF, Zhang YQ (2019) Long non-coding RNA LINP1 induces tumorigenesis of Wilms’ tumor by affecting Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci 23:5691–5698

    PubMed  Google Scholar 

  49. Tian J, He H, Lei G (2014) Wnt/β-catenin pathway in bone cancers. Tumour Biol 35:9439–9445

    Article  CAS  PubMed  Google Scholar 

  50. Behrens J, Von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R et al (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382:638–642

    Article  CAS  PubMed  Google Scholar 

  51. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, Da Costa LT et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  CAS  PubMed  Google Scholar 

  52. Schuhmacher M, Eick D (2013) Dose-dependent regulation of target gene expression and cell proliferation by c-Myc levels. Transcription 4:192–197

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pelengaris S, Khan M, Evan G (2002) c-MYC: more than just a matter of life and death. Nat Rev Cancer 2:764–776

    Article  CAS  PubMed  Google Scholar 

  54. Yu J, Wang X, Lu Q, Wang J, Li L, Liao X et al (2018) Extracellular 5’-nucleotidase (CD73) promotes human breast cancer cells growth through AKT/GSK-3β/β-catenin/cyclinD1 signaling pathway. Int J Cancer 142:959–967

    Article  CAS  Google Scholar 

  55. Gopalakrishnan N, Saravanakumar M, Madankumar P, Thiyagu M, Devaraj H (2014) Colocalization of β-catenin with Notch intracellular domain in colon cancer: a possible role of Notch1 signaling in activation of CyclinD1-mediated cell proliferation. Mol Cell Biochem 396:281–293

    Article  CAS  PubMed  Google Scholar 

  56. Wu J, Lv S, An J, Lu C (2015) Pre-miR-149 rs71428439 polymorphism is associated with increased cancer risk and AKT1/cyclinD1 signaling in hepatocellular carcinoma. Int J Clin Exp Med 8:13628–13633

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Rong Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, XL., Wang, YL. & Wang, PR. MiR-200a with CDC7 as a direct target declines cell viability and promotes cell apoptosis in Wilm’s tumor via Wnt/β-catenin signaling pathway. Mol Cell Biochem 476, 2409–2420 (2021). https://doi.org/10.1007/s11010-021-04090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04090-9

Keywords

Navigation