Skip to main content

Advertisement

Log in

Ameliorative effects of astaxanthin on brain tissues of alzheimer’s disease-like model: cross talk between neuronal-specific microRNA-124 and related pathways

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a chronic, progressive, multifactorial, and the most common neurodegenerative disease which causes dementia and mental deterioration in the elderly. The available treatments for AD are not disease-modifying drugs and only provide symptomatic relief. Astaxanthin (ATX), a second-generation antioxidant, is a dark red carotenoid and exhibits the highest antioxidant capacity, anti-inflammatory, neuroprotective, and antiapoptotic effects. In this study, we investigated the therapeutic effect of different doses of ATX on the cerebral cortex and hippocampus of AD-like rats. The AD-like model was induced in rats using hydrated aluminum chloride (AlCl3.6H2O) solution that was given orally at a dose of 75 mg/kg daily for 6 weeks. Morris water maze (MWM) behavioral test was performed to confirm the cognitive dysfunction then AD-like rats were orally treated with different doses of ATX (5, 10, and 15 mg/kg) dissolved in dimethyl sulfoxide (DMSO) for six weeks. The results indicated that ATX significantly and dose-dependently improved the performance of AD-like rats treated with ATX during MWM and suppress the accumulation of amyloid β1-42 and malondialdehyde. Also, significantly inhibit acetylcholinesterase and monoamine oxidase activities and the expression of β-site amyloid precursor protein cleaving enzyme 1 (BACE 1). ATX also significantly elevated the content of acetylcholine, serotonin, and nuclear factor erythroid-2-related factor 2 (Nrf2) and miRNA-124 expression. The effect of ATX treatment was confirmed by histopathological observations using H&E stain and morphometric tissue analysis. From this study, we concluded that ATX may be a promising therapeutic agent for AD through targeting different pathogenic pathways.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Association A (2018) 2018 Alzheimer’s disease facts and figures. Alzheimer’s and Dementia 14(3):367–429

    Article  Google Scholar 

  2. International AsD (2019) World Alzheimer report 2019: attitudes to dementia. Alzheimer’s Disease International London, UK

    Google Scholar 

  3. Elshahidi MH, Elhadidi MA, Sharaqi AA, Mostafa A, Elzhery MA (2017) Prevalence of dementia in Egypt: a systematic review. J Neurol Neurosurg Psychiatry 13:715–720. https://doi.org/10.2147/NDT.S127605

    Article  Google Scholar 

  4. Abyad A (2016) Alzheimer’s the Road Ahead in the Middle East. J Alzheimer’s Dis Parkinsonism 6(3):1000241. https://doi.org/10.4172/2161-0460.1000241

    Article  Google Scholar 

  5. Guerriero F, Sgarlata C, Francis M, Maurizi N, Faragli A, Perna S, Rondanelli M, Rollone M, Ricevuti G (2017) Neuroinflammation, immune system and Alzheimer disease: searching for the missing link. Aging Clin Exp Res 29(5):821–831

    Article  CAS  PubMed  Google Scholar 

  6. Sanabria-Castro A, Alvarado-Echeverria I, Monge-Bonilla C (2017) Molecular Pathogenesis of Alzheimer’s Disease: An Update. Ann Neurosci 24(1):46–54. https://doi.org/10.1159/000464422

    Article  PubMed  PubMed Central  Google Scholar 

  7. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608. https://doi.org/10.15252/emmm.201606210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24(24):10941–10953. https://doi.org/10.1128/mcb.24.24.10941-10953.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rajmohan R, Reddy PH (2017) Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer’s disease Neurons. J Alzheimers Dis 57(4):975–999. https://doi.org/10.3233/JAD-160612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66(2):137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rodriguez JJ, Noristani HN, Verkhratsky A (2012) The serotonergic system in ageing and Alzheimer’s disease. Prog Neurobiol 99(1):15–41. https://doi.org/10.1016/j.pneurobio.2012.06.010

    Article  CAS  PubMed  Google Scholar 

  12. Bagyinszky E, Youn YC, An SSA, Kim S (2014) The genetics of Alzheimer’s disease. Clin Interv Aging 9:535–551

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sun Y, Luo ZM, Guo XM, Su DF, Liu X (2015) An updated role of microRNA-124 in central nervous system disorders: a review. Front Cell Neurosci 9:193. https://doi.org/10.3389/fncel.2015.00193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ambati RR, Phang SM, Ravi S, Aswathanarayana RG (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications–a review. Marine drugs 12(1):128–152. https://doi.org/10.3390/md12010128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tso MO, Lam T-T (1996) Method of retarding and ameliorating central nervous system and eye damage.

  16. Hernández-Marin E, Barbosa A, Martínez A (2012) The metal cation chelating capacity of astaxanthin Does this have any influence on antiradical activity? Molecules 17(1):1039–1054

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ali AA, Ahmed HI, Abu-Elfotuh K (2016) Modeling stages mimic Alzheimer’s disease induced by different doses of aluminum in rats: focus on progression of the disease in response to time. J Alzheimer’s Parkinsonism Dementia 1(1):2

    Google Scholar 

  18. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858. https://doi.org/10.1038/nprot.2006.116

    Article  PubMed  PubMed Central  Google Scholar 

  19. Balietti M, Giannubilo SR, Giorgetti B, Solazzi M, Turi A, Casoli T, Ciavattini A, Fattorettia P (2016) The effect of astaxanthin on the aging rat brain: gender-related differences in modulating inflammation. J Sci Food Agric 96(2):615–618. https://doi.org/10.1002/jsfa.7131

    Article  PubMed  Google Scholar 

  20. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95

    Article  CAS  PubMed  Google Scholar 

  21. Udenfriend S, Weissbach H, Brodie BB (1958) Assay of serotonin and related metabolites, enzymes, and drugs. Methods of biochemical analysis:95–130

  22. Osman MY, Osman HM (2008) Inhibitory effect of acetylcholine on monoamine oxidase A and B activity in different parts of rat brain. Arzneimittelforschung 58(10):493–496

    CAS  PubMed  Google Scholar 

  23. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  PubMed  Google Scholar 

  24. Bancroft JD, Gamble M (2008) Theory and practice of histological techniques. Elsevier health sciences,

  25. Kumar A, Singh A, Ekavali, (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67(2):195–203. https://doi.org/10.1016/j.pharep.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  26. Nampoothiri M, John J, Kumar N, Mudgal J, Nampurath GK, Chamallamudi MR (2015) Modulatory role of simvastatin against aluminium chloride-induced behavioural and biochemical changes in rats. Behav Neurol 2015:210169. https://doi.org/10.1155/2015/210169

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rather MA, Thenmozhi AJ, Manivasagam T, Bharathi MD, Essa MM, Guillemin GJ (2018) Neuroprotective role of Asiatic acid in aluminium chloride induced rat model of Alzheimer’s disease. Fronti Biosci (Scholar edition) 10:262–275

    Article  Google Scholar 

  28. Yokel RA (2000) The toxicology of aluminum in the brain: a review. Neurotoxicology 21(5):813–828

    CAS  PubMed  Google Scholar 

  29. Zatta P, Zambenedetti P, Bruna V, Filippi B (1994) Activation of acetylcholinesterase by aluminium (III): the relevance of the metal species. NeuroReport 5(14):1777–1780

    Article  CAS  PubMed  Google Scholar 

  30. Kumar V, Gill KD (2014) Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology 41:154–166

    Article  CAS  PubMed  Google Scholar 

  31. Kim Y, Olivi L, Cheong JH, Maertens A, Bressler JP (2007) Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells. Toxicol Appl Pharmacol 220(3):349–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Geremia E, Baratta D, Zafarana S, Giordano R, Pinizzotto MR, La Rosa MG, Garozzo A (1990) Antioxidant enzymatic systems in neuronal and glial cell-enriched fractions of rat brain during aging. Neurochem Res 15(7):719–723

    Article  CAS  PubMed  Google Scholar 

  33. Xie H, Hou S, Jiang J, Sekutowicz M, Kelly J, Bacskai BJ (2013) Rapid cell death is preceded by amyloid plaque-mediated oxidative stress. Proc Natl Acad Sci 110(19):7904–7909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hritcu L, Noumedem JA, Cioanca O, Hancianu M, Kuete V, Mihasan M (2014) Methanolic extract of Piper nigrum fruits improves memory impairment by decreasing brain oxidative stress in amyloid beta (1–42) rat model of Alzheimer’s disease. Cell Mol Neurobiol 34(3):437–449

    Article  PubMed  Google Scholar 

  35. Cioanca O, Hritcu L, Mihasan M, Hancianu M (2013) Cognitive-enhancing and antioxidant activities of inhaled coriander volatile oil in amyloid β (1–42) rat model of Alzheimer’s disease. Physiol Behav 120:193–202

    Article  CAS  PubMed  Google Scholar 

  36. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α–PU 1 pathway. Nat Med 17(1):64

    Article  CAS  PubMed  Google Scholar 

  37. Celada A, Borràs FE, Soler C, Lloberas J, Klemsz M, Van Beveren C, McKercher S, Maki RA (1996) The transcription factor PU 1 is involved in macrophage proliferation. J Experi Med 184(1):61–69

    Article  CAS  Google Scholar 

  38. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. NeuroReport 18(3):297–300

    Article  CAS  PubMed  Google Scholar 

  40. Fang M, Wang J, Zhang X, Geng Y, Hu Z, Rudd JA, Ling S, Chen W, Han S (2012) The miR-124 regulates the expression of BACE1/beta-secretase correlated with cell death in Alzheimer’s disease. Toxicol Lett 209(1):94–105. https://doi.org/10.1016/j.toxlet.2011.11.032

    Article  CAS  PubMed  Google Scholar 

  41. Gaudet AD, Fonken LK, Watkins LR, Nelson RJ, Popovich PG (2018) MicroRNAs: Roles in Regulating Neuroinflammation. The Neuroscientist 24(3):221–245. https://doi.org/10.1177/1073858417721150

    Article  CAS  PubMed  Google Scholar 

  42. Wang LL, Min L, Guo QD, Zhang JX, Jiang HL, Shao S, Xing JG, Yin LL, Liu JH, Liu R, Guo SL (2017) Profiling microRNA from Brain by Microarray in a Transgenic Mouse Model of Alzheimer’s Disease. Biomed Res Int 2017:8030369. https://doi.org/10.1155/2017/8030369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sumathi T, Shobana C, Thangarajeswari M, Usha R (2015) Protective effect of L-theanine against aluminium induced neurotoxicity in cerebral cortex, hippocampus and cerebellum of rat brain–histopathological, and biochemical approach. Drug Chem Toxicol 38(1):22–31

    Article  CAS  PubMed  Google Scholar 

  44. Haider S, Liaquat L, Ahmad S, Batool Z, Siddiqui RA, Tabassum S, Shahzad S, Rafiq S, Naz N (2020) Naringenin protects AlCl3/D-galactose induced neurotoxicity in rat model of AD via attenuation of acetylcholinesterase levels and inhibition of oxidative stress. PLoS ONE 15(1):e0227631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gonçalves PP, Silva VS (2007) Does neurotransmission impairment accompany aluminium neurotoxicity? J Inorg Biochem 101(9):1291–1338

    Article  PubMed  Google Scholar 

  46. Harsha S, Anilakumar K (2013) Protection against aluminium neurotoxicity: a repertoire of lettuce antioxidants. Biomedicine & Aging Pathology 3(4):179–184

    Article  CAS  Google Scholar 

  47. Buraimoh AA, Ojo S, Hambolu J, Adebisi S (2012) Effects of aluminium chloride exposure on the histology of the cerebral cortex of adult Wistar rats. Journal of Biology and Life Science. https://doi.org/10.5296/jbls.v3i1.1421

    Article  Google Scholar 

  48. Slemmer JE, Shacka JJ, Sweeney M, Weber JT (2008) Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem 15(4):404–414

    Article  CAS  PubMed  Google Scholar 

  49. Readnower RD, Chavko M, Adeeb S, Conroy MD, Pauly JR, McCarron RM, Sullivan PG (2010) Increase in blood–brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. J Neurosci Res 88(16):3530–3539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang X, Pan L, Wei X, Gao H, Liu J (2007) Impact of astaxanthin-enriched algal powder of Haematococcus pluvialis on memory improvement in BALB/c mice. Environ Geochem Health 29(6):483–489

    Article  PubMed  Google Scholar 

  51. Wu W, Wang X, Xiang Q, Meng X, Peng Y, Du N, Liu Z, Sun Q, Wang C, Liu X (2014) Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. Food Funct 5(1):158–166. https://doi.org/10.1039/c3fo60400d

    Article  CAS  PubMed  Google Scholar 

  52. Rahman SO, Panda BP, Parvez S, Kaundal M, Hussain S, Akhtar M, Najmi AK (2019) Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer’s disease. Biomed Pharmacother 110:47–58

    Article  CAS  PubMed  Google Scholar 

  53. Che H, Li Q, Zhang T, Wang D, Yang L, Xu J, Yanagita T, Xue C, Chang Y, Wang Y (2018) Effects of astaxanthin and docosahexaenoic-acid-acylated astaxanthin on Alzheimer’s disease in APP/PS1 double-transgenic mice. J Agri Food Chem 66(19):4948–4957

    Article  CAS  Google Scholar 

  54. Chang C-H, Chen C-Y, Chiou J-Y, Peng RY, Peng C-H (2010) Astaxanthine secured apoptotic death of PC12 cells induced by β-amyloid peptide 25–35: its molecular action targets. J Med Food 13(3):548–556

    Article  CAS  PubMed  Google Scholar 

  55. El-Agamy SE, Abdel-Aziz AK, Wahdan S, Esmat A, Azab SS (2018) Astaxanthin Ameliorates Doxorubicin-Induced Cognitive Impairment (Chemobrain) in Experimental Rat Model: Impact on Oxidative, Inflammatory, and Apoptotic Machineries. Mol Neurobiol 55(7):5727–5740. https://doi.org/10.1007/s12035-017-0797-7

    Article  CAS  PubMed  Google Scholar 

  56. Safarova G, Safarov N, Gasanov R (2016) Molecular docking of astaxanthin to monoamine oxidase. Adv Biol Earth Sci 1:45–50

    Google Scholar 

  57. Stahl SM, Felker A (2008) Monoamine oxidase inhibitors: a modern guide to an unrequited class of antidepressants. CNS Spectr 13(10):855–871

    Article  PubMed  Google Scholar 

  58. Jiang X, Yan Q, Liu F, Jing C, Ding L, Zhang L, Pang C (2018) Chronic trans-astaxanthin treatment exerts antihyperalgesic effect and corrects co-morbid depressive like behaviors in mice with chronic pain. Neurosci Lett 662:36–43. https://doi.org/10.1016/j.neulet.2017.09.064

    Article  CAS  PubMed  Google Scholar 

  59. Goda AA, Naguib KM, Mohamed MM, Amra HA, Nada SA, Abdel-Ghaffar ARB, Gissendanner CR, El Sayed KA (2016) Astaxanthin and Docosahexaenoic Acid Reverse the Toxicity of the Maxi-K (BK) Channel Antagonist Mycotoxin Penitrem A. Marine Drugs 14(11):18. https://doi.org/10.3390/md14110208

    Article  CAS  Google Scholar 

  60. Wen X, Huang A, Hu J, Zhong Z, Liu Y, Li Z, Pan X, Liu Z (2015) Neuroprotective effect of astaxanthin against glutamate-induced cytotoxicity in HT22 cells: Involvement of the Akt/GSK-3β pathway. Neuroscience 303:558–568

    Article  CAS  PubMed  Google Scholar 

  61. Hu R, Xu C, Shen G, Jain MR, Khor TO, Gopalkrishnan A, Lin W, Reddy B, Chan JY, Kong A-NT (2006) Gene expression profiles induced by cancer chemopreventive isothiocyanate sulforaphane in the liver of C57BL/6J mice and C57BL/6J/Nrf2 (−/−) mice. Cancer Lett 243(2):170–192

    Article  CAS  PubMed  Google Scholar 

  62. Kanninen K, Malm TM, Jyrkkänen H-K, Goldsteins G, Keksa-Goldsteine V, Tanila H, Yamamoto M, Ylä-Herttuala S, Levonen A-L, Koistinaho J (2008) Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol Cell Neurosci 39(3):302–313

    Article  CAS  PubMed  Google Scholar 

  63. Tripathi DN, Jena GB (2010) Astaxanthin intervention ameliorates cyclophosphamide-induced oxidative stress, DNA damage and early hepatocarcinogenesis in rat: Role of Nrf2, p53, p38 and phase-II enzymes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 696(1):69–80. https://doi.org/10.1016/j.mrgentox.2009.12.014

    Article  CAS  Google Scholar 

  64. Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc Natl Acad Sci 105(17):6415–6420

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

HA. Hafez was involved in experiments, interpretation of the data, and writing the article. MA.K and MY.O were involved in the design of the experiments, interpretation of the data, and writing the article, HMY. O was involved in experiments, SS.E was involved in the histopathological examination, interpretation of the data, and writing the article, and SA. M was involved in the design of the experiments, data analysis, and writing and revising the article.

Corresponding author

Correspondence to Hala A. Hafez.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Approval was obtained from the Institutional Animal Care And Use Committee (IACUC)-Alexandria University, Egypt (Approval Number: AU0122081232). The study also follows ARRIVE guidelines and complies with the National Research Council’s guide for the care and use of laboratory animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafez, H.A., Kamel, M.A., Osman, M.Y. et al. Ameliorative effects of astaxanthin on brain tissues of alzheimer’s disease-like model: cross talk between neuronal-specific microRNA-124 and related pathways. Mol Cell Biochem 476, 2233–2249 (2021). https://doi.org/10.1007/s11010-021-04079-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04079-4

Keywords

Navigation