Skip to main content
Log in

Antioxidant enzymatic systems in neuronal and glial cell-enriched fractions of rat brain during aging

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The activities of Cu,Zn superoxide dismutase, glutathione peroxidase, catalase and glutathione reductase in neuronal and glial cell-enriched fractions obtained from the cerebral cortex of rat brain during aging (15, 30, 90, 350, 750 days of age) were assayed. Our results showed that glutathione peroxidase, catalase and glutathione reductase activities varied little during the examined periods. Only the Cu,Zn superoxide dismutase activity decreased notably from 15th to 750th day of age in both neuronal and glial cells, moreover the activities of all enzymes studied were always detected at lower levels in neuronal cells with respect to glial cells. In agreement with diminished SOD activity, the lipid peroxidation showed an elevated increase with aging; this fact is more evident in neuronal than in glial cells. In conclusion our data show that Cu,Zn superoxide dismutase is the most affected antioxidant enzymatic system of brain aging and it could be responsible for the increased lipid peroxidation in both cell types examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fridovich I. 1978. The biology of oxygen radicals. Science 201:875–880.

    Google Scholar 

  2. Nohl H., and Hegner G. 1978. Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82:563–567.

    Google Scholar 

  3. Boveris A., Cadenas E., Ricter R., Filipkowski M., Nakase Y., and Chance B. 1980. Organ chemiluminescence: Noninvasive assay for oxidative radical reactions. Proc. Natl. Acad. Sci. USA 77:347–351.

    Google Scholar 

  4. Cadenas E., Varsavsky A. I., Boveris A., and Chance B. 1981. Oxygen- or organic hydroperoxide-induced chemiluminescence of brain and liver homogenates. Biochem. J. 198:645–654.

    Google Scholar 

  5. Cadenas E., Wefers H., and Sies H. 1981. Low-level chemiluminescence of isolated hepatocytes. Eur. J. Biochem. 119:531–536.

    Google Scholar 

  6. Gaunt G. L., and De Duve C. 1976. Subcellular distribution of D-amino acid oxidase and catalase in rat brain. J. Neurochem. 26:749–759.

    Google Scholar 

  7. Brannan T. S., Maker H. S., and Weiss C. 1981. Developmental study of rat brain glutathione peroxidase and glutathione reductase. Neuroch. Res. 6:41–45.

    Google Scholar 

  8. Brannan T. S., Maker H. S., and Raes I. P. 1981. Regional distribution of catalase in the adult rat brain. J. Neurochem. 36:307–309.

    Google Scholar 

  9. Mavelli I., Rigo A., Federico R., Ciriolo M. R., and Rotilio G. 1982. Superoxide dismutase, glutathione peroxidase and catalase in developing rat brain. Biochem. J. 204:535–540.

    Google Scholar 

  10. Vanella A., Geremia E., D'Urso G., Tiriolo P., Di Silvestro I., Grimaldi R., Pinturo R. 1982. Superoxide dismutase activities in aging rat brain. Gerontology 28:108–113.

    Google Scholar 

  11. Vitorica J., Machado A., and Satrustegui J. 1984. Age-dependent variations in peroxide-utilizing enzymes from brain mitochondria and cytoplasm. J. Neurochem. 42:351–356.

    Google Scholar 

  12. Scarpa M., Rigo A., Viglino P., Stevanato R., Bracco F., and Battistin L. 1987. Age dependence of the level of enzymes involved in the protection against active oxygen species in the rat brain. Proc. Soc. Exp. Biol. Med. 185:129–133.

    Google Scholar 

  13. Giuffrida A. M., Hamberger A., Serra I., and Geremia E. 1980. Effect of undernutrition on nucleic acid synthesis in neuronal and glial cells from different regions of developing rat brain. Nutr. Metab. 24:189–198.

    Google Scholar 

  14. Blömstrand C., and Hamberger A. 1969. Protein turnover in cell enriched- fractions from rabbit brain. J. Neurochem. 16:1401–1407.

    Google Scholar 

  15. Blömstrand C., and Hamberger A. 1970. Amino acid incorporation in vitro into protein of neuronal and glial cell-enriched fractions. J. Neurochem. 17:1187–1195.

    Google Scholar 

  16. McCord J., and Fridovich I. 1969. Superoxide dismutase. An enzymic function for erytrocuprein. J. Biol. Chem. 244:6049–6055.

    Google Scholar 

  17. Fried, R., Ciesielski-Treska, J., Ledig, M., and Mandel, P. 1978. Superoxide dismutase activity in nerve cell culture, Neurochem. Res. 3:635–639.

    Google Scholar 

  18. Beer R. F. Jr., and Sizer I. W. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195:133–140.

    Google Scholar 

  19. Paglia D. E., and Valentine W. N. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70:158–169.

    Google Scholar 

  20. Bergmeyer H. U., and Garvehn P. 1978. In: Methods of Enzymatic Analysis. (Bergmeyer H. U. ed.) Academic Press, New York, pp. 574–579.

    Google Scholar 

  21. Lowry O. H., Rosebrough A., Farr A., and Randall R. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  22. Slater, T. P., and Sawyer, B. C. 1971. The stimulatory effects of carbon tetrachloride and other halogenoalkanes on peroxidative reactions in rat liver fractions in vitro. Biochem. J., 123:805–814.

    Google Scholar 

  23. Asakawa, T., and Matsushita S. 1982. Thiobarbituric acid test of detecting lipid hydroperoxides under anaerobic condition. Agric. Biol. Chem. 45:453–457.

    Google Scholar 

  24. Buege, J. A., and Aust S. D. 1978. In: “Methods in Enzymology”. Biomembranes. Part C. Biological oxidation, microsomal, cytochrome P-450 and other hemoprotein systems.in Fleischer, S. and Packer, L. (eds.) 52:302–310. Academic Press, New York and London.

    Google Scholar 

  25. Pikul J., Leszcynski D. E., and F. A. Kummerow 1983. Elimination of sample autoxidation by butylated hydroxytoluene additions before thiobarbituric acid assay for malondialdehyde in fat from chicken meal. J. Agric. Food Chem., 31:1338–1342.

    Google Scholar 

  26. McCord J., and Fridovich I. 1968. The reduction of cytochromec by milk xanthine oxidase. J. Biol. Chem. 244:6049–6055.

    Google Scholar 

  27. McCord J., and Fridovich I. 1970. The utility of superoxide dismutase in studying free radicals reaction. J. Biol. Chem. 245:1374–1377.

    Google Scholar 

  28. Misra H., and Fridovich I. 1972. The generation of superoxide radical during the autoxidation of hemoglobin. J. Biol. Chem. 247:6960–6962.

    Google Scholar 

  29. Heikkila R., and Cohen G. 1973. 6-hydroxydopamine: evidence for superoxide radicals as an oxidative intermediate. Science 181:456–457.

    Google Scholar 

  30. Petkau A., and Chelack W. 1974. Radioprotection of model phospholipid membranes by superoxide dismutase. Biochem. Biophys. Res. Commun. 65:886–893.

    Google Scholar 

  31. Haugaard N. 1968. Cellular mechanism of oxygen toxicity. Physiol. Rev. 48:311–373.

    Google Scholar 

  32. Harman D. 1971. Free radical theory of aging: effect of the amount and degree of unsaturation of dietary fat on mortality rates. J. Gerontol. 26:451–457.

    Google Scholar 

  33. Demepoulos H. 1973. The basis of free radical pathology. Fed. Proc. 32:1859–1861.

    Google Scholar 

  34. Myers L. 1973. Free radical damage of nucleic acids and their components by ionizing radiation. Fed. Proc. 32:1882–1894.

    Google Scholar 

  35. Michelson A. M., 1977. Superoxide and superoxide dismutases Pages 245–255,in Michelson, A. M., McCord J. M. and Fridovich I., (eds) Academic Press, New York.

    Google Scholar 

  36. Koning-Verest I. F., Knook D. L., and Wolthius D. L. 1980. in Psychobiology of Aging. Problems and Perspectives Pages 177–199,in Stein D. G., (ed.), Elsevier North-Holland, Amsterdam.

    Google Scholar 

  37. Miquel J., Economas A. C., Fleming J., and Johnson J. E. Jr. 1980. Mitochondrial role in cell aging. Exp. Gerontol. 15:575–591.

    Google Scholar 

  38. Toth S. E. 1968. The origin of lipofuscin age pigments. Exp. Gerontology 3:19–30.

    Google Scholar 

  39. Tonna E. A. 1975. Accumulation of lipofuscin (age pigment) in aging skeletal connective tissues as revealed by electron microscopy. J. Gerontology 30:3–8.

    Google Scholar 

  40. Sohal R. S., Ragland S. S., Allen R. G., and Farmer K. 1983. Correlation between oxygen consumption, lipofuscin, fluorescent age pigment, lipid peroxidation potential and life span in insects. In Oxy Radical and their Scavenger System, Pages 361–364,in Greewald R. A. and Cohen G., (eds) Vol. II: Cellular and Medical Aspects.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geremia, E., Baratta, D., Zafarana, S. et al. Antioxidant enzymatic systems in neuronal and glial cell-enriched fractions of rat brain during aging. Neurochem Res 15, 719–723 (1990). https://doi.org/10.1007/BF00973653

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973653

Key Words

Navigation