Skip to main content
Log in

Mitoapocynin, a mitochondria targeted derivative of apocynin induces mitochondrial ROS generation and apoptosis in multiple cell types including cardiac myoblasts: a potential constraint to its therapeutic use

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mitoapocynin is a triphenylphosphonium conjugated derivative of apocynin that specifically locates to the mitochondria. It has been developed as a mitochondrially targeted therapeutic antioxidant. We attempted to attenuate the mitochondrial ROS induced in H9c2 cardiac myoblast cells treated with norepinephrine. Mitoapocynin was a poor quencher of total ROS as detected by the fluoroprobe DCFH-DA. Using mitochondrial superoxide specific probe MitoSoxRed, we found that 5–10 µM mitoapocynin itself induces superoxide over and above that is generated by the norepinephrine treatment. A supposedly control molecule to mitoapocynin, the synthetic compound PhC11TPP, having the triphenylphosphonium group and a benzene moiety with C11 aliphatic chain spacer was also found to be a robust inducer of mitochondrial ROS. Subsequent assays with several cell lines viz., NIH3T3, HEK293, Neuro2A, MCF-7 and H9c2, showed that prolonged exposure to mitoapocynin induces cell death by apoptosis that can be partially prevented by the general antioxidant N-acetyl cysteine. Analyses of mitochondrial electron transport complexes by Blue Native Polyacrylamide gel electrophoresis showed that both mitoapocynin and PhC11TPP disrupt the mitochondrial Complex I and V, and in addition, PhC11TPP also damages the Complex IV. Our data thus highlights the limitations of the therapeutic use of mitoapocynin as an antioxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

RET:

Reverse electron transport

SIRT1:

Sirtuin 1

DCFH-DA:

Dichloro-dihydro-fluoresceindiacetate

NAC:

N-acetyl cysteine

Nox:

NADPH oxidase

YFP:

Yellow fluorescent protein

PI:

Propidium Iodide

Nrf2:

The nuclear factor erythroid 2-related factor 2

TPP:

Triphenylphosphonium

References

  1. Brand MD (2016) Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100:14–31

    CAS  PubMed  Google Scholar 

  2. Mailloux RJ (2018) Mitochondrial antioxidants and the maintenance of cellular hydrogen peroxide levels. Oxid Med Cell Longev 2018:7857251. https://doi.org/10.1155/2018/7857251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Quiros PM, Mottis A, Auwerx J (2016) Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 17:213–226

    CAS  PubMed  Google Scholar 

  4. Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48:158–167

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen Y-R, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res 114:524–537

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Badrinath N, Yoo SY (2018) Mitochondria in cancer: in the aspects of tumorigenesis and targeted therapy. Carcinogenesis 39:1419–1430

    CAS  PubMed  Google Scholar 

  7. Franco-Iborra S, Vila M, Perier C (2018) Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson’s disease and Huntington’s disease. Front Neurosci 12:342

    PubMed  PubMed Central  Google Scholar 

  8. Lefranc C, Friederich-Persson M, Palacios-Ramirez R, Cat AND (2018) Mitochondrial oxidative stress in obesity: role of the mineralocorticoid receptor. J Endocrinol 238:R143–R159

    CAS  PubMed  Google Scholar 

  9. Kiyuna LA, e Albuquerque RP, Chen C-H, et al (2018) Targeting mitochondrial dysfunction and oxidative stress in heart failure: challenges and opportunities. Free Radic Biol Med 129:155–168

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Onukwufor JO, Berry BJ, Wojtovich AP (2019) Physiologic implications of reactive oxygen species production by mitochondrial complex I reverse electron transport. Antioxidants 8:285

    CAS  PubMed Central  Google Scholar 

  11. Scialò F, Fernández-Ayala DJ, Sanz A (2017) Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease. Front Physiol 8:428

    PubMed  PubMed Central  Google Scholar 

  12. Wojcik M, Burzynska-Pedziwiatr I, Wozniak L (2010) A review of natural and synthetic antioxidants important for health and longevity. Curr Med Chem 17:3262–3288

    CAS  PubMed  Google Scholar 

  13. Chung S, Yao H, Caito S et al (2010) Regulation of SIRT1 in cellular functions: role of polyphenols. Arch Biochem Biophys 501:79–90

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim H-S, Quon MJ, Kim J (2014) New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol 2:187–195

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Elbling L, Weiss R-M, Teufelhofer O et al (2005) Green tea extract and (–)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities. FASEB J 19:807–809

    CAS  PubMed  Google Scholar 

  16. Barrajón-Catalán E, Herranz-López M, Joven J et al (2014) Molecular promiscuity of plant polyphenols in the management of age-related diseases: far beyond their antioxidant properties. Adv Exp Med Biol 824:141–159

    PubMed  Google Scholar 

  17. Lee JH, Khor TO, Shu L et al (2013) Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol Ther 137:153–171

    CAS  PubMed  Google Scholar 

  18. Fernando W, Rupasinghe HV, Hoskin DW (2019) Dietary phytochemicals with anti-oxidant and pro-oxidant activities: a double-edged sword in relation to adjuvant chemotherapy and radiotherapy? Cancer Lett 452:168–177

    CAS  PubMed  Google Scholar 

  19. Oyewole AO, Birch-Machin MA (2015) Mitochondria-targeted antioxidants. FASEB J 29:4766–4771

    CAS  PubMed  Google Scholar 

  20. Smith RA, Hartley RC, Cocheme HM, Murphy MP (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33:341–352

    CAS  PubMed  Google Scholar 

  21. Altenhöfer S, Radermacher KA, Kleikers PW et al (2015) Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal 23:406–427

    PubMed  PubMed Central  Google Scholar 

  22. Simonyi A, Serfozo P, Lehmidi TM et al (2012) The neuroprotective effects of apocynin. Front Biosci Elite Ed 4:2183–2193

    PubMed  PubMed Central  Google Scholar 

  23. Kanegae MP, Condino-Neto A, Pedroza LA et al (2010) Diapocynin versus apocynin as pretranscriptional inhibitors of NADPH oxidase and cytokine production by peripheral blood mononuclear cells. Biochem Biophys Res Commun 393:551–554

    CAS  PubMed  Google Scholar 

  24. Wang Q, Smith RE, Luchtefeld R et al (2008) Bioavailability of apocynin through its conversion to glycoconjugate but not to diapocynin. Phytomedicine 15:496–503

    CAS  PubMed  Google Scholar 

  25. Dranka BP, Gifford A, McAllister D et al (2014) A novel mitochondrially-targeted apocynin derivative prevents hyposmia and loss of motor function in the leucine-rich repeat kinase 2 (LRRK2R1441G) transgenic mouse model of Parkinson’s disease. Neurosci Lett 583:159–164

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Langley M, Ghosh A, Charli A et al (2017) Mito-apocynin prevents mitochondrial dysfunction, microglial activation, oxidative damage, and progressive neurodegeneration in mitopark transgenic mice. Antioxid Redox Signal 27:1048–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brenza TM, Ghaisas S, Ramirez JEV et al (2017) Neuronal protection against oxidative insult by polyanhydride nanoparticle-based mitochondria-targeted antioxidant therapy. Nanomedicine Nanotechnol Biol Med 13:809–820

    CAS  Google Scholar 

  28. Ghosh A, Langley MR, Harischandra DS et al (2016) Mitoapocynin treatment protects against neuroinflammation and dopaminergic neurodegeneration in a preclinical animal model of Parkinson’s disease. J Neuroimmune Pharmacol 11:259–278

    PubMed  PubMed Central  Google Scholar 

  29. Saleem N, Goswami SK (2017) Activation of adrenergic receptor in H9c2 cardiac myoblasts co-stimulates Nox2 and the derived ROS mediate the downstream responses. Mol Cell Biochem 436:167–178

    CAS  PubMed  Google Scholar 

  30. Giordano G, Hong S, Faustman EM, Costa LG (2011) Measurements of cell death in neuronal and glial cells. In vitro neurotoxicology. Humana Press, Totowa NJ, pp 171–178

    Google Scholar 

  31. Wojtala A, Bonora M, Malinska D et al (2014) Methods to monitor ROS production by fluorescence microscopy and fluorometry. Methods Enzymol 542:243–262. https://doi.org/10.1016/B978-0-12-416618-9.00013-3

    Article  CAS  PubMed  Google Scholar 

  32. Konovalova S (2019) Analysis of mitochondrial respiratory chain complexes in cultured human cells using blue native polyacrylamide gel electrophoresis and immunoblotting. JoVE J Vis Exp 144:e59269. https://doi.org/10.3791/59269

    Article  CAS  Google Scholar 

  33. Thakur A, Alam MJ, Ajayakumar M et al (2015) Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation. Redox Biol 5:243–252

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jindal E, Goswami SK (2011) In cardiac myoblasts, cellular redox regulates FosB and Fra-1 through multiple cis-regulatory modules. Free Radic Biol Med 51:1512–1521

    CAS  PubMed  Google Scholar 

  35. Saleem N, Prasad A, Goswami SK (2018) Apocynin prevents isoproterenol-induced cardiac hypertrophy in rat. Mol Cell Biochem 445:79–88

    CAS  PubMed  Google Scholar 

  36. Kalyanaraman B, Darley-Usmar V, Davies KJ et al (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52:1–6

    CAS  PubMed  Google Scholar 

  37. Ezeriņa D, Takano Y, Hanaoka K et al (2018) N-Acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H2S and sulfane sulfur production. Cell Chem Biol 25:447-459.e4. https://doi.org/10.1016/j.chembiol.2018.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu J, Wu J, Zong C et al (2013) Manganese porphyrin-dsDNA complex: a mimicking enzyme for highly efficient bioanalysis. Anal Chem 85:3374–3379. https://doi.org/10.1021/ac4000688

    Article  CAS  PubMed  Google Scholar 

  39. Spencer NY, Engelhardt JF (2014) The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies. Biochemistry 53:1551–1564. https://doi.org/10.1021/bi401719r

    Article  CAS  PubMed  Google Scholar 

  40. Nian M, Paul L, Khaper N, Liu P (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 94:1543–1553. https://doi.org/10.1161/01.RES.0000130526.20854.fa

    Article  CAS  PubMed  Google Scholar 

  41. Neal A, Rountree A, Kernan K et al (2016) Real-time imaging of intracellular hydrogen peroxide in pancreatic islets. Biochem J 473:4443–4456. https://doi.org/10.1042/BCJ20160481

    Article  CAS  PubMed  Google Scholar 

  42. Suthammarak W, Somerlot BH, Opheim E et al (2013) Novel interactions between mitochondrial superoxide dismutases and the electron transport chain. Aging Cell 12:1132–1140. https://doi.org/10.1111/acel.12144

    Article  CAS  PubMed  Google Scholar 

  43. Battogtokh G, Choi YS, Kang DS et al (2018) Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharm Sin B 8:862–880

    PubMed  PubMed Central  Google Scholar 

  44. Wang JY, Li JQ, Xiao YM et al (2020) Triphenylphosphonium (TPP)-based antioxidants: a new perspective on antioxidant design. ChemMedChem 15(5):4040–4410

    Google Scholar 

  45. Kafkova A, Trnka J (2020) Mitochondria-targeted compounds in the treatment of cancer. Neoplasma 67:450–460

    CAS  PubMed  Google Scholar 

  46. Li W, Wu J, Xiang D et al (2019) Micelles loaded with puerarin and modified with triphenylphosphonium cation possess mitochondrial targeting and demonstrate enhanced protective effect against isoprenaline-induced H9c2 cells apoptosis. Int J Nanomedicine 14:8345–8360

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Heumüller S, Wind S, Barbosa-Sicard E et al (2008) Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51:211–217

    PubMed  Google Scholar 

  48. Kučera J, Binó L, Štefková K et al (2015) Apocynin and diphenyleneiodonium induce oxidative stress and modulate PI3K/Akt and MAPK/Erk activity in mouse embryonic stem cells. Oxid Med Cell Longev 2016:7409196. https://doi.org/10.1155/2016/7409196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Graton ME, Potje SR, Troiano JA et al (2019) Apocynin alters redox signaling in conductance and resistance vessels of spontaneously hypertensive rats. Free Radic Biol Med 134:53–63

    CAS  PubMed  Google Scholar 

  50. Xiao Y, Meierhofer D (2019) Are hydroethidine-based probes reliable for reactive oxygen species detection. Antioxid Redox Signal 31:359–367

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ximenes VF, Kanegae MP, Rissato SR, Galhiane MS (2007) The oxidation of apocynin catalyzed by myeloperoxidase: proposal for NADPH oxidase inhibition. Arch Biochem Biophys 457:134–141

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thankfully acknowledge funding support from the Science & Engineering Research Board (SERB), Government of India, under number EMR/2016/001832 to SKG. AM is a recipient of DS-Kothari Fellowship from the University Grants Commission, India. PB is a recipient of Senior Research Fellowship from the Council of Scientific and Industrial Research, India. MY acknowledges postdoctoral fellowship support from SERB-DST (DST File No: PDF/2017/000439), New Delhi, India. Sumona Ghosh, Technical Assistant performed some of the experiments shown in Figs. 3 and 4. We thank Director, CSIR-IICT (Ms. No. IICT/Pubs./2020/196) for providing necessary facilities to synthesize mitoapocynin.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md Yousuf or Shyamal K. Goswami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5968 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, A., Bisoyi, P., Banerjee, R. et al. Mitoapocynin, a mitochondria targeted derivative of apocynin induces mitochondrial ROS generation and apoptosis in multiple cell types including cardiac myoblasts: a potential constraint to its therapeutic use. Mol Cell Biochem 476, 2047–2059 (2021). https://doi.org/10.1007/s11010-020-04039-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-04039-4

Keywords

Navigation