Skip to main content
Log in

The roles of NLRP3 inflammasome-mediated signaling pathways in hyperuricemic nephropathy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hyperuricemic nephropathy (HN) is a common clinical complication of hyperuricemia. High-serum uric acid can trigger renal inflammation. The inflammasome family has several members and shows a significant effect on inflammatory responses. NLRP3 (NOD-, LRR-, and pyrin domain-containing 3) senses the stimuli signal of excessive uric acid and then it recruits apoptosis-related specular protein (ASC) as well as aspartic acid-specific cysteine protease (caspase)-1 precursor to form NLRP3 inflammasome. NLRP3 inflammasome is activated in acute kidney injury (AKI), chronic kidney diseases (CKD), diabetic nephropathy (DN), and HN. This review focuses on important role for the involvement of NLRP3 inflammasome and associated signaling pathways in the pathogenesis of hyperuricemia-induced renal injury and the potential therapeutic implications. Additionally, several inhibitors targeting NLRP3 inflammasome are under development, most of them for experiment. Therefore, researches into NLRP3 inflammasome modulators may provide novel therapies for HN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lai JH, Luo SF, Hung LF et al (2017) Physiological concentrations of soluble uric acid are chondroprotective and anti-inflammatory. Sci Rep 7(1):2359. https://doi.org/10.1038/s41598-017-02640-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kang DH, Nakagawa T, Feng L et al (2002) A role for uric acid in the progression of renal disease. J Am Soc Nephrol 13(12):2888–2897. https://doi.org/10.1097/01.asn.0000034910.58454.fd

    Article  CAS  PubMed  Google Scholar 

  3. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13(6):397–411. https://doi.org/10.1038/nri3452

    Article  CAS  PubMed  Google Scholar 

  4. Carneiro LA, Magalhaes JG, Tattoli I et al (2008) Nod-like proteins in inflammation and disease. J Pathol 214(2):136–148. https://doi.org/10.1002/path.2271

    Article  CAS  PubMed  Google Scholar 

  5. Sharif H, Wang L, Wang WL et al (2019) Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570(7761):338–343. https://doi.org/10.1038/s41586-019-1295-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Alba E (2019) Structure, interactions and self-assembly of ASC-dependent inflammasomes. Arch Biochem Biophys 670:15–31. https://doi.org/10.1016/j.abb.2019.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Segovia J, Sabbah A, Mgbemena V et al (2012) TLR2/MyD88/NF-κB pathway, reactive oxygen species, potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection. PLoS One 7(1):e29695. https://doi.org/10.1371/journal.pone.0029695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tartey S, Kanneganti TD (2019) Inflammasomes in the pathophysiology of autoinflammatory syndromes. J Leukoc Biol. https://doi.org/10.1002/jlb.3mir0919-191r

  9. Jo EK, Kim JK, Shin DM et al (2016) Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol 13(2):148–159. https://doi.org/10.1038/cmi.2015.95

    Article  CAS  PubMed  Google Scholar 

  10. Qiao Y, Wang P, Qi J et al (2012) TLR-induced NF-kappaB activation regulates NLRP3 expression in murine macrophages. FEBS Lett 586(7):1022–1026. https://doi.org/10.1016/j.febslet.2012.02.045

    Article  CAS  PubMed  Google Scholar 

  11. Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10(3):210–215. https://doi.org/10.1038/nri2725

    Article  CAS  PubMed  Google Scholar 

  12. Xiao J, Zhang X, Fu C et al (2018) Impaired Na(+)-K(+)-ATPase signaling in renal proximal tubule contributes to hyperuricemia-induced renal tubular injury. Exp Mol Med 50(3):e452. https://doi.org/10.1038/emm.2017.287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wen H, Ting JP, O'Neill LA (2012) A role for the NLRP3 inflammasome in metabolic diseases – did Warburg miss inflammation? Nat Immunol 13(4):352–357. https://doi.org/10.1038/ni.2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yin W, Zhou QL, OuYang SX et al (2019) Uric acid regulates NLRP3/IL-1beta signaling pathway and further induces vascular endothelial cells injury in early CKD through ROS activation and K(+) efflux. BMC Nephrol 20(1):319. https://doi.org/10.1186/s12882-019-1506-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qi R, Yang C (2018) Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury. Cell Death Dis 9(11):1126. https://doi.org/10.1038/s41419-018-1157-x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Alberts BM, Bruce C, Basnayake K et al (2019) Secretion of IL-1β from monocytes in gout is redox independent. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.00070

  17. Wang M, Zhao J, Zhang N et al (2016) Astilbin improves potassium oxonate-induced hyperuricemia and kidney injury through regulating oxidative stress and inflammation response in mice. Biomed Pharmacother 83:975–988. https://doi.org/10.1016/j.biopha.2016.07.025

    Article  CAS  PubMed  Google Scholar 

  18. Yang Q, Fu C, Xiao J et al (2018) Uric acid upregulates the adiponectin-adiponectin receptor 1 pathway in renal proximal tubule epithelial cells. Mol Med Rep 17(3):3545–3554. https://doi.org/10.3892/mmr.2017.8315

    Article  CAS  PubMed  Google Scholar 

  19. Braga TT, Forni MF, Correa-Costa M et al (2017) Soluble uric acid activates the NLRP3 Inflammasome. Sci Rep 7(1):39884. https://doi.org/10.1038/srep39884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Busca R, Pouyssegur J, Lenormand P (2016) ERK1 and ERK2 map kinases: specific roles or functional redundancy? Front Cell Dev Biol 4:53. https://doi.org/10.3389/fcell.2016.00053

    Article  PubMed  PubMed Central  Google Scholar 

  21. McKay MM, Morrison DK (2007) Integrating signals from RTKs to ERK/MAPK. Oncogene 26(22):3113–3121. https://doi.org/10.1038/sj.onc.1210394

    Article  CAS  PubMed  Google Scholar 

  22. Kurtzeborn K, Kwon HN, Kuure S (2019) MAPK/ERK signaling in regulation of renal differentiation. Int J Mol Sci 20(7). https://doi.org/10.3390/ijms20071779

  23. Zeng F, Singh AB, Harris RC (2009) The role of the EGF family of ligands and receptors in renal development, physiology and pathophysiology. Exp Cell Res 315(4):602–610. https://doi.org/10.1016/j.yexcr.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  24. Meng XM, Tang PM, Li J et al (2015) TGF-beta/Smad signaling in renal fibrosis. Front Physiol 6:82. https://doi.org/10.3389/fphys.2015.00082

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li Z, Shen Y, Chen Y et al (2018) High uric acid inhibits cardiomyocyte viability through the ERK/P38 pathway via oxidative stress. Cell Physiol Biochem 45(3):1156–1164. https://doi.org/10.1159/000487356

    Article  CAS  PubMed  Google Scholar 

  26. Zhuang Y, Feng Q, Ding G et al (2014) Activation of ERK1/2 by NADPH oxidase-originated reactive oxygen species mediates uric acid-induced mesangial cell proliferation. Am J Physiol Renal Physiol 307(4):F396–F406. https://doi.org/10.1152/ajprenal.00565.2013

    Article  CAS  PubMed  Google Scholar 

  27. Luo SF, Chin CY, Ho LJ et al (2018) Monosodium urate crystals induced ICAM-1 expression and cell-cell adhesion in renal mesangial cells: implications for the pathogenesis of gouty nephropathy. J Microbiol Immunol Infect. https://doi.org/10.1016/j.jmii.2017.12.004

  28. Liu N, Xu L, Shi Y et al (2017) Pharmacologic targeting ERK1/2 attenuates the development and progression of hyperuricemic nephropathy in rats. Oncotarget 8(20):33807–33826. https://doi.org/10.18632/oncotarget.16995

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xin Y, Wang K, Jia Z et al (2018) Zurampic protects pancreatic beta-cells from high uric acid induced-damage by inhibiting URAT1 and inactivating the ROS/AMPK/ERK pathways. Cell Physiol Biochem 47(3):1074–1083. https://doi.org/10.1159/000490184

    Article  CAS  PubMed  Google Scholar 

  30. Zha D, Wu S, Gao P et al (2019) Telmisartan attenuates uric acid-induced epithelial-Mesenchymal transition in renal tubular cells. Biomed Res Int 2019:3851718. https://doi.org/10.1155/2019/3851718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang K, Hu L, Chen JK (2018) RIP3-deficience attenuates potassium oxonate-induced hyperuricemia and kidney injury. Biomed Pharmacother 101:617–626. https://doi.org/10.1016/j.biopha.2018.02.010

    Article  CAS  PubMed  Google Scholar 

  32. Tan J, Wan L, Chen X et al (2019) Conjugated linoleic acid ameliorates high fructose-induced hyperuricemia and renal inflammation in rats via NLRP3 inflammasome and TLR4 signaling pathway. Mol Nutr Food Res 63(12):e1801402. https://doi.org/10.1002/mnfr.201801402

    Article  CAS  PubMed  Google Scholar 

  33. Lee SH, Kwak CH, Lee SK et al (2016) Anti-inflammatory effect of Ascochlorin in LPS-stimulated RAW 264.7 macrophage cells is accompanied with the down-regulation of iNOS, COX-2 and proinflammatory cytokines through NF-kappaB, ERK1/2, and p38 signaling pathway. J Cell Biochem 117(4):978–987. https://doi.org/10.1002/jcb.25383

    Article  CAS  PubMed  Google Scholar 

  34. Li X, Chen F, Zhu Q et al (2016) Gli-1/PI3K/AKT/NF-kB pathway mediates resistance to radiation and is a target for reversion of responses in refractory acute myeloid leukemia cells. Oncotarget 7(22):33004–33015. https://doi.org/10.18632/oncotarget.8844

    Article  PubMed  PubMed Central  Google Scholar 

  35. Oeckinghaus A, Ghosh S (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1(4):a000034. https://doi.org/10.1101/cshperspect.a000034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhen H, Gui F (2017) The role of hyperuricemia on vascular endothelium dysfunction. Biomed Rep 7(4):325–330. https://doi.org/10.3892/br.2017.966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen L, Lan Z (2017) Polydatin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation by inhibiting NF-kappaB/NLRP3 inflammasome activation via the AMPK/SIRT1 pathway. Food Funct 8(5):1785–1792. https://doi.org/10.1039/c6fo01561a

    Article  CAS  PubMed  Google Scholar 

  38. Bao J, Shi Y, Tao M et al (2018) Pharmacological inhibition of autophagy by 3-MA attenuates hyperuricemic nephropathy. Clin Sci (Lond) 132(21):2299–2322. https://doi.org/10.1042/cs20180563

    Article  CAS  Google Scholar 

  39. Subramanian N, Natarajan K, Clatworthy MR et al (2013) The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell 153(2):348–361. https://doi.org/10.1016/j.cell.2013.02.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alberts BM, Bruce C, Basnayake K et al (2019) Secretion of IL-1beta from monocytes in gout is redox independent. Front Immunol 10:70. https://doi.org/10.3389/fimmu.2019.00070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cruz CM, Rinna A, Forman HJ et al (2007) ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282(5):2871–2879. https://doi.org/10.1074/jbc.M608083200

    Article  CAS  PubMed  Google Scholar 

  42. Hongyan L, Suling W, Weina Z et al (2016) Antihyperuricemic effect of liquiritigenin in potassium oxonate-induced hyperuricemic rats. Biomed Pharmacother 84:1930–1936. https://doi.org/10.1016/j.biopha.2016.11.009

    Article  CAS  PubMed  Google Scholar 

  43. Chen Y, Li C, Duan S et al (2019) Curcumin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Biomed Pharmacother 118:109195. https://doi.org/10.1016/j.biopha.2019.109195

    Article  CAS  PubMed  Google Scholar 

  44. Shi Y-W, Wang C-P, Liu L et al (2012) Antihyperuricemic and nephroprotective effects of resveratrol and its analogues in hyperuricemic mice. Mol Nutr Food Res 56(9):1433–1444. https://doi.org/10.1002/mnfr.201100828

    Article  CAS  PubMed  Google Scholar 

  45. Chen Y-S, Chen C-J, Yan W et al (2017) Anti-hyperuricemic and anti-inflammatory actions of vaticaffinol isolated from Dipterocarpus alatus in hyperuricemic mice. Chin J Nat Med 15(5):330–340. https://doi.org/10.1016/S1875-5364(17)30053-5

    Article  CAS  PubMed  Google Scholar 

  46. Cui D, Liu S, Tang M et al (2020) Phloretin ameliorates hyperuricemia-induced chronic renal dysfunction through inhibiting NLRP3 inflammasome and uric acid reabsorption. Phytomedicine 66:153111. https://doi.org/10.1016/j.phymed.2019.153111

    Article  CAS  PubMed  Google Scholar 

  47. Wu H, Zhou M, Lu G et al (2017) Emodinol ameliorates urate nephropathy by regulating renal organic ion transporters and inhibiting immune inflammatory responses in rats. Biomed Pharmacother 96:727–735. https://doi.org/10.1016/j.biopha.2017.10.051

    Article  CAS  PubMed  Google Scholar 

  48. Wang M-X, Liu Y-L, Yang Y et al (2015) Nuciferine restores potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Eur J Pharmacol 747:59–70. https://doi.org/10.1016/j.ejphar.2014.11.035

    Article  CAS  PubMed  Google Scholar 

  49. Hu Q-H, Zhang X, Pan Y et al (2012) Allopurinol, quercetin and rutin ameliorate renal NLRP3 inflammasome activation and lipid accumulation in fructose-fed rats. Biochem Pharmacol 84(1):113–125. https://doi.org/10.1016/j.bcp.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  50. Lu H, Yao H, Zou R et al (2019) Galangin suppresses renal inflammation via the inhibition of NF-kappaB, PI3K/AKT and NLRP3 in uric acid treated NRK-52E tubular epithelial cells. Biomed Res Int 2019:3018357. https://doi.org/10.1155/2019/3018357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ma C-H, Kang L-L, Ren H-M et al (2015) Simiao pill ameliorates renal glomerular injury via increasing Sirt1 expression and suppressing NF-κB/NLRP3 inflammasome activation in high fructose-fed rats. J Ethnopharmacol 172:108–117. https://doi.org/10.1016/j.jep.2015.06.015

    Article  PubMed  Google Scholar 

  52. Hu J, Wu H, Wang D et al (2018) Weicao capsule ameliorates renal injury through increasing autophagy and NLRP3 degradation in UAN rats. Int J Biochem Cell Biol 96:1–8. https://doi.org/10.1016/j.biocel.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  53. Yang Y, Zhang D-M, Liu J-H et al (2015) Wuling san protects kidney dysfunction by inhibiting renal TLR4/MyD88 signaling and NLRP3 inflammasome activation in high fructose-induced hyperuricemic mice. J Ethnopharmacol 169:49–59. https://doi.org/10.1016/j.jep.2015.04.011

    Article  PubMed  Google Scholar 

  54. Zhang C, Zhu X, Li L et al (2019) A small molecule inhibitor MCC950 ameliorates kidney injury in diabetic nephropathy by inhibiting NLRP3 inflammasome activation. Diabetes Metab Syndr Obes Target Ther 12:1297–1309. https://doi.org/10.2147/DMSO.S199802

    Article  CAS  Google Scholar 

  55. Fu R, Guo C, Wang S et al (2017) Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis. Arthritis Rheumatol 69(8):1636–1646. https://doi.org/10.1002/art.40155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cornelius DA-O, Travis OK, Tramel RA-O et al (2020) NLRP3 inflammasome inhibition attenuates sepsis-induced platelet activation and prevents multi-organ injury in cecal-ligation puncture. PLoS One 15(6):e0234039. https://doi.org/10.1371/journal.pone.0234039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li S, Lin Q, Shao X et al (2019) NLRP3 inflammasome inhibition attenuates cisplatin-induced renal fibrosis by decreasing oxidative stress and inflammation. Exp Cell Res 383(1):111488. https://doi.org/10.1016/j.yexcr.2019.07.001

    Article  CAS  PubMed  Google Scholar 

  58. Ding X, Chen J, Wu C et al (2019) Nucleotide-binding Oligomerization domain-like receptor protein 3 deficiency in vascular smooth muscle cells prevents Arteriovenous fistula failure despite chronic kidney disease. J Am Heart Assoc 8(1):e011211. https://doi.org/10.1161/JAHA.118.011211

    Article  CAS  PubMed  Google Scholar 

  59. Zou X-f, Gu J-h, Duan J-h et al (2020) The NLRP3 inhibitor Mcc950 attenuates acute allograft damage in rat kidney transplants. Transpl Immunol 61:101293. https://doi.org/10.1016/j.trim.2020.101293

    Article  CAS  PubMed  Google Scholar 

  60. Coll RC, Robertson AAB, Chae JJ et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21(3):248–255. https://doi.org/10.1038/nm.3806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Krishnan SM, Dowling JK, Ling YH et al (2016) Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. Br J Pharmacol 173(4):752–765. https://doi.org/10.1111/bph.13230. Epub 2015 Jul 31

    Article  CAS  PubMed  Google Scholar 

  62. Ludwig-Portugall I, Bartok E, Dhana E et al (2016) An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis in mice. Kidney Int 90(3):525–539. https://doi.org/10.1016/j.kint.2016.03.035

    Article  CAS  PubMed  Google Scholar 

  63. Jiang H, He H, Chen Y et al (2017) Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med 214(11):3219–3238. https://doi.org/10.1084/jem.20171419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heneka MT, Kummer MP, Stutz A et al (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–678. https://doi.org/10.1038/nature11729

    Article  CAS  PubMed  Google Scholar 

  65. Cocco M, Pellegrini C, Martínez-Banaclocha H et al (2017) Development of an acrylate derivative targeting the NLRP3 inflammasome for the treatment of inflammatory bowel disease. J Med Chem 60(9):3656–3671. https://doi.org/10.1021/acs.jmedchem.6b01624

    Article  CAS  PubMed  Google Scholar 

  66. Wang R, Ma C-H, Zhou F et al (2016) Siwu decoction attenuates oxonate-induced hyperuricemia and kidney inflammation in mice. Chin J Nat Med 14(7):0499–0507. https://doi.org/10.1016/S1875-5364(16)30059-0

    Article  CAS  Google Scholar 

  67. Zhang X-y, Cheng J, Zhao P et al (2019) Screening the best compatibility of Selaginella moellendorffii prescription on Hyperuricemia and gouty arthritis and its mechanism. Evid Based Complement Alternat Med 2019:7263034. https://doi.org/10.1155/2019/7263034

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wu Y, He F, Li Y et al (2017) Effects of Shizhifang on NLRP3 inflammasome activation and renal tubular injury in Hyperuricemic rats. Evid Based Complement Alternat Med 2017:7674240. https://doi.org/10.1155/2017/7674240

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ma W-g, Wang J, Bu X-w et al (2019) Effects of polygonum cuspidatum on AMPK-FOXO3α signaling pathway in rat model of uric acid-induced renal damage. Chin J Integr Med 25(3):182–189. https://doi.org/10.1007/s11655-017-2979-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by 1.3.5 project for disciplines of excellence from West China Hospital of Sichuan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Ma or Ping Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest in this publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, L., Yang, H., Ma, L. et al. The roles of NLRP3 inflammasome-mediated signaling pathways in hyperuricemic nephropathy. Mol Cell Biochem 476, 1377–1386 (2021). https://doi.org/10.1007/s11010-020-03997-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03997-z

Keywords

Navigation