Skip to main content

Advertisement

Log in

Identification of key genes and biological pathways in lung adenocarcinoma via bioinformatics analysis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Lung adenocarcinoma (LUAD) accounts for the majority of cancer-related deaths worldwide. Our study identified key LUAD genes and their potential mechanism via bioinformatics analysis of public datasets. GSE10799, GSE40791, and GSE27262 microarray datasets were retrieved from the Gene Expression Omnibus (GEO) database. The RobustRankAggreg package was used to perform a meta-analysis, and 50 upregulated genes and 87 downregulated genes overlapped in three datasets. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Furthermore, protein–protein interaction (PPI) networks of the differentially expressed genes (DEGs) were built by the Search Tool for the Retrieval of Interacting Genes (STRING) and 22 core genes were identified by Molecular Complex Detection (MCODE) and visualized with Cytoscape. Subsequently, these core genes were analyzed by the Kaplan–Meier Plotter and Gene Expression Profiling Interactive Analysis (GEPIA). The results showed that all 22 genes were significantly associated with reduced survival rates. For GEPIA, the expression of only one gene was not significantly different between LUAD tissues and normal tissues. A KEGG pathway enrichment reanalysis of the 21 genes identified five key genes (CCNB1, BUB1B, CDC20, TTK, and MAD2L1) in the cell cycle pathway. Finally, the Comparative Toxicogenomics Database (CTD) website was used to explore the relationship between these key genes and certain drugs. Based on the bioinformatics analysis, five key genes were identified in LUAD, and drugs closely associated these genes can provide clues for the treatment and prognosis of LUAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. https://doi.org/10.3322/caac.20107

    Article  PubMed  Google Scholar 

  2. Malvezzi M, Carioli G, Bertuccio P, Boffetta P, Levi F, La Vecchia C, Negri E (2017) European cancer mortality predictions for the year 2017, with focus on lung cancer. Ann Oncol 28(5):1117–1123. https://doi.org/10.1093/annonc/mdx033

    Article  CAS  PubMed  Google Scholar 

  3. Yao G, Chen K, Qin Y, Niu Y, Zhang X, Xu S, Zhang C, Feng M, Wang K (2019) Long non-coding RNA JHDM1D-AS1 interacts with DHX15 protein to enhance non-small-cell lung cancer growth and metastasis. Mol Ther Nucleic Acids 18:831–840. https://doi.org/10.1016/j.omtn.2019.09.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mao H (2019) Clinical relevance of mutant-allele tumor heterogeneity and lung adenocarcinoma. Ann Transl Med 7(18):432. https://doi.org/10.21037/atm.2019.08.112

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gan TQ, Chen WJ, Qin H, Huang SN, Yang LH, Fang YY, Pan LJ, Li ZY, Chen G (2017) Clinical value and prospective pathway signaling of microRNA-375 in lung adenocarcinoma: a study based on the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and bioinformatics analysis. Med Sci Monit 23:2453–2464. https://doi.org/10.12659/msm.901460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bedognetti D, Wang E, Sertoli MR, Marincola FM (2010) Gene-expression profiling in vaccine therapy and immunotherapy for cancer. Expert Rev Vaccines 9(6):555–565. https://doi.org/10.1586/erv.10.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coe BP, Chari R, Lockwood WW, Lam WL (2008) Evolving strategies for global gene expression analysis of cancer. J Cell Physiol 217(3):590–597. https://doi.org/10.1002/jcp.21554

    Article  CAS  PubMed  Google Scholar 

  8. Sotiriou C, Piccart MJ (2007) Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer 7(7):545–553. https://doi.org/10.1038/nrc2173

    Article  CAS  PubMed  Google Scholar 

  9. Beane J, Spira A, Lenburg ME (2009) Clinical impact of high-throughput gene expression studies in lung cancer. J Thorac Oncol 4(1):109–118. https://doi.org/10.1097/JTO.0b013e31819151f8

    Article  PubMed  PubMed Central  Google Scholar 

  10. Singhal S, Miller D, Ramalingam S, Sun SY (2008) Gene expression profiling of non-small cell lung cancer. Lung Cancer 60(3):313–324. https://doi.org/10.1016/j.lungcan.2008.03.007

    Article  PubMed  Google Scholar 

  11. Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A (2011) NCBI GEO: archive for functional genomics data sets – 10 years on. Nucleic Acids Res 39(Database issue):D1005–D1010. https://doi.org/10.1093/nar/gkq1184

    Article  CAS  PubMed  Google Scholar 

  12. Kolde R, Laur S, Adler P, Vilo J (2012) Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 28(4):573–580. https://doi.org/10.1093/bioinformatics/btr709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Denny P, Feuermann M, Hill DP, Lovering RC, Plun-Favreau H, Roncaglia P (2018) Exploring autophagy with Gene Ontology. Autophagy 14(3):419–436. https://doi.org/10.1080/15548627.2017.1415189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lindeberg M, Biehl BS, Glasner JD, Perna NT, Collmer A, Collmer CW (2009) Gene Ontology annotation highlights shared and divergent pathogenic strategies of type III effector proteins deployed by the plant pathogen Pseudomonas syringae pv tomato DC3000 and animal pathogenic Escherichia coli strains. BMC Microbiol 9(Suppl 1):S4. https://doi.org/10.1186/1471-2180-9-S1-S4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M (2019) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47(D1):D590–D595. https://doi.org/10.1093/nar/gky962

    Article  CAS  PubMed  Google Scholar 

  16. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361. https://doi.org/10.1093/nar/gkw1092

    Article  CAS  PubMed  Google Scholar 

  17. Cao D, Hustinx SR, Sui G, Bala P, Sato N, Martin S, Maitra A, Murphy KM, Cameron JL, Yeo CJ, Kern SE, Goggins M, Pandey A, Hruban RH (2004) Identification of novel highly expressed genes in pancreatic ductal adenocarcinomas through a bioinformatics analysis of expressed sequence tags. Cancer Biol Ther 3(11):1081–1089; discussion 1090–1081. https://doi.org/10.4161/cbt.3.11.1175

    Article  CAS  PubMed  Google Scholar 

  18. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45(W1):W98–W102. https://doi.org/10.1093/nar/gkx247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davis AP, King BL, Mockus S, Murphy CG, Saraceni-Richards C, Rosenstein M, Wiegers T, Mattingly CJ (2011) The comparative toxicogenomics database: update 2011. Nucleic Acids Res 39(Database issue):D1067–D1072. https://doi.org/10.1093/nar/gkq813

    Article  CAS  PubMed  Google Scholar 

  20. Fu X, Chen G, Cai ZD, Wang C, Liu ZZ, Lin ZY, Wu YD, Liang YX, Han ZD, Liu JC, Zhong WD (2016) Overexpression of BUB1B contributes to progression of prostate cancer and predicts poor outcome in patients with prostate cancer. Onco Targets Ther 9:2211–2220. https://doi.org/10.2147/OTT.S101994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Myslinski E, Gerard MA, Krol A, Carbon P (2007) Transcription of the human cell cycle regulated BUB1B gene requires hStaf/ZNF143. Nucleic Acids Res 35(10):3453–3464. https://doi.org/10.1093/nar/gkm239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A, Kumar R, Jenkins RB, de Groen PC, Roche P, van Deursen JM (2004) BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 36(7):744–749. https://doi.org/10.1038/ng1382

    Article  CAS  PubMed  Google Scholar 

  23. Wan X, Yeung C, Kim SY, Dolan JG, Ngo VN, Burkett S, Khan J, Staudt LM, Helman LJ (2012) Identification of FoxM1/Bub1b signaling pathway as a required component for growth and survival of rhabdomyosarcoma. Cancer Res 72(22):5889–5899. https://doi.org/10.1158/0008-5472.CAN-12-1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mansouri N, Movafagh A, Sayad A, Heidary Pour A, Taheri M, Soleimani S, Mirzaei HR, Alizadeh Shargh S, Azargashb E, Bazmi H, Allah Moradi H, Zandnia F, Hashemi M, Massoudi N, Mortazavi-Tabatabaei SA (2016) Targeting of BUB1b gene expression in sentinel lymph node biopsies of invasive breast cancer in Iranian female patients. Asian Pac J Cancer Prev 17(S3):317–321. https://doi.org/10.7314/apjcp.2016.17.s3.317

    Article  PubMed  Google Scholar 

  25. Hudler P, Britovsek NK, Grazio SF, Komel R (2016) Association between polymorphisms in segregation genes BUB1B and TTK and gastric cancer risk. Radiol Oncol 50(3):297–307. https://doi.org/10.1515/raon-2015-0047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hahn MM, Vreede L, Bemelmans SA, van der Looij E, van Kessel AG, Schackert HK, Ligtenberg MJ, Hoogerbrugge N, Kuiper RP, de Voer RM (2016) Prevalence of germline mutations in the spindle assembly checkpoint gene BUB1B in individuals with early-onset colorectal cancer. Genes Chromosomes Cancer 55(11):855–863. https://doi.org/10.1002/gcc.22385

    Article  CAS  PubMed  Google Scholar 

  27. Liu AW, Cai J, Zhao XL, Xu AM, Fu HQ, Nian H, Zhang SH (2009) The clinicopathological significance of BUBR1 overexpression in hepatocellular carcinoma. J Clin Pathol 62(11):1003–1008. https://doi.org/10.1136/jcp.2009.066944

    Article  CAS  PubMed  Google Scholar 

  28. Mussnich P, Raverot G, Jaffrain-Rea ML, Fraggetta F, Wierinckx A, Trouillas J, Fusco A, D’Angelo D (2015) Downregulation of miR-410 targeting the cyclin B1 gene plays a role in pituitary gonadotroph tumors. Cell Cycle 14(16):2590–2597. https://doi.org/10.1080/15384101.2015.1064207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hwang A, McKenna WG, Muschel RJ (1998) Cell cycle-dependent usage of transcriptional start sites. A novel mechanism for regulation of cyclin B1. J Biol Chem 273(47):31505–31509. https://doi.org/10.1074/jbc.273.47.31505

    Article  CAS  PubMed  Google Scholar 

  30. Pandey JP, Kistner-Griffin E, Namboodiri AM, Iwasaki M, Kasuga Y, Hamada GS, Tsugane S (2014) Higher levels of antibodies to the tumour-associated antigen cyclin B1 in cancer-free individuals than in patients with breast cancer. Clin Exp Immunol 178(1):75–78. https://doi.org/10.1111/cei.12385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuan J, Yan R, Kramer A, Eckerdt F, Roller M, Kaufmann M, Strebhardt K (2004) Cyclin B1 depletion inhibits proliferation and induces apoptosis in human tumor cells. Oncogene 23(34):5843–5852. https://doi.org/10.1038/sj.onc.1207757

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki T, Urano T, Miki Y, Moriya T, Akahira J, Ishida T, Horie K, Inoue S, Sasano H (2007) Nuclear cyclin B1 in human breast carcinoma as a potent prognostic factor. Cancer Sci 98(5):644–651. https://doi.org/10.1111/j.1349-7006.2007.00444.x

    Article  CAS  PubMed  Google Scholar 

  33. Zhou L, Li J, Zhao YP, Cui QC, Zhou WX, Guo JC, You L, Wu WM, Zhang TP (2014) The prognostic value of Cyclin B1 in pancreatic cancer. Med Oncol 31(9):107. https://doi.org/10.1007/s12032-014-0107-4

    Article  CAS  PubMed  Google Scholar 

  34. Takeno S, Noguchi T, Kikuchi R, Uchida Y, Yokoyama S, Muller W (2002) Prognostic value of cyclin B1 in patients with esophageal squamous cell carcinoma. Cancer 94(11):2874–2881. https://doi.org/10.1002/cncr.10542

    Article  CAS  PubMed  Google Scholar 

  35. Chu Z, Zhang X, Li Q, Hu G, Lian CG, Geng S (2019) CDC20 contributes to the development of human cutaneous squamous cell carcinoma through the Wnt/betacatenin signaling pathway. Int J Oncol 54(5):1534–1544. https://doi.org/10.3892/ijo.2019.4727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bharadwaj R, Yu H (2004) The spindle checkpoint, aneuploidy, and cancer. Oncogene 23(11):2016–2027. https://doi.org/10.1038/sj.onc.1207374

    Article  CAS  PubMed  Google Scholar 

  37. Shang G, Ma X, Lv G (2018) Cell division cycle 20 promotes cell proliferation and invasion and inhibits apoptosis in osteosarcoma cells. Cell Cycle 17(1):43–52. https://doi.org/10.1080/15384101.2017.1387700

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Benezra R (1996) Identification of a human mitotic checkpoint gene: hsMAD2. Science 274(5285):246–248. https://doi.org/10.1126/science.274.5285.246

    Article  CAS  PubMed  Google Scholar 

  39. Abal M, Obrador-Hevia A, Janssen KP, Casadome L, Menendez M, Carpentier S, Barillot E, Wagner M, Ansorge W, Moeslein G, Fsihi H, Bezrookove V, Reventos J, Louvard D, Capella G, Robine S (2007) APC inactivation associates with abnormal mitosis completion and concomitant BUB1B/MAD2L1 up-regulation. Gastroenterology 132(7):2448–2458. https://doi.org/10.1053/j.gastro.2007.03.027

    Article  CAS  PubMed  Google Scholar 

  40. Vleugel M, Hoek TA, Tromer E, Sliedrecht T, Groenewold V, Omerzu M, Kops GJ (2015) Dissecting the roles of human BUB1 in the spindle assembly checkpoint. J Cell Sci 128(16):2975–2982. https://doi.org/10.1242/jcs.169821

    Article  CAS  PubMed  Google Scholar 

  41. Ko YH, Roh JH, Son YI, Chung MK, Jang JY, Byun H, Baek CH, Jeong HS (2010) Expression of mitotic checkpoint proteins BUB1B and MAD2L1 in salivary duct carcinomas. J Oral Pathol Med 39(4):349–355. https://doi.org/10.1111/j.1600-0714.2009.00835.x

    Article  PubMed  Google Scholar 

  42. Wang Z, Katsaros D, Shen Y, Fu Y, Canuto EM, Benedetto C, Lu L, Chu WM, Risch HA, Yu H (2015) Biological and clinical significance of MAD2L1 and BUB1, genes frequently appearing in expression signatures for breast cancer prognosis. PLoS One 10(8):e0136246. https://doi.org/10.1371/journal.pone.0136246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xie Y, Wang A, Lin J, Wu L, Zhang H, Yang X, Wan X, Miao R, Sang X, Zhao H (2017) Mps1/TTK: a novel target and biomarker for cancer. J Drug Target 25(2):112–118. https://doi.org/10.1080/1061186X.2016.1258568

    Article  CAS  PubMed  Google Scholar 

  44. Jemaa M, Galluzzi L, Kepp O, Senovilla L, Brands M, Boemer U, Koppitz M, Lienau P, Prechtl S, Schulze V, Siemeister G, Wengner AM, Mumberg D, Ziegelbauer K, Abrieu A, Castedo M, Vitale I, Kroemer G (2013) Characterization of novel MPS1 inhibitors with preclinical anticancer activity. Cell Death Differ 20(11):1532–1545. https://doi.org/10.1038/cdd.2013.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maia AR, de Man J, Boon U, Janssen A, Song JY, Omerzu M, Sterrenburg JG, Prinsen MB, Willemsen-Seegers N, de Roos JA, van Doornmalen AM, Uitdehaag JC, Kops GJ, Jonkers J, Buijsman RC, Zaman GJ, Medema RH (2015) Inhibition of the spindle assembly checkpoint kinase TTK enhances the efficacy of docetaxel in a triple-negative breast cancer model. Ann Oncol 26(10):2180–2192. https://doi.org/10.1093/annonc/mdv293

    Article  CAS  PubMed  Google Scholar 

  46. Liang XD, Dai YC, Li ZY, Gan MF, Zhang SR, Yin P, Lu HS, Cao XQ, Zheng BJ, Bao LF, Wang DD, Zhang LM, Ma SL (2014) Expression and function analysis of mitotic checkpoint genes identifies TTK as a potential therapeutic target for human hepatocellular carcinoma. PLoS One 9(6):e97739. https://doi.org/10.1371/journal.pone.0097739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu X, Liao W, Yuan Q, Ou Y, Huang J (2015) TTK activates Akt and promotes proliferation and migration of hepatocellular carcinoma cells. Oncotarget 6(33):34309–34320. https://doi.org/10.18632/oncotarget.5295

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tannous BA, Kerami M, Van der Stoop PM, Kwiatkowski N, Wang J, Zhou W, Kessler AF, Lewandrowski G, Hiddingh L, Sol N, Lagerweij T, Wedekind L, Niers JM, Barazas M, Nilsson RJ, Geerts D, De Witt Hamer PC, Hagemann C, Vandertop WP, Van Tellingen O, Noske DP, Gray NS, Wurdinger T (2013) Effects of the selective MPS1 inhibitor MPS1-IN-3 on glioblastoma sensitivity to antimitotic drugs. J Natl Cancer Inst 105(17):1322–1331. https://doi.org/10.1093/jnci/djt168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Elbaz HA, Stueckle TA, Wang HY, O'Doherty GA, Lowry DT, Sargent LM, Wang L, Dinu CZ, Rojanasakul Y (2012) Digitoxin and a synthetic monosaccharide analog inhibit cell viability in lung cancer cells. Toxicol Appl Pharmacol 258(1):51–60. https://doi.org/10.1016/j.taap.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  50. Yan KH, Yao CJ, Chang HY, Lai GM, Cheng AL, Chuang SE (2010) The synergistic anticancer effect of troglitazone combined with aspirin causes cell cycle arrest and apoptosis in human lung cancer cells. Mol Carcinog 49(3):235–246. https://doi.org/10.1002/mc.20593

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was supported by grants from the National Natural Science Foundation of China (No. 81673153 and No. 81973034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Chu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the publication of the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ., Zhou, Z., Chen, L. et al. Identification of key genes and biological pathways in lung adenocarcinoma via bioinformatics analysis. Mol Cell Biochem 476, 931–939 (2021). https://doi.org/10.1007/s11010-020-03959-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03959-5

Keywords

Navigation