Skip to main content
Log in

Resveratrol increases the activation markers and changes the release of inflammatory cytokines of hepatic stellate cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The phytoalexin Resveratrol (3,5,4′-trihydroxystilbene; RSV) has been related to numerous beneficial effects on health by its cytoprotection and chemoprevention activities. Liver fibrosis is characterized by the extracellular matrix accumulation after hepatic injury and can lead to cirrhosis. Hepatic stellate cells (HSC) play a crucial role during fibrogenesis and liver wound healing by changing their quiescent phenotype to an activated phenotype for protecting healthy areas from damaged areas. Strategies on promoting the activated HSC death, the quiescence return or the cellular activation stimuli decrease play an important role on reducing liver fibrosis. Here, we evaluated the RSV effects on some markers of activation in GRX, an HSC model. We further evaluated the RSV influence in the ability of GRX on releasing inflammatory mediators. RSV at 1 and 10 µM did not alter the protein content of α-SMA, collagen I and GFAP; but 50 µM increased the content of these activation-related proteins. Also, RSV did not change the myofibroblast-like morphology of GRX. Interestingly, RSV at 10 and 50 µM decreased the GRX migration and collagen-I gel contraction. Finally, we showed that RSV triggered the increase in the TNF-α and IL-10 content in culture media of GRX while the opposite occurred for the IL-6 content. Altogether, these results suggested that RSV did not decrease the activation state of GRX and oppositely, triggered a pro-activation effect at the 50 µM concentration. However, despite the increase of TNF- α in culture media, these results on IL-6 and IL-10 secretion were in accordance with the anti-inflammatory role of RSV in our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. de la Lastra CA, Villegas I (2007) Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans 35:1156–1160. https://doi.org/10.1042/BST0351156

    Article  PubMed  Google Scholar 

  2. CA Lastra de la I Villegas 2007 Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications Biochem Soc Trans 35 1156 1160 https://doi.org/10.1042/BST0351156

  3. Signorelli P, Ghidoni R (2005) Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem 16:449–466. https://doi.org/10.1016/j.jnutbio.2005.01.017

    Article  CAS  PubMed  Google Scholar 

  4. P Signorelli R Ghidoni 2005 Resveratrol as an anticancer nutrient: molecular basis, open questions and promises J Nutr Biochem 16 449 466 https://doi.org/10.1016/j.jnutbio.2005.01.017

  5. Tsuchida T, Friedman SL (2017) Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14:397–411. https://doi.org/10.1038/nrgastro.2017.38

    Article  CAS  PubMed  Google Scholar 

  6. T Tsuchida SL Friedman 2017 Mechanisms of hepatic stellate cell activation Nat Rev Gastroenterol Hepatol 14 397 411 https://doi.org/10.1038/nrgastro.2017.38

  7. Puche JE, Saiman Y, Friedman SL (2013) Hepatic stellate cells and liver fibrosis. Compr Physiol 3:1473–1492. https://doi.org/10.1002/cphy.c120035

    Article  PubMed  Google Scholar 

  8. JE Puche Y Saiman SL Friedman 2013 Hepatic stellate cells and liver fibrosis Compr Physiol 3 1473 1492 https://doi.org/10.1002/cphy.c120035

  9. Friedman SL (2008a) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88:125–172. https://doi.org/10.1152/physrev.00013.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. SL Friedman 2008 Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver Physiol Rev 88 125 172 https://doi.org/10.1152/physrev.00013.2007

  11. Friedman SL (2008b) Mechanisms of hepatic fibrogenesis. Gastroenterology 134:1655–1669. https://doi.org/10.1053/j.gastro.2008.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Friedman SL (2008c) Mechanisms of hepatic fibrogenesis Gastroenterology 134(1655):1669. https://doi.org/10.1053/j.gastro.2008.03.003

    Article  CAS  Google Scholar 

  13. Lee UE, Friedman SL (2011) Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol 25:195–206. https://doi.org/10.1016/j.bpg.2011.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. UE Lee SL Friedman 2011 Mechanisms of hepatic fibrogenesis Best Pract Res Clin Gastroenterol 25 195 206 https://doi.org/10.1016/j.bpg.2011.02.005

  15. Borojevic R, Monteiro AN, Vinhas SA, Domont GB, Mourao PA, Emonard H, Grimaldi G Jr, Grimaud JA (1985) Establishment of a continuous cell line from fibrotic schistosomal granulomas in mice livers. Vitro Cell Dev Biol 21:382–390. https://doi.org/10.1007/bf02623469

    Article  CAS  Google Scholar 

  16. R Borojevic AN Monteiro SA Vinhas GB Domont PA Mourao H Emonard G Grimaldi Jr JA Grimaud 1985 Establishment of a continuous cell line from fibrotic schistosomal granulomas in mice livers In Vitro Cell Dev Biol 21 382 390 https://doi.org/10.1007/bf02623469

  17. Margis R, Pinheiro-Margis M, da Silva LC, Borojevic R (1992) Effects of retinol on proliferation, cell adherence and extracellular matrix synthesis in a liver myofibroblast or lipocyte cell line (GRX). Int J Exp Pathol 73:125–135

    CAS  PubMed  PubMed Central  Google Scholar 

  18. R Margis M Pinheiro-Margis LC Silva da R Borojevic 1992 Effects of retinol on proliferation, cell adherence and extracellular matrix synthesis in a liver myofibroblast or lipocyte cell line (GRX) Int J Exp Pathol 73 125 135

  19. Pinheiro-Margis M, Margis R, Borojevic R (1992) Collagen synthesis in an established liver connective tissue cell line (GRX) during induction of the fat-storing phenotype. Exp Mol Pathol 56:108–118. https://doi.org/10.1016/0014-4800(92)90028-a

    Article  CAS  PubMed  Google Scholar 

  20. M Pinheiro-Margis R Margis R Borojevic 1992 Collagen synthesis in an established liver connective tissue cell line (GRX) during induction of the fat-storing phenotype Exp Mol Pathol 56 108 118 https://doi.org/10.1016/0014-4800(92)90028-a

  21. Bitencourt S, de Mesquita FC, Caberlon E, da Silva GV, Basso BS, Ferreira GA, de Oliveira JR (2012) Capsaicin induces de-differentiation of activated hepatic stellate cell. Biochem Cell Biol 90:683–690. https://doi.org/10.1139/o2012-026

    Article  CAS  PubMed  Google Scholar 

  22. S Bitencourt FC Mesquita de E Caberlon GV Silva da BS Basso GA Ferreira JR Oliveira de 2012 Capsaicin induces de-differentiation of activated hepatic stellate cell Biochem Cell Biol 90 683 690 https://doi.org/10.1139/o2012-026

  23. de Mesquita FC, Bitencourt S, Caberlon E, da Silva GV, Basso BS, Schmid J, Ferreira GA, de Oliveira FS, de Oliveira JR (2013) Fructose-1,6-bisphosphate induces phenotypic reversion of activated hepatic stellate cell. Eur J Pharmacol 720:320–325. https://doi.org/10.1016/j.ejphar.2013.09.067

    Article  CAS  PubMed  Google Scholar 

  24. FC Mesquita de S Bitencourt E Caberlon GV Silva da BS Basso J Schmid GA Ferreira FS Oliveira de JR Oliveira de 2013 Fructose-1,6-bisphosphate induces phenotypic reversion of activated hepatic stellate cell Eur J Pharmacol 720 320 325 https://doi.org/10.1016/j.ejphar.2013.09.067

  25. Guimaraes EL, Franceschi MF, Grivicich I, Dal-Pizzol F, Moreira JC, Guaragna RM, Borojevic R, Margis R, Guma FC (2006) Relationship between oxidative stress levels and activation state on a hepatic stellate cell line. Liver Int 26:477–485. https://doi.org/10.1111/j.1478-3231.2006.01245.x

    Article  CAS  PubMed  Google Scholar 

  26. EL Guimaraes MF Franceschi I Grivicich F Dal-Pizzol JC Moreira RM Guaragna R Borojevic R Margis FC Guma 2006 Relationship between oxidative stress levels and activation state on a hepatic stellate cell line Liver Int 26 477 485 https://doi.org/10.1111/j.1478-3231.2006.01245.x

  27. Martins LA, Coelho BP, Behr G, Pettenuzzo LF, Souza IC, Moreira JC, Borojevic R, Gottfried C, Guma FC (2014) Resveratrol induces pro-oxidant effects and time-dependent resistance to cytotoxicity in activated hepatic stellate cells. Cell Biochem Biophys 68:247–257. https://doi.org/10.1007/s12013-013-9703-8

    Article  CAS  PubMed  Google Scholar 

  28. LA Martins BP Coelho G Behr LF Pettenuzzo IC Souza JC Moreira R Borojevic C Gottfried FC Guma 2014 Resveratrol induces pro-oxidant effects and time-dependent resistance to cytotoxicity in activated hepatic stellate cells Cell Biochem Biophys 68 247 257 https://doi.org/10.1007/s12013-013-9703-8

  29. Meira Martins LA, Vieira MQ, Ilha M, de Vasconcelos M, Biehl HB, Lima DB, Schein V, Barbe-Tuana F, Borojevic R, Guma FC (2015) The interplay between apoptosis, mitophagy and mitochondrial biogenesis induced by resveratrol can determine activated hepatic stellate cells death or survival. Cell Biochem Biophys 71:657–672. https://doi.org/10.1007/s12013-014-0245-5

    Article  CAS  PubMed  Google Scholar 

  30. LA Meira Martins MQ Vieira M Ilha M Vasconcelos de HB Biehl DB Lima V Schein F Barbe-Tuana R Borojevic FC Guma 2015 The interplay between apoptosis, mitophagy and mitochondrial biogenesis induced by resveratrol can determine activated hepatic stellate cells death or survival Cell Biochem Biophys 71 657 672 https://doi.org/10.1007/s12013-014-0245-5

  31. Souza IC, Martins LA, Coelho BP, Grivicich I, Guaragna RM, Gottfried C, Borojevic R, Guma FC (2008) Resveratrol inhibits cell growth by inducing cell cycle arrest in activated hepatic stellate cells. Mol Cell Biochem 315:1–7. https://doi.org/10.1007/s11010-008-9781-x

    Article  CAS  PubMed  Google Scholar 

  32. IC Souza LA Martins BP Coelho I Grivicich RM Guaragna C Gottfried R Borojevic FC Guma 2008 Resveratrol inhibits cell growth by inducing cell cycle arrest in activated hepatic stellate cells Mol Cell Biochem 315 1 7 https://doi.org/10.1007/s11010-008-9781-x

  33. de Souza IC, Martins LA, de Vasconcelos M, de Oliveira CM, Barbe-Tuana F, Andrade CB, Pettenuzzo LF, Borojevic R, Margis R, Guaragna R, Guma FC (2015) Resveratrol Regulates the Quiescence-Like Induction of Activated Stellate Cells by Modulating the PPARgamma/SIRT1 Ratio. J Cell Biochem 116:2304–2312. https://doi.org/10.1002/jcb.25181

    Article  CAS  PubMed  Google Scholar 

  34. IC Souza de LA Martins M Vasconcelos de CM Oliveira de F Barbe-Tuana CB Andrade LF Pettenuzzo R Borojevic R Margis R Guaragna FC Guma 2015 Resveratrol regulates the quiescence-like induction of activated stellate cells by modulating the PPARgamma/SIRT1 ratio J Cell Biochem 116 2304 2312 https://doi.org/10.1002/jcb.25181

  35. Rajan N, Habermehl J, Cote MF, Doillon CJ, Mantovani D (2006) Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat Protoc 1:2753–2758. https://doi.org/10.1038/nprot.2006.430

    Article  CAS  PubMed  Google Scholar 

  36. N Rajan J Habermehl MF Cote CJ Doillon D Mantovani 2006 Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications Nat Protoc 1 2753 2758 https://doi.org/10.1038/nprot.2006.430

  37. Basso BS, de Mesquita FC, Dias HB, Krause GC, Scherer M, Santarem ER, de Oliveira JR (2019) Therapeutic effect of Baccharis anomala DC. extracts on activated hepatic stellate cells. EXCLI J 18:91–105

    PubMed  PubMed Central  Google Scholar 

  38. Basso BS, Mesquita FC, de HB Dias GC Krause M Scherer ER Santarem JR Oliveira de, (2019) Therapeutic effect of Baccharis anomala DC. Extracts on activated hepatic stellate cells EXCLI J 18(91):105

    Google Scholar 

  39. Grada A, Otero-Vinas M, Prieto-Castrillo F, Obagi Z, Falanga V (2017a) Research Techniques Made Simple: Analysis of Collective Cell Migration Using the Wound Healing Assay. J Invest Dermatol 137:e11–e16. https://doi.org/10.1016/j.jid.2016.11.020

    Article  CAS  PubMed  Google Scholar 

  40. Grada A, Otero-Vinas M, Prieto-Castrillo F, Obagi Z, Falanga V (2017b) Research techniques made simple: analysis of collective cell migration using the wound healing assay. J Invest Dermatol 137(e11):e16. https://doi.org/10.1016/j.jid.2016.11.020

    Article  CAS  Google Scholar 

  41. Peterson GL (1979a) Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Anal Biochem 100:201–220. https://doi.org/10.1016/0003-2697(79)90222-7

    Article  CAS  PubMed  Google Scholar 

  42. Peterson GL (1979b) Review of the Folin phenol protein quantitation method of Lowry. Rosebrough, Farr and Randall Anal Biochem 100(201):220. https://doi.org/10.1016/0003-2697(79)90222-7

    Article  Google Scholar 

  43. Reeves HL, Friedman SL (2002) Activation of hepatic stellate cells–a key issue in liver fibrosis. Front Biosci 7:d808–d826. https://doi.org/10.2741/reeves

    Article  CAS  PubMed  Google Scholar 

  44. HL Reeves SL Friedman 2002 Activation of hepatic stellate cells—a key issue in liver fibrosis Front Biosci 7 d808 d826 https://doi.org/10.2741/reeves

  45. Carotti S, Morini S, Corradini SG, Burza MA, Molinaro A, Carpino G, Merli M, De Santis A, Muda AO, Rossi M, Attili AF, Gaudio E (2008) Glial fibrillary acidic protein as an early marker of hepatic stellate cell activation in chronic and posttransplant recurrent hepatitis C. Liver Transpl 14:806–814. https://doi.org/10.1002/lt.21436

    Article  PubMed  Google Scholar 

  46. S Carotti S Morini SG Corradini MA Burza A Molinaro G Carpino M Merli A Santis De AO Muda M Rossi AF Attili E Gaudio 2008 Glial fibrillary acidic protein as an early marker of hepatic stellate cell activation in chronic and posttransplant recurrent hepatitis C Liver Transpl 14 806 814 https://doi.org/10.1002/lt.21436

  47. Tennakoon AH, Izawa T, Wijesundera KK, Golbar HM, Tanaka M, Ichikawa C, Kuwamura M, Yamate J (2013) Characterization of glial fibrillary acidic protein (GFAP)-expressing hepatic stellate cells and myofibroblasts in thioacetamide (TAA)-induced rat liver injury. Exp Toxicol Pathol 65:1159–1171. https://doi.org/10.1016/j.etp.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  48. AH Tennakoon T Izawa KK Wijesundera HM Golbar M Tanaka C Ichikawa M Kuwamura J Yamate 2013 Characterization of glial fibrillary acidic protein (GFAP)-expressing hepatic stellate cells and myofibroblasts in thioacetamide (TAA)-induced rat liver injury Exp Toxicol Pathol 65 1159 1171 https://doi.org/10.1016/j.etp.2013.05.008

  49. Sohail MA, Hashmi AZ, Hakim W, Watanabe A, Zipprich A, Groszmann RJ, Dranoff JA, Torok NJ, Mehal WZ (2009) Adenosine induces loss of actin stress fibers and inhibits contraction in hepatic stellate cells via Rho inhibition. Hepatology 49:185–194. https://doi.org/10.1002/hep.22589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. MA Sohail AZ Hashmi W Hakim A Watanabe A Zipprich RJ Groszmann JA Dranoff NJ Torok WZ Mehal 2009 Adenosine induces loss of actin stress fibers and inhibits contraction in hepatic stellate cells via Rho inhibition Hepatology 49 185 194 https://doi.org/10.1002/hep.22589

  51. Yee HF Jr (1998) Rho directs activation-associated changes in rat hepatic stellate cell morphology via regulation of the actin cytoskeleton. Hepatology 28:843–850. https://doi.org/10.1002/hep.510280336

    Article  CAS  PubMed  Google Scholar 

  52. HF Yee Jr (1998) Rho directs activation-associated changes in rat hepatic stellate cell morphology via regulation of the actin cytoskeleton. Hepatology 28(843):850. https://doi.org/10.1002/hep.510280336

    Article  Google Scholar 

  53. Park SY, Le CT, Sung KY, Choi DH, Cho EH (2018) Succinate induces hepatic fibrogenesis by promoting activation, proliferation, and migration, and inhibiting apoptosis of hepatic stellate cells. Biochem Biophys Res Commun 496:673–678. https://doi.org/10.1016/j.bbrc.2018.01.106

    Article  CAS  PubMed  Google Scholar 

  54. SY Park CT Le KY Sung DH Choi EH Cho 2018 Succinate induces hepatic fibrogenesis by promoting activation, proliferation, and migration, and inhibiting apoptosis of hepatic stellate cells Biochem Biophys Res Commun 496 673 678 https://doi.org/10.1016/j.bbrc.2018.01.106

  55. Berman AY, Motechin RA, Wiesenfeld MY, Holz MK (2017) The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol. https://doi.org/10.1038/s41698-017-0038-6

    Article  PubMed  PubMed Central  Google Scholar 

  56. AY Berman RA Motechin MY Wiesenfeld MK Holz 2017 The therapeutic potential of resveratrol: a review of clinical trials NPJ Precis Oncol https://doi.org/10.1038/s41698-017-0038-6

  57. Faghihzadeh F, Hekmatdoost A, Adibi P (2015a) Resveratrol and liver: A systematic review. J Res Med Sci 20:797–810. https://doi.org/10.4103/1735-1995.168405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Faghihzadeh F, Hekmatdoost A, Adibi P (2015b) Resveratrol and liver: a systematic review J Res. Med Sci 20(797):810. https://doi.org/10.4103/1735-1995.168405

    Article  Google Scholar 

  59. Kumar A, Sharma SS (2010) NF-kappaB inhibitory action of resveratrol: a probable mechanism of neuroprotection in experimental diabetic neuropathy. Biochem Biophys Res Commun 394:360–365. https://doi.org/10.1016/j.bbrc.2010.03.014

    Article  CAS  PubMed  Google Scholar 

  60. A Kumar SS Sharma 2010 NF-kappaB inhibitory action of resveratrol: a probable mechanism of neuroprotection in experimental diabetic neuropathy Biochem Biophys Res Commun 394 360 365 https://doi.org/10.1016/j.bbrc.2010.03.014

  61. Leijas A, Reyes J, Rodríguez L (2007a) Hepatic stellate cells are a major component of liver fibrosis and a target for the treatment of chronic liver disease. Biotecnología Aplicada 24:7

    Google Scholar 

  62. Leijas A, Reyes J, Rodríguez L (2007b) Hepatic stellate cells are a major component of liver fibrosis and a target for the treatment of chronic liver disease Biotecnología Aplicada 24:7

    Google Scholar 

  63. Thirunavukkarasu C, Watkins SC, Gandhi CR (2006) Mechanisms of endotoxin-induced NO, IL-6, and TNF-alpha production in activated rat hepatic stellate cells: role of p38 MAPK. Hepatology 44:389–398. https://doi.org/10.1002/hep.21254

    Article  CAS  PubMed  Google Scholar 

  64. C Thirunavukkarasu SC Watkins CR Gandhi 2006 Mechanisms of endotoxin-induced NO, IL-6, and TNF-alpha production in activated rat hepatic stellate cells: role of p38 MAPK Hepatology 44 389 398 https://doi.org/10.1002/hep.21254

  65. Gan Z, Wei W, Wu J, Zhao Y, Zhang L, Wang T, Zhong X (2019) Resveratrol and Curcumin Improve Intestinal Mucosal Integrity and Decrease m(6)A RNA Methylation in the Intestine of Weaning Piglets. ACS Omega 4:17438–17446. https://doi.org/10.1021/acsomega.9b02236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Z Gan W Wei J Wu Y Zhao L Zhang T Wang X Zhong 2019 Resveratrol and curcumin improve intestinal mucosal integrity and decrease m(6)A RNA methylation in the intestine of weaning piglets ACS Omega 4 17438 17446 https://doi.org/10.1021/acsomega.9b02236

  67. Juhasz B, Varga B, Gesztelyi R, Kemeny-Beke A, Zsuga J, Tosaki A (2010) Resveratrol: a multifunctional cytoprotective molecule. Curr Pharm Biotechnol 11:810–818. https://doi.org/10.2174/138920110793262079

    Article  CAS  PubMed  Google Scholar 

  68. B Juhasz B Varga R Gesztelyi A Kemeny-Beke J Zsuga A Tosaki 2010 Resveratrol: a multifunctional cytoprotective molecule Curr Pharm Biotechnol 11 810 818 https://doi.org/10.2174/138920110793262079

  69. Mehta J, Rayalam S, Wang X (2018a) Cytoprotective Effects of Natural Compounds against Oxidative Stress. Antioxidants (Basel). https://doi.org/10.3390/antiox7100147

    Article  Google Scholar 

  70. Mehta J, Rayalam S, Wang X (2018b). Cytoprotective effects of natural compounds against oxidative stress Antioxidants (Basel). https://doi.org/10.3390/antiox7100147

    Article  Google Scholar 

  71. Huang YT, Lai PC, Wu CC, Cheng CC, Chiu TH (2010) TrkB antibody elicits cytotoxicity and suppresses migration/invasion of transitional cell carcinoma cells. Int J Oncol 37:943–949. https://doi.org/10.3892/ijo_00000745

    Article  CAS  PubMed  Google Scholar 

  72. YT Huang PC Lai CC Wu CC Cheng TH Chiu 2010 TrkB antibody elicits cytotoxicity and suppresses migration/invasion of transitional cell carcinoma cells Int J Oncol 37 943 949 https://doi.org/10.3892/ijo_00000745

  73. Lee YJ, Kim SY, Lee C (2019) Axl is a novel target of celastrol that inhibits cell proliferation and migration, and increases the cytotoxicity of gefitinib in EGFR mutant nonsmall cell lung cancer cells. Mol Med Rep 19:3230–3236. https://doi.org/10.3892/mmr.2019.9957

    Article  CAS  PubMed  Google Scholar 

  74. YJ Lee SY Kim C Lee 2019 Axl is a novel target of celastrol that inhibits cell proliferation and migration, and increases the cytotoxicity of gefitinib in EGFR mutant nonsmall cell lung cancer cells Mol Med Rep 19 3230 3236 https://doi.org/10.3892/mmr.2019.9957

  75. Salum LB, Mascarello A, Canevarolo RR, Altei WF, Laranjeira AB, Neuenfeldt PD, Stumpf TR, Chiaradia-Delatorre LD, Vollmer LL, Daghestani HN, de Souza Melo CP, Silveira AB, Leal PC, Frederico MJ, do Nascimento LF, Santos AR, Andricopulo AD, Day BW, Yunes RA, Vogt A, Yunes JA and Nunes RJ, (2015) N-(1’-naphthyl)-3,4,5-trimethoxybenzohydrazide as microtubule destabilizer: Synthesis, cytotoxicity, inhibition of cell migration and in vivo activity against acute lymphoblastic leukemia. Eur J Med Chem 96:504–518. https://doi.org/10.1016/j.ejmech.2015.02.041

    Article  CAS  PubMed  Google Scholar 

  76. LB Salum A Mascarello RR Canevarolo WF Altei AB Laranjeira PD Neuenfeldt TR Stumpf LD Chiaradia-Delatorre LL Vollmer HN Daghestani CP Souza Melo de AB Silveira PC Leal MJ Frederico do Nascimento LF, Santos AR, Andricopulo AD, Day BW, Yunes RA, Vogt A, Yunes JA and Nunes RJ, 2015 N-(1'-naphthyl)-3,4,5-trimethoxybenzohydrazide as microtubule destabilizer: synthesis, cytotoxicity, inhibition of cell migration and in vivo activity against acute lymphoblastic leukemia Eur J Med Chem 96 504 518 https://doi.org/10.1016/j.ejmech.2015.02.041

  77. Nieto N (2006) Oxidative-stress and IL-6 mediate the fibrogenic effects of [corrected] Kupffer cells on stellate cells. Hepatology 44:1487–1501. https://doi.org/10.1002/hep.21427

    Article  CAS  PubMed  Google Scholar 

  78. N Nieto 2006 Oxidative-stress and IL-6 mediate the fibrogenic effects of [corrected] Kupffer cells on stellate cells Hepatology 44 1487 1501 https://doi.org/10.1002/hep.21427

  79. Yang YM, Seki E (2015) TNFalpha in liver fibrosis. Curr Pathobiol Rep 3:253–261. https://doi.org/10.1007/s40139-015-0093-z

    Article  PubMed  PubMed Central  Google Scholar 

  80. YM Yang E Seki 2015 TNFalpha in liver fibrosis Curr Pathobiol Rep 3 253 261 https://doi.org/10.1007/s40139-015-0093-z

  81. Kim Y, Fiel MI, Albanis E, Chou HI, Zhang W, Khitrov G, Friedman SL (2012) Anti-fibrotic activity and enhanced interleukin-6 production by hepatic stellate cells in response to imatinib mesylate. Liver Int 32:1008–1017. https://doi.org/10.1111/j.1478-3231.2012.02806.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Y Kim MI Fiel E Albanis HI Chou W Zhang G Khitrov SL Friedman 2012 Anti-fibrotic activity and enhanced interleukin-6 production by hepatic stellate cells in response to imatinib mesylate Liver Int 32 1008 1017 https://doi.org/10.1111/j.1478-3231.2012.02806.x

  83. Hernandez-Munoz I, de la Torre P, Sanchez-Alcazar JA, Garcia I, Santiago E, Munoz-Yague MT, Solis-Herruzo JA (1997) Tumor necrosis factor alpha inhibits collagen alpha 1(I) gene expression in rat hepatic stellate cells through a G protein. Gastroenterology 113:625–640. https://doi.org/10.1053/gast.1997.v113.pm9247485

    Article  CAS  PubMed  Google Scholar 

  84. I Hernandez-Munoz P Torre de la JA Sanchez-Alcazar I Garcia E Santiago MT Munoz-Yague JA Solis-Herruzo 1997 Tumor necrosis factor alpha inhibits collagen alpha 1(I) gene expression in rat hepatic stellate cells through a G protein Gastroenterology 113 625 640 https://doi.org/10.1053/gast.1997.v113.pm9247485

  85. Kim JJ, Lee SB, Park JK, Yoo YD (2010) TNF-alpha-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X(L). Cell Death Differ 17:1420–1434. https://doi.org/10.1038/cdd.2010.19

    Article  CAS  PubMed  Google Scholar 

  86. JJ Kim SB Lee JK Park YD Yoo 2010 TNF-alpha-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X(L) Cell Death Differ 17 1420 1434 https://doi.org/10.1038/cdd.2010.19

  87. Barcelos ALV, de Oliveira EA, Haute GV, Costa BP, Pedrazza L, Donadio MVF, de Oliveira JR, Bodanese LC (2019) Association of IL-10 to coronary disease severity in patients with metabolic syndrome. Clin Chim Acta 495:394–398. https://doi.org/10.1016/j.cca.2019.05.006

    Article  CAS  PubMed  Google Scholar 

  88. ALV Barcelos EA Oliveira de GV Haute BP Costa L Pedrazza MVF Donadio JR Oliveira de LC Bodanese 2019 Association of IL-10 to coronary disease severity in patients with metabolic syndrome Clin Chim Acta 495 394 398 https://doi.org/10.1016/j.cca.2019.05.006

  89. Arnaud V, Li J, Wang Y, Fu X, Mengzhi S, Luo X, Hou X, Dessein H, Jie Z, Xin-Ling Y, He H, McManus DP, Li Y, Dessein A (2008) Regulatory role of interleukin-10 and interferon-gamma in severe hepatic central and peripheral fibrosis in humans infected with Schistosoma japonicum. J Infect Dis 198:418–426. https://doi.org/10.1086/588826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. V Arnaud J Li Y Wang X Fu S Mengzhi X Luo X Hou H Dessein Z Jie Y Xin-Ling H He DP McManus Y Li A Dessein 2008 Regulatory role of interleukin-10 and interferon-gamma in severe hepatic central and peripheral fibrosis in humans infected with Schistosoma japonicum J Infect Dis 198 418 426 https://doi.org/10.1086/588826

  91. Mathurin P, Xiong S, Kharbanda KK, Veal N, Miyahara T, Motomura K, Rippe RA, Bachem MG, Tsukamoto H (2002) IL-10 receptor and coreceptor expression in quiescent and activated hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 282:G981–G990. https://doi.org/10.1152/ajpgi.00293.2001

    Article  CAS  PubMed  Google Scholar 

  92. P Mathurin S Xiong KK Kharbanda N Veal T Miyahara K Motomura RA Rippe MG Bachem H Tsukamoto 2002 IL-10 receptor and coreceptor expression in quiescent and activated hepatic stellate cells Am J Physiol Gastrointest Liver Physiol 282 G981 G990 https://doi.org/10.1152/ajpgi.00293.2001

  93. Mosser DM, Zhang X (2008) Interleukin-10: new perspectives on an old cytokine. Immunol Rev 226:205–218. https://doi.org/10.1111/j.1600-065X.2008.00706.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. DM Mosser X Zhang 2008 Interleukin-10: new perspectives on an old cytokine Immunol Rev 226 205 218 https://doi.org/10.1111/j.1600-065X.2008.00706.x

  95. Zhang LJ, Zheng WD, Shi MN, Wang XZ (2006) Effects of interleukin-10 on activation and apoptosis of hepatic stellate cells in fibrotic rat liver. World J Gastroenterol 12:1918–1923. https://doi.org/10.3748/wjg.v12.i12.1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. LJ Zhang WD Zheng MN Shi XZ Wang 2006 Effects of interleukin-10 on activation and apoptosis of hepatic stellate cells in fibrotic rat liver World J Gastroenterol 12 1918 1923 https://doi.org/10.3748/wjg.v12.i12.1918

  97. Borriello A, Bencivenga D, Caldarelli I, Tramontano A, Borgia A, Pirozzi AV, Oliva A, Della Ragione F (2013a) Resveratrol and cancer treatment: is hormesis a yet unsolved matter? Curr Pharm Des 19:5384–5393. https://doi.org/10.2174/1381612811319300007

    Article  CAS  PubMed  Google Scholar 

  98. Borriello A, Bencivenga D, Caldarelli I, Tramontano A, Borgia A, Pirozzi AV, Oliva A, Della Ragione F (2013b) Resveratrol and cancer treatment: is hormesis a yet unsolved matter? Curr Pharm Des 19(5384):5393. https://doi.org/10.2174/1381612811319300007

    Article  CAS  Google Scholar 

  99. Tsukamoto H (2005a) Fat paradox in liver disease. Keio J Med 54:190–192. https://doi.org/10.2302/kjm.54.190

    Article  CAS  PubMed  Google Scholar 

  100. Tsukamoto H (2005b) Fat paradox in liver disease. Keio J Med 54(190):192. https://doi.org/10.2302/kjm.54.190

    Article  Google Scholar 

Download references

Acknowledgements

C.M. de Oliveira is the recipient of a fellowship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). This work was also supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brazil), FAPERGS (Fundação de Amparo à Pesquisa do Rio Grande do Sul, PqG n°1009169) and PROPESQ-UFRGS. All authors would like to thank to Dr. Elena Bernard for the helpful comments in this study.

Author information

Authors and Affiliations

Authors

Contributions

Wrote the paper: CMO and LAMM. Establishment of GRX cell line: RB. Collected and analysed data: CMO, LAMM, ASC, KSM, BruPC, MQV, BarPC. Supervision and Contribution to the text writing: JRO and FCRG.

Corresponding author

Correspondence to Cleverson Moraes de Oliveira.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, C.M., Martins, L.A.M., de Sousa, A.C. et al. Resveratrol increases the activation markers and changes the release of inflammatory cytokines of hepatic stellate cells. Mol Cell Biochem 476, 649–661 (2021). https://doi.org/10.1007/s11010-020-03933-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03933-1

Keywords

Navigation