Skip to main content

Advertisement

Log in

KCNQ1OT1/miR-18b/HMGA2 axis regulates high glucose-induced proliferation, oxidative stress, and extracellular matrix accumulation in mesangial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The dysregulated long noncoding RNAs (lncRNAs) are associated with the pathogenesis of diabetic nephropathy (DN). LncRNA potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (KCNQ1OT1) plays an important role in diabetes, but the role and mechanism of KCNQ1OT1 in DN are largely unknown. Serum samples were collected from 30 DN patients and normal volunteers. High glucose (HG)-challenged human mesangial cells (HMCs) were used as a cell model of DN. KCNQ1OT1, microRNA-18b (miR-18b), and high mobility group protein A2 (HMGA2) abundances were examined via quantitative reverse transcription polymerase chain reaction or western blot. Cell proliferation was assessed via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide. Oxidative stress was assessed via the levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and SOD2. Extracellular matrix (ECM) accumulation was investigated by the levels of fibronectin (FN), collagen I (Col I), and Col IV. The relationship between miR-18b and KCNQ1OT1 or HMGA2 was determined via dual-luciferase reporter analysis, RNA immunoprecipitation, and pull-down. KCNQ1OT1 expression was increased and miR-18b expression was decreased in DN patients and HG-challenged HMCs. miR-18b was targeted via KCNQ1OT1. Knockdown of KCNQ1OT1 weakened HG-caused proliferation, oxidative stress, and ECM accumulation of HMCs by increasing miR-18b. HMGA2 was targeted via miR-18b. miR-18b alleviated HG-induced cell proliferation, oxidative stress, and ECM accumulation by decreasing HMGA2. Silence of KCNQ1OT1 reduced HMGA2 expression via miR-18b. KCNQ1OT1 knockdown attenuated HG-induced proliferation, oxidative stress, and ECM accumulation of HMCs by regulating miR-18b/HMGA2 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KA, Zoungas S, Rossing P, Groop PH, Cooper ME (2015) Diabetic kidney disease. Nat Rev Dis Primers 1:15018. https://doi.org/10.1038/nrdp.2015.18

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fineberg D, Jandeleit-Dahm KA, Cooper ME (2013) Diabetic nephropathy: diagnosis and treatment. Nat Rev Endocrinol 9:713–23. https://doi.org/10.1038/nrendo.2013.184

    Article  CAS  PubMed  Google Scholar 

  3. Dugbartey GJ (2017) Diabetic nephropathy: a potential savior with 'rotten-egg' smell. Pharmacol Rep 69:331–339. https://doi.org/10.1016/j.pharep.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  4. Tung CW, Hsu YC, Shih YH, Chang PJ, Lin CL (2018) Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology (Carlton) 23(Suppl 4):32–37. https://doi.org/10.1111/nep.13451

    Article  CAS  Google Scholar 

  5. Alvarez ML, Distefano JK (2013) The role of non-coding RNAs in diabetic nephropathy: potential applications as biomarkers for disease development and progression. Diabetes Res Clin Pract 99:1–11. https://doi.org/10.1016/j.diabres.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  6. Leti F, Morrison E, DiStefano JK (2017) Long noncoding RNAs in the pathogenesis of diabetic kidney disease: implications for novel therapeutic strategies. Per Med 14:271–278. https://doi.org/10.2217/pme-2016-0107

    Article  CAS  PubMed  Google Scholar 

  7. Shao J, Pan X, Yin X, Fan G, Tan C, Yao Y, Xin Y, Sun C (2019) KCNQ1OT1 affects the progression of diabetic retinopathy by regulating miR-1470 and epidermal growth factor receptor. J Cell Physiol 234:17269–17279. https://doi.org/10.1002/jcp.28344

    Article  CAS  PubMed  Google Scholar 

  8. Yang F, Qin Y, Wang Y, Li A, Lv J, Sun X, Che H, Han T, Meng S, Bai Y, Wang L (2018) LncRNA KCNQ1OT1 mediates pyroptosis in diabetic cardiomyopathy. Cell Physiol Biochem 50:1230–1244. https://doi.org/10.1159/000494576

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Huo C, Lin X, Xu J (2018) Computational identification of cross-talking ceRNAs. Adv Exp Med Biol 1094:97–108. https://doi.org/10.1007/978-981-13-0719-5_10

    Article  CAS  PubMed  Google Scholar 

  10. Simpson K, Wonnacott A, Fraser DJ, Bowen T (2016) MicroRNAs in diabetic nephropathy: from biomarkers to therapy. Curr Diab Rep 16:35. https://doi.org/10.1007/s11892-016-0724-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu JH, Wang YH, Wang W, Shen W, Sang YZ, Liu L, Chen CM (2016) MiR-18b suppresses high-glucose-induced proliferation in HRECs by targeting IGF-1/IGF1R signaling pathways. Int J Biochem Cell Biol 73:41–52. https://doi.org/10.1016/j.biocel.2016.02.002

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J, Cao X, Wang S, Aizimaiti M, Xielifu R, Liu J (2018) LincRNA-p21 sponges miR-18b to promote the progression of diabetic nephropathy. Am J Transl Res 10:1481–1489

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Alkayyali S, Lajer M, Deshmukh H, Ahlqvist E, Colhoun H, Isomaa B, Rossing P, Groop L, Lyssenko V (2013) Common variant in the HMGA2 gene increases susceptibility to nephropathy in patients with type 2 diabetes. Diabetologia 56:323–9. https://doi.org/10.1007/s00125-012-2760-5

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Zheng L, Huang D, Cao H, Gao Y, Fan Z (2020) LNCRNA CDKN2B-AS1 regulates mesangial cell proliferation and extracellular matrix accumulation via miR-424-5p/HMGA2 axis. Biomed. Pharmacother. 121:109622. https://doi.org/10.1016/j.biopha.2019.109622

    Article  CAS  PubMed  Google Scholar 

  15. Chen B, Li Y, Liu Y, Xu Z (2019) circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells. J. Cell. Physiol. 234:21249–21259. https://doi.org/10.1002/jcp.28730

    Article  CAS  PubMed  Google Scholar 

  16. Zhang X, Zhu H, Zhang Y, Zhang C, Jiao J, Xing X (2020) LncRNA CASC2 regulates high glucose-induced proliferation, extracellular matrix accumulation and oxidative stress of human mesangial cells via miR-133b/FOXP1 axis. Eur Rev Med Pharmacol Sci 24:802–812. https://doi.org/10.26355/eurrev_202001_20063

    Article  PubMed  Google Scholar 

  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–8. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  18. Mazumdar A, Haddad Y, Milosavljevic V, Michalkova H, Guran R, Bhowmick S, Moulick A (2020) Peptide-carbon quantum dots conjugate, derived from human retinoic acid receptor responder protein 2, against antibiotic-resistant gram positive and gram negative pathogenic bacteria. Nanomaterials (Basel). https://doi.org/10.3390/nano10020325

    Article  Google Scholar 

  19. Geng N, Shi BJ, Li SL, Zhong ZY, Li YC, Xua WL, Zhou H, Cai JH (2018) Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. Eur Rev Med Pharmacol Sci 22:3826–3836. https://doi.org/10.26355/eurrev_201806_15267

    Article  CAS  PubMed  Google Scholar 

  20. Wei W, Peng J, Li J (2019) Curcumin attenuates hypoxia/reoxygenationinduced myocardial injury. Mol Med Rep 20:4821–4830. https://doi.org/10.3892/mmr.2019.10742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Persson F, Rossing P (2018) (2018) Diagnosis of diabetic kidney disease: state of the art and future perspective. Kidney Int Suppl 2011(8):2–7. https://doi.org/10.1016/j.kisu.2017.10.003

    Article  Google Scholar 

  22. Ilyas Z, Chaiban J, Krikorian A (2017) Novel insights into the pathophysiology and clinical aspects of diabetic nephropathy. Rev Endocr Metab Disord 18:21–28. https://doi.org/10.1007/s11154-017-9422-3

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Xu K, Xu K, Chen S, Cao Y, Zhan H (2019) Roles of identified long noncoding rna in diabetic nephropathy. J Diabetes Res 2019:5383010. https://doi.org/10.1155/2019/5383010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang F, Qin Y, Lv J, Wang Y, Che H, Chen X, Jiang Y, Li A, Sun X, Yue E, Ren L, Li Y, Bai Y, Wang L (2018) Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy. Cell Death Dis 9:1000. https://doi.org/10.1038/s41419-018-1029-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wolf G, Ziyadeh FN (1999) Molecular mechanisms of diabetic renal hypertrophy. Kidney Int 56:393–405. https://doi.org/10.1046/j.1523-1755.1999.00590.x

    Article  CAS  PubMed  Google Scholar 

  26. Kolset SO, Reinholt FP, Jenssen T (2012) Diabetic nephropathy and extracellular matrix. J Histochem Cytochem 60:976–86. https://doi.org/10.1369/0022155412465073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sagoo MK, Gnudi L (2018) Diabetic nephropathy: is there a role for oxidative stress? Free Radic Biol Med 116:50–63. https://doi.org/10.1016/j.freeradbiomed.2017.12.040

    Article  CAS  PubMed  Google Scholar 

  28. Li K, Zhai M, Jiang L, Song F, Zhang B, Li J, Li H, Li B, Xia L, Xu L, Cao Y, He M, Zhu H, Zhang L, Liang H, Jin Z, Duan W, Wang S (2019) Tetrahydrocurcumin ameliorates diabetic cardiomyopathy by attenuating high glucose-induced oxidative stress and fibrosis via activating the SIRT1 pathway. Oxid Med Cell Longev 2019:6746907. https://doi.org/10.1155/2019/6746907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Y, Li Y, Zheng S (2020) Inhibition of NADPH oxidase 5 (NOX5) suppresses high glucose-induced oxidative stress, inflammation and extracellular matrix accumulation in human glomerular mesangial cells. Med Sci Monit 26:e919399. https://doi.org/10.12659/MSM.919399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu XJ, Gong Z, Li SJ, Jia HP, Li DL (2019) Long non-coding RNA Hottip modulates high-glucose-induced inflammation and ECM accumulation through miR-455-3p/WNT2B in mouse mesangial cells. Int J Clin Exp Pathol 12:2435–2445

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen B, Li Y, Liu Y, Xu Z (2019) circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells. J Cell Physiol 234:21249–21259. https://doi.org/10.1002/jcp.28730

    Article  CAS  PubMed  Google Scholar 

  32. Ulitsky I (2018) Interactions between short and long noncoding RNAs. FEBS Lett 592:2874–2883. https://doi.org/10.1002/1873-3468.13085

    Article  CAS  PubMed  Google Scholar 

  33. Xie Y, Wang M, Shao Y, Deng X, Chen Y (2019) Long non-coding RNA KCNQ1OT1 Contributes To Antiepileptic Drug Resistance Through the miR-138-5p/ABCB1 axis in vitro. Front Neurosci 13:1358. https://doi.org/10.3389/fnins.2019.01358

    Article  PubMed  PubMed Central  Google Scholar 

  34. Qiao CY, Qiao TY, Jin H, Liu LL, Zheng MD, Wang ZL (2020) LncRNA KCNQ1OT1 contributes to the cisplatin resistance of tongue cancer through the KCNQ1OT1/miR-124-3p/TRIM14 axis. Eur Rev Med Pharmacol Sci 24:200–212. https://doi.org/10.26355/eurrev_202001_19912

    Article  PubMed  Google Scholar 

  35. Chen L, Xiong Y, Yan C, Zhou W, Endo Y, Xue H, Hu Y, Hu L, Leng X, Liu J, Lin Z, Mi B, Liu G (2020) LncRNA KCNQ1OT1 accelerates fracture healing via modulating miR-701-3p/FGFR3 axis. FASEB J. https://doi.org/10.1096/fj.201901864RR

    Article  PubMed  Google Scholar 

  36. Wang T, Zhu H, Yang S, Fei X (2019) Let7a5p may participate in the pathogenesis of diabetic nephropathy through targeting HMGA2. Mol Med Rep 19:4229–4237. https://doi.org/10.3892/mmr.2019.10057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Azushima K, Gurley SB, Coffman TM (2018) Modelling diabetic nephropathy in mice. Nat Rev Nephrol 14:48–56. https://doi.org/10.1038/nrneph.2017.142

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no financial conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 278 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, M. & Bai, L. KCNQ1OT1/miR-18b/HMGA2 axis regulates high glucose-induced proliferation, oxidative stress, and extracellular matrix accumulation in mesangial cells. Mol Cell Biochem 476, 321–331 (2021). https://doi.org/10.1007/s11010-020-03909-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03909-1

Keywords

Navigation