Skip to main content

Advertisement

Log in

Circular RNA circ_HN1 facilitates gastric cancer progression through modulation of the miR-302b-3p/ROCK2 axis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Gastric cancer (GC) is a malignant tumor with high morbidity and mortality in the world. Circular RNA hsa_circHN1_005 (circ_HN1), also termed as hsa_circ_0045602, is reported as an oncogene in GC. However, the molecular mechanism of circ_HN1 in GC development has not been fully explored. Here, we surveyed the regulatory mechanism of circ_HN1 in GC progression. The levels of circ_HN1, miR-302b-3p, and rho-associated coiled-coil containing protein kinase 2 (ROCK2) mRNA were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, apoptosis, colony formation, cell cycle progresion, migration, and invasion were determined by using cell counting, flow cytometry, colony formation, or transwell assays. Protein levels were detected with Western blotting. The relationship between circ_HN1 or ROCK2 and miR-302b-3p was verified via dual luciferase reporter or RNA immunoprecipitation (RIP) assays. The role of circ_HN1 in vivo was confirmed by xenograft assay. We observed that circ_HN1 and ROCK2 were upregulated while miR-302b-3p was downregulated in GC tissues and cells. Circ_HN1 silencing slowed tumor growth in vivo and impeded cell proliferation migration, invasion, and facilitated cell apoptosis in GC cells in vitro. Circ_HN1 sponged miR-302b-3p to regulate ROCK2 expression. MiR-302b-3p inhibitor reversed circ_HN1 silencing-mediated influence on the malignant behaviors of GC cells. Furthermore, ROCK2 overexpression restored miR-302b-3p mimic-mediated impacts on cell malignant behaviors in GC cells. In conclusion, circ_HN1 exerted an oncogenic role in GC through upregulating ROCK2 via sponging miR-302b-3p, offering evidence that circ_HN1 is a potential target for GC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GC:

Gastric cancer

circ_HN1:

Circular RNA circ_HN1

ROCK2:

Rho-associated coiled-coil containing protein kinase 2

qRT-PCR:

Quantitative real-time polymerase chain reaction

CCK-8:

Cell counting kit-8

E-cad:

E-cadherin

c-caspase3:

Cleaved caspase-3

PCNA:

Proliferating cell nuclear antigen

RIP:

RNA immunoprecipitation

References

  1. Tokumaru Y, Tajirika T, Sugito N, Kuranaga Y, Shinohara H, Tsujino T, Matsuhashi N, Futamura M, Akao Y, Yoshida K (2019) Synthetic miR-143 inhibits growth of HER2-positive gastric cancer cells by suppressing KRAS networks including DDX6 RNA helicase. Int J Mol Sci. https://doi.org/10.3390/ijms20071697

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mohammad N, Malvi P, Meena AS, Singh SV, Chaube B, Vannuruswamy G, Kulkarni MJ, Bhat MK (2014) Cholesterol depletion by methyl-β-cyclodextrin augments tamoxifen induced cell death by enhancing its uptake in melanoma. Mol Cancer 13:204. https://doi.org/10.1186/1476-4598-13-204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mohammad N, Singh SV, Malvi P, Chaube B, Athavale D, Vanuopadath M, Nair SS, Nair B, Bhat MK (2015) Strategy to enhance efficacy of doxorubicin in solid tumor cells by methyl-β-cyclodextrin: involvement of p53 and Fas receptor ligand complex. Sci Rep 5:11853. https://doi.org/10.1038/srep11853

    Article  PubMed  PubMed Central  Google Scholar 

  4. Singh S, Chouhan S, Mohammad N, Bhat MK (2017) Resistin causes G1 arrest in colon cancer cells through upregulation of SOCS3. FEBS Lett 591:1371–1382. https://doi.org/10.1002/1873-3468.12655

    Article  CAS  PubMed  Google Scholar 

  5. Muhammad N, Steele R, Isbell TS, Philips N, Ray RB (2017) Bitter melon extract inhibits breast cancer growth in preclinical model by inducing autophagic cell death. Oncotarget 8:66226–66236. https://doi.org/10.18632/oncotarget.19887

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hu G, Zhong K, Wang S, Wang S, Ding Q, Xu F, Chen W, Cheng P, Huang L (2020) Cellular immunotherapy plus chemotherapy ameliorates survival in gastric cancer patients: a meta-analysis. Int J Clin Oncol. https://doi.org/10.1007/s10147-020-01750-6

    Article  PubMed  Google Scholar 

  7. Canakis A, Pani E, Saumoy M, Shah SC (2020) Decision model analyses of upper endoscopy for gastric cancer screening and preneoplasia surveillance: a systematic review. Ther Adv Gastroenterol 13:1756284820941662. https://doi.org/10.1177/1756284820941662

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tan Z (2019) Recent advances in the surgical treatment of advanced gastric cancer: a review. Med Sci Monit 25:3537–3541. https://doi.org/10.12659/MSM.916475

    Article  PubMed  PubMed Central  Google Scholar 

  9. Patel TH, Cecchini M (2020) Targeted therapies in advanced gastric cancer. Curr Treat Opt Oncol 21:70. https://doi.org/10.1007/s11864-020-00774-4

    Article  PubMed  Google Scholar 

  10. Digklia A, Wagner AD (2016) Advanced gastric cancer: current treatment landscape and future perspectives. World J Gastroenterol 22:6–17

  11. Kristensen LS, Hansen TB, Venø MT, Kjems J (2018) Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37:555–565

    Article  CAS  Google Scholar 

  12. Li J, Sun D, Pu W, Wang J, Peng Y (2020) Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends Cancer 6:319–336. https://doi.org/10.1016/j.trecan.2020.01.012

    Article  CAS  PubMed  Google Scholar 

  13. Geng Y, Jiang J, Wu C (2018) Function and clinical significance of circRNAs in solid tumors. J Hematol Oncol 11:98. https://doi.org/10.1186/s13045-018-0643-z

    Article  CAS  Google Scholar 

  14. Chen N-N, Chao D-L, Li X-G (2020) Circular RNA has_circ_0000527 participates in proliferation, invasion and migration of retinoblastoma cells via miR-646/BCL-2 axis. Cell Biochem Funct. https://doi.org/10.1002/cbf.3535

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141:1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034

    Article  CAS  PubMed  Google Scholar 

  16. Syed SN, Brüne B (2020) MicroRNAs as emerging regulators of signaling in the tumor microenvironment. Cancers. https://doi.org/10.3390/cancers12040911

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shin VY, Chu KM (2014) MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J Gastroenterol 20:10432–10439

    Article  CAS  Google Scholar 

  18. Muhammad N, Bhattacharya S, Steele R, Ray RB (2016) Anti-miR-203 suppresses ER-positive breast cancer growth and stemness by targeting SOCS3. Oncotarget 7:58595–58605. https://doi.org/10.18632/oncotarget.11193

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mou T, Xie F, Zhong P, Hua H, Lai L, Yang Q, Wang J (2019) MiR-345-5p functions as a tumor suppressor in pancreatic cancer by directly targeting CCL8. Biomed Pharmacother 111:891–900. https://doi.org/10.1016/j.biopha.2018.12.121

    Article  CAS  PubMed  Google Scholar 

  20. Li G, Song Y, Li Y-D, Jie L-J, Wu W-Y, Li J-Z, Zhang Q, Wang Y (2018) Circulating miRNA-302 family members as potential biomarkers for the diagnosis of acute heart failure. Biomark Med 12:871–880. https://doi.org/10.2217/bmm-2018-0132

    Article  CAS  PubMed  Google Scholar 

  21. L Tian, J Cao, H Jiao, J Zhang, X Ren (2019) circRASSF2 promotes laryngeal squamous cell carcinoma progression by regulating the miR-302b-3p/ IGF-1R axis. Clin Sci 133(9):1053–66

  22. Li Y, Huo J, Pan X, Wang C, Ma X (2018) MicroRNA 302b–3p/302c-3p/302d-3p inhibits epithelial–mesenchymal transition and promotes apoptosis in human endometrial carcinoma cells. Oncotargets Ther 11:1275–1284

    Article  Google Scholar 

  23. Guo B, Zhao Z, Wang Z, Li Q, Wang X, Wang W, Song T and Huang C (2017) MicroRNA-302b-3p suppresses cell proliferation through AKT pathway by targeting IGF-1R in human gastric cancer. Cell Physiol Biochem 42:1701–1711

  24. Liang C, Yue C, Liang C, Ge H, Wei Z, Li G, Wu J, Huang H, Guo J (2019) The long non-coding RNA SBF2-AS1 exerts oncogenic functions in gastric cancer by targeting the miR-302b-3p/E2F transcription factor 3 axis. OncoTargets Ther 12:8879–8893. https://doi.org/10.2147/OTT.S210697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schofield AV, Bernard O (2013) Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit Rev Biochem Mol Biol 48:301–316. https://doi.org/10.3109/10409238.2013.786671

    Article  CAS  PubMed  Google Scholar 

  26. Libanje F, Raingeaud J, Luan R, Thomas Z, Zajac O, Veiga J, Marisa L, Adam J, Boige V, Malka D, Goéré D, Hall A, Soazec J-Y, Prall F, Gelli M, Dartigues P, Jaulin F (2019) ROCK2 inhibition triggers the collective invasion of colorectal adenocarcinomas. EMBO J 38:e99299. https://doi.org/10.15252/embj.201899299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dourado MR, de Oliveira CE, Sawazaki-Calone I, Sundquist E, Coletta RD, Salo T (2018) Clinicopathologic significance of ROCK2 expression in oral squamous cell carcinomas. J Oral Pathol Med 47:121–127. https://doi.org/10.1111/jop.12651

    Article  CAS  PubMed  Google Scholar 

  28. Yuan S, Luan X, Han G, Guo K, Wang S, Zhang X (2019) LINC01638 lncRNA mediates the postoperative distant recurrence of bladder cancer by upregulating ROCK2. Oncol Lett 18:5392–5398. https://doi.org/10.3892/ol.2019.10924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun X, Zhang X, Chen S, Fan M, Ma S, Zhai H (2019) Myosin heavy chain-associated RNA transcripts promotes gastric cancer progression through the miR-4529-5p/ROCK2 axis. Dig Dis Sci 64:3539–3548. https://doi.org/10.1007/s10620-019-05708-1

    Article  CAS  PubMed  Google Scholar 

  30. Chen X, Mao R, Su W, Yang X, Geng Q, Guo C, Wang Z, Wang J, Kresty LA, Beer DG, Chang AC, Chen G (2020) Circular RNA modulates autophagy via -STAT3-PRKAA/AMPKα signaling in STK11 mutant lung cancer. Autophagy 16:659–671. https://doi.org/10.1080/15548627.2019.1634945

    Article  CAS  PubMed  Google Scholar 

  31. Li X, Lin S, Mo Z, Jiang J, Tang H, Wu C, Song J (2020) CircRNA_100395 inhibits cell proliferation and metastasis in ovarian cancer via regulating miR-1228/p53/epithelial–mesenchymal transition (EMT) axis. J Cancer 11:599–609. https://doi.org/10.7150/jca.35041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, Xu P, Sun G, Xu J, Lv J, Xu Z (2019) Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer 18:20. https://doi.org/10.1186/s12943-018-0935-5

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu H, Liu Y, Bian Z, Zhang J, Zhang R, Chen X, Huang Y, Wang Y, Zhu J (2018) Circular RNA YAP1 inhibits the proliferation and invasion of gastric cancer cells by regulating the miR-367-5p/p27 axis. Mol Cancer 17:151. https://doi.org/10.1186/s12943-018-0902-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang J, Hou L, Liang R, Chen X, Zhang R, Chen W, Zhu J (2019) CircDLST promotes the tumorigenesis and metastasis of gastric cancer by sponging miR-502-5p and activating the NRAS/MEK1/ERK1/2 signaling. Mol Cancer 18:80. https://doi.org/10.1186/s12943-019-1015-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ding L, Zhao Y, Dang S, Wang Y, Li X, Yu X, Li Z, Wei J, Liu M, Li G (2019) Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4. Mol Cancer 18:45. https://doi.org/10.1186/s12943-019-1006-2

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang L, Song X, Chen X, Wang Q, Zheng X, Wu C, Jiang J (2019) Circular RNA CircCACTIN promotes gastric cancer progression by sponging MiR-331-3p and regulating TGFBR1 expression. Int J Biol Sci 15:1091–1103. https://doi.org/10.7150/ijbs.31533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pu J, Wang J, Li W, Lu Y, Wu X, Long X, Luo C, Wei H (2020) hsa_circ_0000092 promotes hepatocellular carcinoma progression through up-regulating HN1 expression by binding to microRNA-338-3p. J Cell Mol Med. https://doi.org/10.1111/jcmm.15010

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang C, Xu B, Lu S, Zhao Y, Liu P (2017) HN1 contributes to migration, invasion, and tumorigenesis of breast cancer by enhancing MYC activity. Mol Cancer 16:90. https://doi.org/10.1186/s12943-017-0656-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Varisli L, Ozturk BE, Akyuz GK, Korkmaz KS (2015) HN1 negatively influences the β-catenin/E-cadherin interaction, and contributes to migration in prostate cells. J Cell Biochem 116:170–178. https://doi.org/10.1002/jcb.24956

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Wang M, Zang X, Mao Z, Chen Y, Mao F, Qian H, Xu W, Zhang X (2020) CircHN1 affects cell proliferation and migration in gastric cancer. J Clin Lab Anal. https://doi.org/10.1002/jcla.23433

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li Y, Huo J, Pan X, Wang C, Ma X (2018) MicroRNA 302b–3p/302c-3p/302d-3p inhibits epithelial–mesenchymal transition and promotes apoptosis in human endometrial carcinoma cells. OncoTargets Ther 11:1275–1284. https://doi.org/10.2147/OTT.S154517

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tian L, Cao J, Jiao H, Zhang J, Ren X, Liu X, Liu M and Sun Y (2019) CircRASSF2 promotes laryngeal squamous cell carcinoma progression by regulating the miR-302b-3p/IGF-1R axis. Clin Sci (London, England: 1979) 133:1053–1066. https://doi.org/10.1042/CS20190110

  43. Qiu Y, Yuan R, Zhang S, Chen L, Huang D, Hao H, Shao J (2015) Rock2 stabilizes β-catenin to promote tumor invasion and metastasis in colorectal cancer. Biochem Biophys Res Commun 467:629–637. https://doi.org/10.1016/j.bbrc.2015.10.103

    Article  CAS  PubMed  Google Scholar 

  44. Li M, Ke J, Wang Q, Qian H, Yang L, Zhang X, Xiao J, Ding H, Shan X, Liu Q, Xiao Y, Bao B, Huang H (2017) Upregulation of ROCK2 in gastric cancer cell promotes tumor cell proliferation, metastasis and invasion. Clin Exp Med 17:519–529. https://doi.org/10.1007/s10238-016-0444-z

    Article  CAS  PubMed  Google Scholar 

  45. Xie Y, Qi J, Zhu C, Zhao D, Liao G (2019) MiR-381 functions as a tumor suppressor in gastric cancer by targeting ROCK2. Int J Clin Exp Pathol 12:164–172

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuting Kuang.

Ethics declarations

Conflict of interest

The authors declare that they have no financial conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 648 kb)

Fig. S1 The association between some miRNAs and circ_HN1. (A) The expression of 6 miRNAs (miR-520a-3p, miR-520d-3p, miR-526b-3p, miR-628-5p, miR-302b-3p, and miR-760) in GC tissues (10 random samples) was assessed by qRT-PCR. (B and C) Influence of circ_HN1 knockdown on the expression of these miRNAs in MKN7 and HGC-27 cells was determined by qRT-PCR. *P < 0.05.

Supplementary file2 (TIF 797 kb)

Fig. S2 The association between some mRNAs and miR-302b-3p. (A) The levels of 6 proteins (ROCK2, MAP3K7, HMGA2, COL5A1, ADAM9, and EZH2) in GC tissues (3 random samples) were assessed by Western blotting. (B and C) Effect of circ_HN1 silencing on the levels of these proteins in MKN7 and HGC-27 cells was determined by Western blotting. *P < 0.05.

Supplementary file3 (TIF 4467 kb)

Fig. S3 Influence of circ_HN1 overexpression on migration and invasion of GES-1 cells. (A) The overexpression efficiency of circ_HN1 in GES-1 cells was revealed by qRT-PCR. (B and C) Effect of circ_HN1 overexpression on migration and invasion of GES-1 cells was determined by transwell assay. *P < 0.05.

Supplementary file4 (TIF 3084 kb)

Fig. S4. A schematic diagram presenting the regulatory mechanism of circ_HN1 in GC progression.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Jiang, X., Liu, Y. et al. Circular RNA circ_HN1 facilitates gastric cancer progression through modulation of the miR-302b-3p/ROCK2 axis. Mol Cell Biochem 476, 199–212 (2021). https://doi.org/10.1007/s11010-020-03897-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03897-2

Keywords

Navigation