Skip to main content
Log in

OP16 induces deadly autophagy and apoptosis of cells by inhibiting Akt in esophageal squamous cell carcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Background

OP16, a derivative of the novel ent-kaurene diterpenoid compound separated from Rabdosia rubescens, has been confirmed for its efficacy and safety in the treatment of esophageal squamous cell carcinoma (ESCC) in our previous study. However, the precise mechanisms of tumor lethality mediated by OP16 have not yet been fully characterized.

Aims

To investigate the effects and molecular mechanism of OP16 on autophagy and apoptosis of ESCC cells.

Methods

Effects and mechanism of OP16 on autophagy of ESCC cells were first detected by Western blot, immunofluorescence, mRFP-GFP-LC3 adenovirus infection and transmission electron microscope. Next, function of autophagy and apoptosis induced by OP16 on cell death was investigated by flow cytometry and CCK-8 assay. Finally, molecular mechanism of OP16 affecting autophagy and apoptosis of ESCC cells was explored by Western blot.

Results

We demonstrated that OP16 could induce autophagy by promoting the formation of autophagosome and autolysosome, and promote autophagic cell death in ESCC. Furthermore, we also found that OP16 could promote cell apoptosis by activating mitochondria apoptosis pathway in ESCC. Finally, we demonstrated that OP16 affecting autophagy and mitochondria apoptosis pathway was mediated by phosphorylation of Akt.

Conclusion

Our data show that OP16 could promote cell death through affecting autophagy and mitochondria apoptosis pathway mediated by Akt in ESCC, which enriches the theoretical mechanism of anti-tumor effects of OP16 and provides a basis for treatment of OP16 on ESCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368(7):651–662. https://doi.org/10.1056/NEJMra1205406

    Article  CAS  PubMed  Google Scholar 

  2. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. https://doi.org/10.1146/annurev-genet-102808-114910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nguyen TN, Padman BS, Usher J, Oorschot V, Ramm G, Lazarou M (2016) Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J Cell Biol 215(6):857–874. https://doi.org/10.1083/jcb.201607039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang Y, Hou JK, Chen TT, Zhao XY, Yan ZW, Zhang J, Yang J, Kogan SC, Chen GQ (2011) PML-RARalpha enhances constitutive autophagic activity through inhibiting the Akt/mTOR pathway. Autophagy 7(10):1132–1144. https://doi.org/10.4161/auto.7.10.16636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reggiori F, Ungermann C (2017) Autophagosome Maturation and Fusion. J Mol Biol 429(4):486–496. https://doi.org/10.1016/j.jmb.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  6. Ge L, Baskaran S, Schekman R, Hurley JH (2014) The protein-vesicle network of autophagy. Curr Opin Cell Biol 29:18–24. https://doi.org/10.1016/j.ceb.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  7. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171(4):603–614. https://doi.org/10.1083/jcb.200507002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Amaravadi R, Kimmelman AC, White E (2016) Recent insights into the function of autophagy in cancer. Genes Dev 30(17):1913–1930. https://doi.org/10.1101/gad.287524.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075. https://doi.org/10.1038/nature06639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. White E (2015) The role for autophagy in cancer. J Clin Invest 125(1):42–46. https://doi.org/10.1172/JCI73941

    Article  PubMed  PubMed Central  Google Scholar 

  11. White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15(17):5308–5316. https://doi.org/10.1158/1078-0432.CCR-07-5023

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hippert MM, O'Toole PS, Thorburn A (2006) Autophagy in cancer: good, bad, or both? Cancer Res 66(19):9349–9351. https://doi.org/10.1158/0008-5472.CAN-06-1597

    Article  CAS  PubMed  Google Scholar 

  13. Fulda S, Kogel D (2015) Cell death by autophagy: emerging molecular mechanisms and implications for cancer therapy. Oncogene 34(40):5105–5113. https://doi.org/10.1038/onc.2014.458

    Article  CAS  PubMed  Google Scholar 

  14. Rangwala R, Chang YC, Hu J, Algazy KM, Evans TL, Fecher LA, Schuchter LM, Torigian DA, Panosian JT, Troxel AB, Tan KS, Heitjan DF, DeMichele AM, Vaughn DJ, Redlinger M, Alavi A, Kaiser J, Pontiggia L, Davis LE, O'Dwyer PJ, Amaravadi RK (2014) Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 10(8):1391–1402. https://doi.org/10.4161/auto.29119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li J, Hou N, Faried A, Tsutsumi S, Kuwano H (2010) Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. Eur J Cancer 46(10):1900–1909. https://doi.org/10.1016/j.ejca.2010.02.021

    Article  CAS  PubMed  Google Scholar 

  16. Vyas AR, Hahm ER, Arlotti JA, Watkins S, Stolz DB, Desai D, Amin S, Singh SV (2013) Chemoprevention of prostate cancer by d, l-sulforaphane is augmented by pharmacological inhibition of autophagy. Cancer Res 73(19):5985–5995. https://doi.org/10.1158/0008-5472.CAN-13-0755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Herman-Antosiewicz A, Johnson DE, Singh SV (2006) Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer Res 66(11):5828–5835. https://doi.org/10.1158/0008-5472.CAN-06-0139

    Article  CAS  PubMed  Google Scholar 

  18. Gewirtz DA (2014) The four faces of autophagy: implications for cancer therapy. Cancer Res 74(3):647–651. https://doi.org/10.1158/0008-5472.CAN-13-2966

    Article  CAS  PubMed  Google Scholar 

  19. Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q, Wang X, He C, Pan H (2013) Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 4:e838. https://doi.org/10.1038/cddis.2013.350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10(9):1533–1541. https://doi.org/10.1158/1535-7163.mct-11-0047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumar D, Shankar S, Srivastava RK (2014) Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway. Cancer Lett 343(2):179–189. https://doi.org/10.1016/j.canlet.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  22. Saiki S, Sasazawa Y, Imamichi Y, Kawajiri S, Fujimaki T, Tanida I, Kobayashi H, Sato F, Sato S, Ishikawa K, Imoto M, Hattori N (2011) Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy 7(2):176–187. https://doi.org/10.4161/auto.7.2.14074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Farrow JM, Yang JC, Evans CP (2014) Autophagy as a modulator and target in prostate cancer. Nat Rev Urol 11(9):508–516. https://doi.org/10.1038/nrurol.2014.196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, Gong J, Zhong Z, Xu Z, Dang Y, Guo J, Chen X, Wang Y (2011) Anti-cancer natural products isolated from chinese medicinal herbs. Chin Med 6(1):27. https://doi.org/10.1186/1749-8546-6-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Song M, Liu X, Liu K, Zhao R, Huang H, Shi Y, Zhang M, Zhou S, Xie H, Chen H, Li Y, Zheng Y, Wu Q, Liu F, Li E, Bode AM, Dong Z, Lee MH (2018) Targeting AKT with oridonin inhibits growth of esophageal squamous cell carcinoma in vitro and patient-derived xenografts in vivo. Mol Cancer Ther 17(7):1540–1553. https://doi.org/10.1158/1535-7163.mct-17-0823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li Y, Wang Y, Wang S, Gao Y, Zhang X, Lu C (2015) Oridonin phosphate-induced autophagy effectively enhances cell apoptosis of human breast cancer cells. Med Oncol 32(1):365. https://doi.org/10.1007/s12032-014-0365-1

    Article  CAS  PubMed  Google Scholar 

  27. Ding Y, Ding C, Ye N, Liu Z, Wold EA, Chen H, Wild C, Shen Q, Zhou J (2016) Discovery and development of natural product oridonin-inspired anticancer agents. Eur J Med Chem 122:102–117. https://doi.org/10.1016/j.ejmech.2016.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu H, Zhu W, Zhu C, Wang Q, Ke Y, Liu Z, Yan X, Zhang J, Qu H Novel ent-kaurene diterpene compound and its derivatives, their preparation and their use. Patent No. 8084430 (in the United States).

  29. Liu H, Zhu W, Zhu C, Wang Q, Ke Y, Liu Z, Yan X, Zhang J, H Q Novel ent-kaurene intervene compound and its derivatives, their preparation and their use. Patent No. AZ (in China).

  30. Peng KZ, Ke Y, Zhao Q, Tian F, Liu HM, Hou G, Lu Z (2017) OP16, a novel ent-kaurene diterpenoid, potentiates the antitumor effect of rapamycin by inhibiting rapamycin-induced feedback activation of Akt signaling in esophageal squamous cell carcinoma. Biochem Pharmacol 140:16–27. https://doi.org/10.1016/j.bcp.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  31. Hou G, Zhang Q, Wang L, Liu M, Wang J, Xue L (2010) mTOR inhibitor rapamycin alone or combined with cisplatin inhibits growth of esophageal squamous cell carcinoma in nude mice. Cancer Lett 290(2):248–254. https://doi.org/10.1016/j.canlet.2009.09.015

    Article  CAS  PubMed  Google Scholar 

  32. Hou G, Zhao Q, Zhang M, Fan T, Liu M, Shi X, Ren Y, Wang Y, Zhou J, Lu Z (2018) Down-regulation of Rictor enhances cell sensitivity to PI3K inhibitor LY294002 by blocking mTORC2-medicated phosphorylation of Akt/PRAS40 in esophageal squamous cell carcinoma. Biomed Pharmacother 106:1348–1356. https://doi.org/10.1016/j.biopha.2018.07.075

    Article  CAS  PubMed  Google Scholar 

  33. Chen L, Lu D, Sun K, Xu Y, Hu P, Li X, Xu F (2019) Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis. Gene 692:119–125. https://doi.org/10.1016/j.gene.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  34. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31(1):258–261. https://doi.org/10.1093/nar/gkg034

    Article  CAS  Google Scholar 

  35. Liu Z, Ouyang L, Peng H, Zhang WZ (2012) Oridonin: targeting programmed cell death pathways as an anti-tumour agent. Cell Prolif 45(6):499–507. https://doi.org/10.1111/j.1365-2184.2012.00849.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141. https://doi.org/10.1038/ncb2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sotthibundhu A, McDonagh K, von Kriegsheim A, Garcia-Munoz A, Klawiter A, Thompson K, Chauhan KD, Krawczyk J, McInerney V, Dockery P, Devine MJ, Kunath T, Barry F, O'Brien T, Shen S (2016) Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells. Stem Cell Res Ther 7(1):166. https://doi.org/10.1186/s13287-016-0425-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. https://doi.org/10.3322/caac.20107

    Article  PubMed  Google Scholar 

  39. Chen J, Pan J, Zheng X, Zhu K, Li J, Chen M, Wang J, Liao Z (2012) Number and location of positive nodes, postoperative radiotherapy, and survival after esophagectomy with three-field lymph node dissection for thoracic esophageal squamous cell carcinoma. Int J Radiat Oncol Biol Phys 82(1):475–482. https://doi.org/10.1016/j.ijrobp.2010.08.037

    Article  PubMed  Google Scholar 

  40. Racanelli AC, Kikkers SA, Choi AMK, Cloonan SM (2018) Autophagy and inflammation in chronic respiratory disease. Autophagy 14(2):221–232. https://doi.org/10.1080/15548627.2017.1389823

    Article  PubMed  PubMed Central  Google Scholar 

  41. Karabiyik C, Lee MJ, Rubinsztein DC (2017) Autophagy impairment in Parkinson's disease. Essays Biochem 61(6):711–720. https://doi.org/10.1042/ebc20170023

    Article  PubMed  Google Scholar 

  42. Vogl DT, Stadtmauer EA, Tan KS, Heitjan DF, Davis LE, Pontiggia L, Rangwala R, Piao S, Chang YC, Scott EC, Paul TM, Nichols CW, Porter DL, Kaplan J, Mallon G, Bradner JE, Amaravadi RK (2014) Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy 10(8):1380–1390. https://doi.org/10.4161/auto.29264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rangwala R, Leone R, Chang YC, Fecher LA, Schuchter LM, Kramer A, Tan KS, Heitjan DF, Rodgers G, Gallagher M, Piao S, Troxel AB, Evans TL, DeMichele AM, Nathanson KL, O'Dwyer PJ, Kaiser J, Pontiggia L, Davis LE, Amaravadi RK (2014) Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 10(8):1369–1379. https://doi.org/10.4161/auto.29118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mahalingam D, Mita M, Sarantopoulos J, Wood L, Amaravadi RK, Davis LE, Mita AC, Curiel TJ, Espitia CM, Nawrocki ST, Giles FJ, Carew JS (2014) Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 10(8):1403–1414. https://doi.org/10.4161/auto.29231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hall TM, Tetreault MP, Hamilton KE, Whelan KA (2018) Autophagy as a cytoprotective mechanism in esophageal squamous cell carcinoma. Curr Opin Pharmacol 41:12–19. https://doi.org/10.1016/j.coph.2018.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Karsli-Uzunbas G, Guo JY, Price S, Teng X, Laddha SV, Khor S, Kalaany NY, Jacks T, Chan CS, Rabinowitz JD, White E (2014) Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov 4(8):914–927. https://doi.org/10.1158/2159-8290.cd-14-0363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mauvezin C, Neufeld TP (2015) Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy 11(8):1437–1438. https://doi.org/10.1080/15548627.2015.1066957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Redmann M, Benavides GA, Berryhill TF, Wani WY, Ouyang X, Johnson MS, Ravi S, Barnes S, Darley-Usmar VM, Zhang J (2017) Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons. Redox Biol 11:73–81. https://doi.org/10.1016/j.redox.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  49. Schreiber KH, Arriola Apelo SI, Yu D, Brinkman JA, Velarde MC, Syed FA, Liao CY, Baar EL, Carbajal KA, Sherman DS, Ortiz D, Brunauer R, Yang SE, Tzannis ST, Kennedy BK, Lamming DW (2019) A novel rapamycin analog is highly selective for mTORC1 in vivo. Nat Commun 10(1):3194. https://doi.org/10.1038/s41467-019-11174-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luo T, Fu J, Xu A, Su B, Ren Y, Li N, Zhu J, Zhao X, Dai R, Cao J, Wang B, Qin W, Jiang J, Li J, Wu M, Feng G, Chen Y, Wang H (2016) PSMD10/gankyrin induces autophagy to promote tumor progression through cytoplasmic interaction with ATG7 and nuclear transactivation of ATG7 expression. Autophagy 12(8):1355–1371. https://doi.org/10.1080/15548627.2015.1034405

    Article  CAS  PubMed  Google Scholar 

  51. Liu F, Chen J, Wang P, Li H, Zhou Y, Liu H, Liu Z, Zheng R, Wang L, Yang H, Cui Z, Wang F, Huang X, Wang J, Sha W, Xiao H, Ge B (2018) MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy. Nat Commun 9(1):4295. https://doi.org/10.1038/s41467-018-06836-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jin S, Shen JN, Wang J, Huang G, Zhou JG (2007) Oridonin induced apoptosis through Akt and MAPKs signaling pathways in human osteosarcoma cells. Cancer Biol Ther 6(2):261–268. https://doi.org/10.4161/cbt.6.2.3621

    Article  CAS  PubMed  Google Scholar 

  53. Hu HZ, Yang YB, Xu XD, Shen HW, Shu YM, Ren Z, Li XM, Shen HM, Zeng HT (2007) Oridonin induces apoptosis via PI3K/Akt pathway in cervical carcinoma HeLa cell line. Acta Pharmacol Sin 28(11):1819–1826. https://doi.org/10.1111/j.1745-7254.2007.00667.x

    Article  CAS  PubMed  Google Scholar 

  54. Munson MJ, Ganley IG (2015) MTOR, PIK3C3, and autophagy: Signaling the beginning from the end. Autophagy 11(12):2375–2376. https://doi.org/10.1080/15548627.2015.1106668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gao L, Wang Z, Lu D, Huang J, Liu J, Hong L (2019) Paeonol induces cytoprotective autophagy via blocking the Akt/mTOR pathway in ovarian cancer cells. Cell Death Dis 10(8):609. https://doi.org/10.1038/s41419-019-1849-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sun Y, Huang YH, Huang FY, Mei WL, Liu Q, Wang CC, Lin YY, Huang C, Li YN, Dai HF, Tan GH (2018) 3'-epi-12beta-hydroxyfroside, a new cardenolide, induces cytoprotective autophagy via blocking the Hsp90/Akt/mTOR axis in lung cancer cells. Theranostics 8(7):2044–2060. https://doi.org/10.7150/thno.23304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brenner D, Mak TW (2009) Mitochondrial cell death effectors. Curr Opin Cell Biol 21(6):871–877. https://doi.org/10.1016/j.ceb.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  58. Mundi PS, Sachdev J, McCourt C, Kalinsky K (2016) AKT in cancer: new molecular insights and advances in drug development. Br J Clin Pharmacol 82(4):943–956. https://doi.org/10.1111/bcp.13021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Key Research Project of University, Department of Education of Henan Province (Grant No. 20A350019), Henan Provincial University Science and Technology Innovation Team, Department of Education of Henan Province (Grant No. 19IRTSTHN001) and Key Project of Science and Technology, Department of Science and Technology of Henan Province (Grant No. 202102310127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoming Lu.

Ethics declarations

Conflict of interest

No potential conflicts of interest are disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, G., Jia, A., Yang, L. et al. OP16 induces deadly autophagy and apoptosis of cells by inhibiting Akt in esophageal squamous cell carcinoma. Mol Cell Biochem 472, 219–230 (2020). https://doi.org/10.1007/s11010-020-03800-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03800-z

Keywords

Navigation