Skip to main content
Log in

GSTM1-null allele predicts rapid disease progression in nondialysis patients and mortality among South Indian ESRD patients

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) is one of the main causes of early death in humans worldwide. Glutathione S-Transferases (GSTs) are involved in a series of xenobiotics metabolism and free radical scavenging. The previous studies elucidated the interlink between GST variants and to the development of various diseases. The present case–control study performed to ascertain whether GST polymorphisms are associated with the incidence and advancement of CKD. From the Southern part of India, a total of 392 CKD patients (nondialysis, ND; n = 170, end-stage renal disease, ESRD; n = 222) and 202 healthy individuals were enrolled. Patients were followed-up for 70 months. Serum biochemical parameters were recorded, and the extraction of DNA was done from the patient’s blood samples. To genotype study participants, multiplex PCR for GSTM1/T1 was performed. Statistical analysis was carried out to analyze the relationship between gene frequency and sonographic grading, as well as biochemical parameters for disease development. The GSTM1-null genotype showed threefold increased risk (OR = 2.9304; 95% CI 1.8959 to 4.5296; P < 0.0001) to CKD development and twofold increased risk (OR = 1.8379; 95% CI 1.1937 to 2.8299; P = 0.0057) to ESRD progression. During the mean follow-up of 41 months study, multivariate Cox regression analysis revealed that GSTM1-null genotype has 4 times increased the risk for all-cause rapid disease progression to ESRD among ND patients and 3.85-fold increased risk for death among ESRD patients. Survival analysis revealed that patients with GSTM1-present allele showed a significantly diminished risk of mortality compared to patients bearing the GSTM1-null allele among ESRD patients with a hazard ratio of 4.6242 (P < 0.0001). Thus, present data confirm that GSTM1-null genotype increased the risk for all-cause rapid disease progression to ESRD among ND patients. Based on our results, GSTM1-null genotype could be considered as a significant predictor for causing mortality among CKD patients when compared to all other variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Webster AC, Nagler EV, Morton RL, Masson P (2017) Chronic kidney disease. Lancet 389:1238–1252. https://doi.org/10.1016/S0140-6736(16)32064-5

    Article  PubMed  Google Scholar 

  2. Burden AC, McNally PG, Feehally J, Walls J (1992) Increased incidence of end-stage renal failure secondary to diabetes mellitus in Asian ethnic groups in the United Kingdom. Diabet Med 9:641–645

    Article  CAS  Google Scholar 

  3. Dash SC, Agarwal SK (2006) Incidence of chronic kidney disease in India. Nephrol Dial Transplant 21:232–233. https://doi.org/10.1093/ndt/gfi094

    Article  PubMed  Google Scholar 

  4. Mather HM, Chaturvedi N, Kehely AM (1998) Comparison of prevalence and risk factors for microalbuminuria in South Asians and Europeans with type 2 diabetes mellitus. Diabet Med 15:672–677

    Article  CAS  Google Scholar 

  5. CDC (2016) Center for Disease Control and Prevention. Chronic Kidney Disease Basics.,

  6. Ramprasath T, Selvam GS (2013) Potential impact of genetic variants in Nrf2 regulated antioxidant genes and risk prediction of diabetes and associated cardiac complications. Curr Med Chem 20:4680–4693

    Article  CAS  Google Scholar 

  7. Ramprasath T, Vasudevan V, Sasikumar S, Puhari SS, Saso L, Selvam GS (2015) Regression of oxidative stress by targeting eNOS and Nrf2/ARE signaling: a guided drug target for cardiovascular diseases. Curr Top Med Chem 15:857–871

    Article  CAS  Google Scholar 

  8. Vaziri ND (2004) Oxidative stress in uremia: nature, mechanisms, and potential consequences. Semin Nephrol 24:469–473

    Article  CAS  Google Scholar 

  9. Galle J (2001) Oxidative stress in chronic renal failure. Nephrol Dial Transplant 16:2135–2137

    Article  CAS  Google Scholar 

  10. Palleschi S, De Angelis S, Diana L, Rossi B, Papa V, Severini G, Splendiani G (2007) Reliability of oxidative stress biomarkers in hemodialysis patients: a comparative study. Clin Chem Lab Med 45:1211–1218. https://doi.org/10.1515/CCLM.2007.266

    Article  CAS  PubMed  Google Scholar 

  11. Liakopoulos V, Roumeliotis S, Gorny X, Dounousi E, Mertens PR (2017) Oxidative stress in hemodialysis patients: a review of the literature. Oxid Med Cell Longev 2017:3081856. https://doi.org/10.1155/2017/3081856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramprasath T, Senthil Murugan P, Prabakaran AD, Gomathi P, Rathinavel A, Selvam GS (2011) Potential risk modifications of GSTT1, GSTM1 and GSTP1 (glutathione-S-transferases) variants and their association to CAD in patients with type-2 diabetes. Biochem Biophys Res Commun 407:49–53. https://doi.org/10.1016/j.bbrc.2011.02.097

    Article  CAS  PubMed  Google Scholar 

  13. Ramprasath T, Senthamizharasi M, Vasudevan V, Sasikumar S, Yuvaraj S, Selvam GS (2014) Naringenin confers protection against oxidative stress through upregulation of Nrf2 target genes in cardiomyoblast cells. J Physiol Biochem 70:407–415. https://doi.org/10.1007/s13105-014-0318-3

    Article  CAS  PubMed  Google Scholar 

  14. Dessi M, Noce A, Dawood KF, Galli F, Taccone-Gallucci M, Fabrini R, Bocedi A, Massoud R, Fucci G, Pastore A, Manca di Villahermosa S, Zingaretti V, Federici G, Ricci G (2012) Erythrocyte glutathione transferase: a potential new biomarker in chronic kidney diseases which correlates with plasma homocysteine. Amino Acids 43:347–354. https://doi.org/10.1007/s00726-011-1085-x

    Article  CAS  PubMed  Google Scholar 

  15. Bolt HM, Thier R (2006) Relevance of the deletion polymorphisms of the glutathione S-transferases GSTT1 and GSTM1 in pharmacology and toxicology. Curr Drug Metab 7:613–628

    Article  CAS  Google Scholar 

  16. Parl FF (2005) Glutathione S-transferase genotypes and cancer risk. Cancer Lett 221:123–129. https://doi.org/10.1016/j.canlet.2004.06.016

    Article  CAS  PubMed  Google Scholar 

  17. Lin YS, Hung SC, Wei YH, Tarng DC (2009) GST M1 polymorphism associates with DNA oxidative damage and mortality among hemodialysis patients. J Am Soc Nephrol 20:405–415. https://doi.org/10.1681/ASN.2008020227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stevens LA, Coresh J, Feldman HI, Greene T, Lash JP, Nelson RG, Rahman M, Deysher AE, Zhang YL, Schmid CH, Levey AS (2007) Evaluation of the modification of diet in renal disease study equation in a large diverse population. J Am Soc Nephrol 18:2749–2757. https://doi.org/10.1681/ASN.2007020199

    Article  PubMed  Google Scholar 

  19. Nicholas SB, Kalantar-Zadeh K, Norris KC (2015) Socioeconomic disparities in chronic kidney disease. Adv Chronic Kidney Dis 22:6–15. https://doi.org/10.1053/j.ackd.2014.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  20. Plantinga LC (2013) Socio-economic impact in CKD. Nephrol Ther 9:1–7. https://doi.org/10.1016/j.nephro.2012.07.361

    Article  PubMed  Google Scholar 

  21. Merdzo I, Rutkai I, Tokes T, Sure VN, Katakam PV, Busija DW (2016) The mitochondrial function of the cerebral vasculature in insulin-resistant Zucker obese rats. Am J Physiol Heart Circ Physiol 310:H830–H838. https://doi.org/10.1152/ajpheart.00964.2015

    Article  PubMed  PubMed Central  Google Scholar 

  22. Navarro G, Allard C, Morford JJ, Xu W, Liu S, Molinas AJ, Butcher SM, Fine NH, Blandino-Rosano M, Sure VN, Yu S, Zhang R, Munzberg H, Jacobson DA, Katakam PV, Hodson DJ, Bernal-Mizrachi E, Zsombok A, Mauvais-Jarvis F (2018) Androgen excess in pancreatic beta cells and neurons predisposes female mice to type 2 diabetes. JCI Insight. https://doi.org/10.1172/jci.insight.98607

    Article  PubMed  PubMed Central  Google Scholar 

  23. Katakam PV, Gordon AO, Sure VN, Rutkai I, Busija DW (2014) Diversity of mitochondria-dependent dilator mechanisms in vascular smooth muscle of cerebral arteries from normal and insulin-resistant rats. Am J Physiol Heart Circ Physiol 307:H493–503. https://doi.org/10.1152/ajpheart.00091.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramprasath T, Kumar PH, Puhari SS, Murugan PS, Vasudevan V, Selvam GS (2012) L-Arginine ameliorates cardiac left ventricular oxidative stress by upregulating eNOS and Nrf2 target genes in alloxan-induced hyperglycemic rats. Biochem Biophys Res Commun 428:389–394. https://doi.org/10.1016/j.bbrc.2012.10.064

    Article  CAS  PubMed  Google Scholar 

  25. Ramprasath T, Freddy AJ, Velmurugan G, Tomar D, Rekha B, Suvekbala V, Ramasamy S (2020) Context-dependent regulation of nrf2/are axis on vascular cell function during hyperglycemic condition. Curr Diabetes Rev. https://doi.org/10.2174/1573399816666200130094512

    Article  PubMed  Google Scholar 

  26. Sure VN, Sakamuri S, Sperling JA, Evans WR, Merdzo I, Mostany R, Murfee WL, Busija DW, Katakam PVG (2018) A novel high-throughput assay for respiration in isolated brain microvessels reveals impaired mitochondrial function in the aged mice. Geroscience 40:365–375. https://doi.org/10.1007/s11357-018-0037-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Merdzo I, Rutkai I, Sure V, Katakam PVG, Busija DW (2019) Effects of prolonged type 2 diabetes on mitochondrial function in cerebral blood vessels. Am J Physiol Heart Circ Physiol. https://doi.org/10.1152/ajpheart.00341.2019

    Article  PubMed  Google Scholar 

  28. Singh A, Kukreti R, Saso L, Kukreti S (2019) Oxidative stress: a key modulator in neurodegenerative diseases. Molecules. https://doi.org/10.3390/molecules24081583

    Article  PubMed  PubMed Central  Google Scholar 

  29. Poulianiti KP, Kaltsatou A, Mitrou GI, Jamurtas AZ, Koutedakis Y, Maridaki M, Stefanidis I, Sakkas GK, Karatzaferi C (2016) Systemic redox imbalance in chronic kidney disease: a systematic review. Oxid Med Cell Longev 2016:8598253. https://doi.org/10.1155/2016/8598253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ruiz S, Pergola PE, Zager RA, Vaziri ND (2013) Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int 83:1029–1041. https://doi.org/10.1038/ki.2012.439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sung CC, Hsu YC, Chen CC, Lin YF, Wu CC (2013) Oxidative stress and nucleic acid oxidation in patients with chronic kidney disease. Oxid Med Cell Longev 2013:301982. https://doi.org/10.1155/2013/301982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Testa A, Leonardis D, Spoto B, Sanguedolce MC, Parlongo RM, Pisano A, Tripepi G, Mallamaci F, Zoccali C (2016) A polymorphism in a major antioxidant gene (Kelch-like ECH-associated protein 1) predicts incident cardiovascular events in chronic kidney disease patients: an exploratory study. J Hypertens 34:928–934. https://doi.org/10.1097/HJH.0000000000000878

    Article  CAS  PubMed  Google Scholar 

  33. Dounousi E, Bouba I, Spoto B, Pappas K, Tripepi G, Georgiou I, Tselepis A, Elisaf M, Tsakiris D, Zoccali C, Siamopoulos K (2016) A genetic biomarker of oxidative stress, the paraoxonase-1 Q192R gene variant, associates with cardiomyopathy in ckd: a longitudinal study. Oxid Med Cell Longev 2016:1507270. https://doi.org/10.1155/2016/1507270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dabhi B, Mistry KN (2015) Oxidative stress and its association with TNF-alpha-308 G/C and IL-1alpha-889 C/T gene polymorphisms in patients with diabetes and diabetic nephropathy. Gene 562:197–202. https://doi.org/10.1016/j.gene.2015.02.069

    Article  CAS  PubMed  Google Scholar 

  35. Suvakov S, Damjanovic T, Pekmezovic T, Jakovljevic J, Savic-Radojevic A, Pljesa-Ercegovac M, Radovanovic S, Simic DV, Pljesa S, Zarkovic M, Mimic-Oka J, Dimkovic N, Simic T (2014) Associations of GSTM1*0 and GSTA1*a genotypes with the risk of cardiovascular death among hemodialyses patients. BMC Nephrol 15:12. https://doi.org/10.1186/1471-2369-15-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hussain K, Salah N, Hussain S, Hussain S (2012) Investigate the role of Glutathione S Transferase (GST) polymorphism in development of hypertension in UAE population. Iran Red Crescent Med J 14:479–482

    PubMed  PubMed Central  Google Scholar 

  37. Nomani H, Hagh-Nazari L, Aidy A, Vaisi-Raygani A, Kiani A, Rahimi Z, Bahrehmand F, Shakiba E, Mozaffari HR, Tavilani H, Pourmotabbed T (2016) Association between GSTM1, GSTT1, and GSTP1 variants and the risk of end stage renal disease. Ren Fail 38:1455–1461. https://doi.org/10.1080/0886022X.2016.1214054

    Article  CAS  PubMed  Google Scholar 

  38. Gutierrez-Amavizca BE, Orozco-Castellanos R, Ortiz-Orozco R, Padilla-Gutierrez J, Valle Y, Gutierrez-Gutierrez N, Garcia-Garcia G, Gallegos-Arreola M, Figuera LE (2013) Contribution of GSTM1, GSTT1, and MTHFR polymorphisms to end-stage renal disease of unknown etiology in Mexicans. Indian J Nephrol 23:438–443. https://doi.org/10.4103/0971-4065.120342.shall

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research presented in this article was supported by the University Grants Commission (UGC), New Delhi, India, through CEGS, CAS,and UPE schemes. V. Vasudevan thanks UGC for the award of Genomics-Meritorious Research Fellowships.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—VV, TR, GSS; Methodology and Sample collection—KS, VV; Formal analysis—VV. Investigation—VV, TR, GSS, SSMP, and SY; Writing—Original draft—VV, TR; Review and Editing—VV, TR, and GSS; Funding acquisition—GSS.

Corresponding author

Correspondence to Govindan Sadasivam Selvam.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Data availability statement

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasudevan, V., Ramprasath, T., Sampathkumar, K. et al. GSTM1-null allele predicts rapid disease progression in nondialysis patients and mortality among South Indian ESRD patients. Mol Cell Biochem 469, 21–28 (2020). https://doi.org/10.1007/s11010-020-03724-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03724-8

Keywords

Navigation