Skip to main content
Log in

Oxidative stress-mediated cytotoxicity of Endosulfan is causally linked to the inhibition of NADH dehydrogenase and Na+, K+-ATPase in Ehrlich ascites tumor cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Oxidative stress in cells caused by excessive production of reactive oxygen species (ROS) and decreased antioxidant defense is implicated in the cytotoxicity of xenobiotics including drugs and environmental chemicals. Endosulfan, a highly toxic organochlorine insecticide, causes cytotoxic cell death by inducing oxidative stress. We have investigated the biochemical basis of induction of oxidative stress, involving the role of NADH dehydrogenase and the possible role of Na+, K+-ATPase in endosulfan cytotoxicity and, whether the cytotoxicity could be attenuated by targeting ROS induction using the natural flavonoid antioxidant, quercetin, in Ehrlich ascites tumor (EAT) cells. Exposure of cells to endosulfan caused cytotoxic cell death (necrosis) which was associated with induction of ROS, lipid peroxidation as well as a reduction in glutathione levels, concomitant with loss of NADH dehydrogenase and Na+, K+-ATPase activity in a dose-dependent manner, indicating that oxidative stress and perturbation of membrane function are the major causes of endosulfan cytotoxicity. Our results showed that quercetin, protected against endosulfan-induced cytotoxicity and significantly abrogated oxidative stress, and ameliorated the inhibition of NADH dehydrogenase and Na+, K+-ATPase activity in EAT cells. Our study presents evidence that NADH dehydrogenase inhibition plays an important role in oxidative stress-mediated cytotoxicity, and perturbed membrane function as evident from inhibition of sodium–potassium pump is involved in cytotoxic cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dorval J, Hontela A (2003) Role of glutathione redox cycle and catalase in defense against oxidative stress induced by endosulfan in adrenocortical cells of rainbow trout (Oncorhynchus mykiss). Toxicol Appl Pharmacol 192:191–200. https://doi.org/10.1016/S0041-008X(03)00281-3

    Article  CAS  PubMed  Google Scholar 

  2. Rana I, Shivanandappa T (2010) Mechanism of potentiation of endosulfan cytotoxicity by thiram in Ehrlich ascites tumor cells. Toxicol In Vitro 24:40–44. https://doi.org/10.1016/j.tiv.2009.09.012

    Article  CAS  PubMed  Google Scholar 

  3. Srivastava A, Jagan Mohan Rao L, Shivanandappa T (2012) 2,4,8-Trihydroxybicyclo [3.2.1]octan-3-one scavenges free radicals and protects against xenobiotic-induced cytotoxicity. Free Radic Res 46:320–328. https://doi.org/10.3109/10715762.2012.655729

    Article  CAS  PubMed  Google Scholar 

  4. Kerr ME, Bender CM, Monti EJ (1996) An introduction to oxygen free radicals. Hear Lung 25:200–209

    Article  CAS  Google Scholar 

  5. Syntichaki P, Tavernarakis N (2002) Death by necrosis. Uncontrollable catastrophe, or is there order behind the chaos? EMBO Rep 3:604–609. https://doi.org/10.1093/embo-reports/kvf138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seis H (1991) Oxidative stress II: oxidants and antioxidants. Academic Press, London

    Google Scholar 

  7. Mitchell DB, Santone KS, Acosta D (1980) Evaluation of cytotoxicity in cultured cells by enzyme leakage. J Tissue Cult Methods 6:113–116. https://doi.org/10.1007/BF02082861

    Article  CAS  Google Scholar 

  8. Dehn PF, Allen-Mocherie S, Karek J, Thenappan A (2005) Organochlorine insecticides: impacts on human HepG2 cytochrome P4501A, 2B activities and glutathione levels. Toxicol In Vitro 19:261–273. https://doi.org/10.1016/j.tiv.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  9. Gupta PK, Gupta RC (1979) Pharmacology, toxicology and degradation of endosulfan. A review. Toxicology 13:115–130. https://doi.org/10.1016/S0300-483X(79)80016-5

    Article  CAS  PubMed  Google Scholar 

  10. Zervos IA, Nikolaidis E, Lavrentiadou SN et al (2011) Endosulfan-induced lipid peroxidation in rat brain and its effect on t-PA and PAI-1: ameliorating effect of vitamins C and E. J Toxicol Sci 36:423–433. https://doi.org/10.2131/jts.36.423

    Article  CAS  PubMed  Google Scholar 

  11. Jia Z, Misra HP (2007) Reactive oxygen species in in vitro pesticide-induced neuronal cell (SH-SY5Y) cytotoxicity: role of NFκB and caspase-3. Free Radic Biol Med 42:288–298. https://doi.org/10.1016/j.freeradbiomed.2006.10.047

    Article  CAS  PubMed  Google Scholar 

  12. Enhui Z, Na C, MengYun L, Jia Li, Dan Li, Yongsheng Y, Zhang Ying HD (2016) Isomers and their metabolites of endosulfan induced cytotoxicity and oxidative damage in SH-SY5Y cells. Environ Toxicol 31:496–504. https://doi.org/10.1002/tox

    Article  CAS  PubMed  Google Scholar 

  13. Sohn HY, Kwon CS, Kwon GS et al (2004) Induction of oxidative stress by endosulfan and protective effect of lipid-soluble antioxidants against endosulfan-induced oxidative damage. Toxicol Lett 151:357–365. https://doi.org/10.1016/j.toxlet.2004.03.004

    Article  CAS  PubMed  Google Scholar 

  14. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427. https://doi.org/10.1042/bj1910421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kohlhaas M, Liu T, Knopp A et al (2010) Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121:1606–1613. https://doi.org/10.1161/CIRCULATIONAHA.109.914911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaplan JH (2002) Biochemistry of Na, K-ATPase. Annu Rev Biochem 71:511–535. https://doi.org/10.1146/annurev.biochem.71.102201.141218

    Article  CAS  PubMed  Google Scholar 

  17. Lemasters JJ, Qian T, He L, Kim JS, Elmore SP, DA Cascio WEB (2002) Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal 4:769–781. https://doi.org/10.1089/152308602760598918

    Article  CAS  PubMed  Google Scholar 

  18. Rodrigo R, Trujillo S, Bosco C, Orellana M, Thielemann LAJ (2002) Changes in Na+, K+-adenosine triphosphate activity and ultrastructure of lung and kidney associated with oxidative stress induced by acute ethanol intoxication. Chest 121:589–596

    Article  CAS  PubMed  Google Scholar 

  19. Feissner RF, Skalska J, Gaum WE, Sheu SS (2009) Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci 14:1197–1218. https://doi.org/10.2741/3303

    Article  CAS  PubMed Central  Google Scholar 

  20. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787:1309–1316. https://doi.org/10.1016/j.bbabio.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  21. Srivastava A, Shivanandappa T (2006) Causal relationship between hexachlorocyclohexane cytotoxicity, oxidative stress and Na+, K+-ATPase in Ehrlich ascites tumor cells. Mol Cell Biochem 286:87–93. https://doi.org/10.1007/s11010-005-9096-0

    Article  CAS  PubMed  Google Scholar 

  22. Srivastava A, Shivanandappa T (2009) Stereospecificity in the cytotoxic action of hexachlorocyclohexane isomers. Chem Biol Interact 183:34–39. https://doi.org/10.1016/j.cbi.2009.09.026

    Article  CAS  Google Scholar 

  23. Estrela JM, Hernandez R, Terradez P et al (1992) Regulation of glutathione metabolism in Ehrlich ascites tumour cells. Biochem J 286:257–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frandsen A, Schousboe A (1987) Time and concentration dependency of the toxicity of excitatory amino acids on cerebral neurones in primary culture. Neurochem Int 10:583–591. https://doi.org/10.1016/0197-0186(87)90088-X

    Article  CAS  PubMed  Google Scholar 

  25. Bergmeyer HU (1974) Methods of enzymatic analysis. Academic Press, New York

    Google Scholar 

  26. Aust S (1994) Thiobarbituric acid assay reactants. In: Tyson CA, Frazier JM (eds) Methods in toxicology 1B. Academic Press, San Diego, pp 367–374

    Google Scholar 

  27. Cereser C, Boget S, Parvaz P, Revol A (2001) Thiram-induced cytotoxicity is accompanied by a rapid and drastic oxidation of reduced glutathione with consecutive lipid peroxidation and cell death. Toxicology 163:153–162. https://doi.org/10.1016/S0300-483X(01)00401-2

    Article  CAS  PubMed  Google Scholar 

  28. Pompéia C, Cury-Boaventura MF, Curi R (2003) Arachidonic acid triggers an oxidative burst in leukocytes. Braz J Med Biol Res 36:1549–1560

    Article  PubMed  Google Scholar 

  29. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  30. Bloj B, Morero RD, Farias RNTR (1973) Membrane lipid fatty acids and regulation of membrane-bound enzymes. Allosteric behaviour of erythrocyte Mg2+-ATPase, (Na+K+)-ATPase and acetylcholineasterase from rats fed different fat-supplemented diets. Biochim Biophys Acta 311:67–79

    Article  CAS  PubMed  Google Scholar 

  31. Chen PS, Toribara TY, Warner H (1956) Microdetermination of phosphorus. Anal Chem 28:1756–1758. https://doi.org/10.1021/ac60119a033

    Article  CAS  Google Scholar 

  32. Baehner RL, Nathan D (1968) Quantitative nitroblue tetrazolium test in chronic granulomatous disease. N Engl J Med 278:971–976

    Article  CAS  PubMed  Google Scholar 

  33. Gella FJ, Olivella MT, Pegueroles F, Gener J (1981) Colorimetry of diaphorase in commercial preparations and clinical chemical reagents by use of tetrazolium salts. Clin Chem 27:1686–1689

    Article  CAS  PubMed  Google Scholar 

  34. Lowry OH, Rosenburg NJ, Farr ALRR (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/0304-3894(92)87011-4

    Article  CAS  PubMed  Google Scholar 

  35. Halliwell B (1999) Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and the effects of nutrition. Mutat Res 443:37–52. https://doi.org/10.1016/S1383-5742(99)00009-5

    Article  CAS  PubMed  Google Scholar 

  36. Dorval J, Leblond VS, Hontela A (2003) Oxidative stress and loss of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) exposed in vitro to endosulfan, an organochlorine pesticide. Aquat Toxicol 63:229–241. https://doi.org/10.1016/S0166-445X(02)00182-0

    Article  CAS  PubMed  Google Scholar 

  37. Pandey S, Ahmad I, Parvez S et al (2001) Effect of endosulfan on antioxidants of freshwater fish Channa punctatus bloch: 1. Protection against lipid peroxidation in liver by copper preexposure. Arch Environ Contam Toxicol 41:345–352. https://doi.org/10.1007/s002440010258

    Article  CAS  PubMed  Google Scholar 

  38. Hincal F, Gürbay A, Giray B (1995) Induction of lipid peroxidation and alteration of glutathione redox status by endosulfan. Biol Trace Elem Res 47:321–326. https://doi.org/10.1007/BF02790133

    Article  CAS  PubMed  Google Scholar 

  39. Rauchov H, Ledvinkova J, Kalous M, Drahota Z (1995) The effect of lipid peroxidatiun on the activity of various membrane-bound ATPases in rat kidney. Int J Cell Biol 27:251–255

    Article  Google Scholar 

  40. Chen D, Song M, Mohamad O, Yu SP (2014) Inhibition of Na+/K+-ATPase induces hybrid cell death and enhanced sensitivity to chemotherapy in human glioblastoma cells. BMC Cancer 14:716. https://doi.org/10.1186/1471-2407-14-716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu SP (2003) Na+, K+-ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death. Biochem Pharmacol 66:1601–1609. https://doi.org/10.1016/S0006-2952(03)00531-8

    Article  CAS  PubMed  Google Scholar 

  42. Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:465–469. https://doi.org/10.1016/0166-2236(88)90200-7

    Article  CAS  PubMed  Google Scholar 

  43. Lambeth JD (1988) Activation of the respiratory burst oxidase in neutrophils: on the role of membrane-derived second messengers, Ca++, and protein kinase C. J Bioenerg Biomembr 20:709–733. https://doi.org/10.1007/BF00762549

    Article  CAS  PubMed  Google Scholar 

  44. Tian J, Liu J, Garlid KD et al (2003) Involvement of mitogen-activated protein kinases and reactive oxygen species in the inotropic action of ouabain on cardiac myocytes. A potential role for mitochondrial KATP channels. Mol Cell Biochem 242:181–187. https://doi.org/10.1023/A:1021114501561

    Article  CAS  PubMed  Google Scholar 

  45. Xie Z, Kometiani P, Liu J et al (1999) Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J Biol Chem 274:19323–19328. https://doi.org/10.1074/JBC.274.27.19323

    Article  CAS  PubMed  Google Scholar 

  46. Liu J, Tian J, Haas M et al (2000) Ouabain interaction with cardiac Na+/K+-ATPase initiates signal cascades independent of changes in intracellular Na+ and Ca2+ concentrations. J Biol Chem 275:27838–27844. https://doi.org/10.1074/jbc.M002950200

    Article  CAS  PubMed  Google Scholar 

  47. Srivastava SC, Kumar R, Prasad AK, Srivastava SP (1995) Effect of hexachlorocyclohexane (HCH) on testicular plasma membrane of rat. Toxicol Lett 75:153–157. https://doi.org/10.1016/0378-4274(94)03173-5

    Article  CAS  PubMed  Google Scholar 

  48. Naqvi SM, Vaishnavi C (1993) Bioaccumulative potential and toxicity of endosulfan insecticide to non-target animals. Comp Biochem Physiol C 105:347–361. https://doi.org/10.1016/0742-8413(93)90071-R

    Article  CAS  PubMed  Google Scholar 

  49. Aggarwal M, Naraharisetti SB, Sarkar SN et al (2009) Effects of subchronic coexposure to arsenic and endosulfan on the erythrocytes of broiler chickens: a biochemical study. Arch Environ Contam Toxicol 56:139–148. https://doi.org/10.1007/s00244-008-9171-0

    Article  CAS  PubMed  Google Scholar 

  50. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950. https://doi.org/10.1152/physrev.00026.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Davies KJA, Doroshow JH, Hochstein P (1983) Mitochondrial NADH dehydrogenase-catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5-iminodaunorubicin. FEBS Lett 153:227–230. https://doi.org/10.1016/0014-5793(83)80153-7

    Article  CAS  PubMed  Google Scholar 

  52. Doroshow JH (1983) Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase1. Cancer Res 43:4543–4551

    CAS  PubMed  Google Scholar 

  53. Sherer TB, Richardson JR, Testa CM et al (2007) Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem 100:1469–1479. https://doi.org/10.1111/j.1471-4159.2006.04333.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pandya JD, Nukala VN, Sullivan PG (2013) Concentration dependent effect of calcium on brain mitochondrial bioenergetics and oxidative stress parameters. Front Neuroenergetics 5:1–12. https://doi.org/10.3389/fnene.2013.00010

    Article  CAS  Google Scholar 

  55. Malyala S, Zhang Y, Strubbe JO, Bazil JN (2019) Calcium phosphate precipitation inhibits mitochondrial energy metabolism. PLoS Comput Biol 15:1–19. https://doi.org/10.1371/journal.pcbi.1006719

    Article  Google Scholar 

  56. Chen YR, Chen CL, Zhang L et al (2005) Superoxide generation from mitochondrial NADH dehydrogenase induces self-inactivation with specific protein radical formation. J Biol Chem 280:37339–37348. https://doi.org/10.1074/jbc.M503936200

    Article  CAS  PubMed  Google Scholar 

  57. Mårtensson J, Jain A, Stole E et al (1991) Inhibition of glutathione synthesis in the newborn rat: a model for endogenously produced oxidative stress. Proc Natl Acad Sci USA 88:9360–9364. https://doi.org/10.1073/pnas.88.20.9360

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bayoumi AE, García-Fernández AJ, Ordóñez C et al (2001) Cyclodiene organochlorine insecticide-induced alterations in the sulfur-redox cycle in CHO-K1 cells. Comp Biochem Physiol C 130:315–323. https://doi.org/10.1016/S1532-0456(01)00257-5

    Article  CAS  Google Scholar 

  59. Boots AW, Haenen GRMM, Bast A (2008) Health effects of quercetin: From antioxidant to nutraceutical. Eur J Pharmacol 585:325–337. https://doi.org/10.1016/j.ejphar.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  60. Karuppagounder SS, Madathil SK, Pandey M et al (2013) Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience 236:136–148. https://doi.org/10.1016/j.neuroscience.2013.01.032

    Article  CAS  PubMed  Google Scholar 

  61. Spector M, Neal SO, Racker E (1980) Reconstitution of the Na+, K+ pump of ehrlich ascites tumor and enhancement of efficiency by quercetin. J Biol Chem 255(12):5504–5507. https://doi.org/10.1080/00021369.1977.10862635

    Article  CAS  PubMed  Google Scholar 

  62. Punithavathi VR, Prince PSM (2010) Pretreatment with a combination of quercetin and a-tocopherol ameliorates adenosine triphosphatases and lysosomal enzymes in myocardial infarcted rats. Life Sci 86:178–184. https://doi.org/10.1016/j.lfs.2009.11.021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was carried out as a part of the M.Sc. dissertation of the first two authors at Central Food Technological Research Institute, Mysore, India, during the senior author’s tenure. The authors thank Dr. Anup Srivastava, Dr. Y. Rajashekar and K.R. Ritesh for their technical and timely help. The authors also thank the Director of the institute for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Shivanandappa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murali, M., Carvalho, M.S. & Shivanandappa, T. Oxidative stress-mediated cytotoxicity of Endosulfan is causally linked to the inhibition of NADH dehydrogenase and Na+, K+-ATPase in Ehrlich ascites tumor cells. Mol Cell Biochem 468, 59–68 (2020). https://doi.org/10.1007/s11010-020-03711-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03711-z

Keywords

Navigation