Skip to main content

Advertisement

Log in

Inhibition of JNJ-26481585-mediated autophagy induces apoptosis via ROS activation and mitochondrial membrane potential disruption in neuroblastoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Neuroblastoma (NB) is the common pediatric tumor of the sympathetic nervous system characterized by poor prognosis. Owing to the challenges such as high tumor heterogeneity, multidrug resistance, minimal residual disease, etc., there is an immediate need for exploring new therapeutic strategies and effective treatments for NB. Herein, in the current study, we explored the unexplored response of NB cells to the second-generation histone deacetylase inhibitor (HDACi) JNJ-26481585(JNJ) and the lysosomotropic agent, Chloroquine (CQ) alone and upon JNJ/CQ treatment as a plausible therapeutic. We identify that while JNJ alone induced autophagy in NB cells, JNJ/CQ treatment decreased the viability and proliferation of NB cells in vitro by switching from autophagy to apoptosis. Further we found that autophagy inhibition by CQ pre-treatment led to the generation of ROS and a decrease in the mitochondrial membrane potential (MMP) that subsequently caused caspase-3-mediated apoptotic cell death in NB cells. Corroborating the above observations, we found that the ROS scavenger N-acetylcysteine (NAC) countered caspase-3 activity and the cells were rescued from apoptosis. Finally, these observations establish that JNJ/CQ treatment resulted in cell death in NB cells by triggering the formation of ROS and disruption of MMP, suggesting that modulation of JNJ-induced autophagy by CQ represents a promising new therapeutic approach in NB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Matthay KK, Maris JM, Schleiermacher G et al (2016) Neuroblastoma. Nat Rev Dis Prim 2:16078. https://doi.org/10.1038/nrdp.2016.78

    Article  PubMed  Google Scholar 

  2. Maris JM (2010) Recent advances in neuroblastoma. N Engl J Med 362:2202–2211. https://doi.org/10.1056/NEJMra0804577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Esposito MR, Aveic S, Seydel A et al (2017) Neuroblastoma treatment in the post-genomic era. J Biomed Sci 24:14. https://doi.org/10.1186/s12929-017-0319-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pinto NR, Applebaum MA, Volchenboum SL, Matthay KK, London WB, Ambros PF et al (2015) Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol 33(27):3008–3017. https://doi.org/10.1200/JCO.2014.59.4648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ladenstein R, Pötschger U, Pearson AD, Brock P, Luksch R, Castel V et al (2017) Busulfan and melphalan versus carboplatin, etoposide, and melphalan as high-dose chemotherapy for high-risk neuroblastoma (HR-NBL1/SIOPEN): an international, randomised, multi-arm, open-label, phase 3 trial. Lancet Oncol 18(4):500–514. https://doi.org/10.1016/S1470-2045(17)30070-0

    Article  CAS  PubMed  Google Scholar 

  6. Brodeur GM, Bagatell R (2014) Mechanisms of neuroblastoma regression. Nat Rev Clin Oncol 12:704–713. https://doi.org/10.1038/nrclinonc.2014.168

    Article  CAS  Google Scholar 

  7. West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124(1):30–39. https://doi.org/10.1172/JCI69738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee J-H, Choy M, Ngo L, Foster S, Marks PA (2010) Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc Natl Acad Sci USA 107:14639–14644. https://doi.org/10.1073/pnas.1008522107

    Article  PubMed  PubMed Central  Google Scholar 

  9. Venugopal B, Baird R, Kristeleit RS, Plummer R, Cowan R, Stewart A et al (2013) A phase I study of quisinostat (JNJ-26481585), an oral hydroxamate histone deacetylase inhibitor with evidence of target modulation and antitumor activity, in patients with advanced solid tumors. Clin Cancer Res 19(15):4262–4272. https://doi.org/10.1158/1078-0432.CCR-13-0312

    Article  CAS  PubMed  Google Scholar 

  10. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741. https://doi.org/10.1016/j.cell.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  11. Bialik S, Dasari SK, Kimchi A (2018) Autophagy-dependent cell death - where, how and why a cell eats itself to death. J Cell Sci 131(18):jcs215152. https://doi.org/10.1242/jcs.215152

    Article  CAS  PubMed  Google Scholar 

  12. Udristioiu A, Nica-Badea D (2019) Autophagy dysfunctions associated with cancer cells and their therapeutic implications. Biomed Pharmacother 115:108892. https://doi.org/10.1016/j.biopha.2019.108892

    Article  CAS  PubMed  Google Scholar 

  13. Jiang J, Li H, Qaed E, Zhang J, Song Y, Wu R et al (2018) Salinomycin, as an autophagy modulator- a new avenue to anticancer: a review. J Exp Clin Cancer Res 37(1):26. https://doi.org/10.1186/s13046-018-0680-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaminskyy VO, Piskunova T, Zborovskaya IB, Tchevkina EM, Zhivotovsky B (2012) Suppression of basal autophagy reduces lung cancer cell proliferation and enhances caspase-dependent and -independent apoptosis by stimulating ROS formation. Autophagy 8:1032–1044. https://doi.org/10.4161/auto.20123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6:304–312

    Article  CAS  PubMed  Google Scholar 

  16. Singh SS, Vats S, Chia AY, Tan TZ, Deng S, Ong MS et al (2017) Dual role of autophagy in hallmarks of cancer. Oncogene 37(9):1142–1158. https://doi.org/10.1038/s41388-017-0046-6

    Article  CAS  PubMed  Google Scholar 

  17. Turcotte S, Giaccia AJ (2010) Targeting cancer cells through autophagy for anticancer therapy. Curr Opin Cell Biol 22(2):246–251. https://doi.org/10.1016/j.ceb.2009.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang F, Tang J, Li P, Si S, Yu H, Yang X, Tao J, Lv Q, Gu M, Yang H, Wang Z (2018) Chloroquine enhances the radiosensitivity of bladder cancer cells by inhibiting autophagy and activating apoptosis. Cell Physiol Biochem 45:54–66. https://doi.org/10.1159/000486222

    Article  CAS  PubMed  Google Scholar 

  19. Avniel-Polak S, Leibowitz G, Riahi Y, Glaser B, Gross DJ, Grozinsky-Glasberg S (2016) Abrogation of autophagy by chloroquine alone or in combination with mTOR inhibitors induces apoptosis in neuroendocrine tumor cells. Neuroendocrinology 103:724–737. https://doi.org/10.1159/000442589

    Article  CAS  PubMed  Google Scholar 

  20. Ye H, Chen M, Cao F, Huang H, Zhan R, Zheng X (2016) Chloroquine, an autophagy inhibitor, potentiates the radiosensitivity of glioma initiating cells by inhibiting autophagy and activating apoptosis. Bmc Neurol 16(1):178. https://doi.org/10.1186/s12883-016-0700-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Makowska A, Eble M, Prescher K, Hoss M, Kontny U (2016) Chloroquine sensitizes nasopharyngeal carcinoma cells but not nasoepithelial cells to irradiation by blocking autophagy. PLoS ONE 11:e166766. https://doi.org/10.1371/journal.pone.0166766

    Article  CAS  Google Scholar 

  22. Fischer C, Petriccione M, Donzelli M et al (2016) Improving care in pediatric neuro-oncology patients: an overview of the unique needs of children with brain tumors. J Child Neurol 31(4):488–505. https://doi.org/10.1177/0883073815597756

    Article  PubMed  Google Scholar 

  23. Gammoh N, Lam D, Puente C et al (2012) Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death. Proc Natl Acad Sci USA 109(17):6561–6565. https://doi.org/10.1073/pnas.1204429109

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yu L, Chen Y, Tooze SA (2017) Autophagy pathway: cellular and molecular mechanisms. Autophagy 14(2):207–215. https://doi.org/10.1080/15548627.2017.1378838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karna P, Zughaier S, Pannu V, Simmons R, Narayan S, Aneja R (2010) Induction of reactive oxygen species-mediated autophagy by a novel microtubule-modulating agent. J Biol Chem 285:18737–18748. https://doi.org/10.1074/jbc.M109.091694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. D'Anneo A, Carlisi D, Lauricella M, Puleio R, Martinez R, Di Bella S et al (2013) Parthenolide generates reactive oxygen species and autophagy in MDA-MB231 cells. A soluble parthenolide analogue inhibits tumour growth and metastasis in a xenograft model of breast cancer. Cell Death Dis 4:e891. https://doi.org/10.1038/cddis.2013.415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies FM, Rubinsztein DC (2016) Mammalian autophagy: how does it work? Annu Rev Biochem 85:685–713. https://doi.org/10.1146/annurev-biochem-060815-014556

    Article  CAS  PubMed  Google Scholar 

  28. Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G (2017) Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov 16(7):487–511. https://doi.org/10.1038/nrd.2017.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klionsky DJ, Abdelmohsen K, Abe A et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 12(1):1–222. https://doi.org/10.1080/15548627.2015.1100356

    Article  PubMed  PubMed Central  Google Scholar 

  30. Du Toit A, Hofmeyr JS, Gniadek TJ, Loos B (2018) Measuring autophagosome flux. Autophagy 14(6):1060–1071. https://doi.org/10.1080/15548627.2018.1469590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mauvezin C, Neufeld TP (2015) Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy 11(8):1437–1438. https://doi.org/10.1080/15548627.2015.1066957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016:3164734. https://doi.org/10.1155/2016/3164734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M et al (2012) Mitochondria-ROS crosstalk in the control of cell death and aging. J Signal Transduct 2012:329635. https://doi.org/10.1155/2012/329635

    Article  CAS  PubMed  Google Scholar 

  34. Zhang X, ZengX LiangX et al (2014) The chemotherapeutic potential of PEG-b-PLGA copolymer micelles that combine chloroquine as autophagy inhibitor and docetaxel as an anti-cancer drug. Biomaterials 35(33):9144–9154. https://doi.org/10.1016/j.biomaterials.2014.07.028

    Article  CAS  PubMed  Google Scholar 

  35. Aldini G, Altomare A, Baron G (2018) N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res 52(7):751–762. https://doi.org/10.1080/10715762.2018.1468564

    Article  CAS  PubMed  Google Scholar 

  36. Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema K et al (2018) Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 1:21. https://doi.org/10.1080/15548627.2018.1474314

    Article  CAS  Google Scholar 

  37. HanW SJ, Feng L et al (2011) Autophagy inhibition enhances daunorubicin-induced apoptosis in K562 cells. PLoS ONE 6(12):e28491. https://doi.org/10.1371/journal.pone.0028491

    Article  CAS  Google Scholar 

Download references

Acknowledgements

VKK thanks University Grants Commission (UGC) (Award No.22/06/2014 (i) EU-r) & DK thanks Council of Scientific & Industrial Research (CSIR) for SRF (Award No. 31/14(2691/2017-EMR-I). CSIR- IICT Manuscript communication No. is IICT/Pubs./2019/072.

Author information

Authors and Affiliations

Authors

Contributions

VKK planned, designed the experiments, collected, and analyzed the data. DK validated the results and repeated the experiments. ADT conceived and supervised the research work, interpreted the data, and drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anjana Devi Tangutur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 949 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kommalapati, V.K., Kumar, D. & Tangutur, A.D. Inhibition of JNJ-26481585-mediated autophagy induces apoptosis via ROS activation and mitochondrial membrane potential disruption in neuroblastoma cells. Mol Cell Biochem 468, 21–34 (2020). https://doi.org/10.1007/s11010-020-03708-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03708-8

Keywords

Navigation