Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Resibufogenin suppresses tumor growth and Warburg effect through regulating miR-143-3p/HK2 axis in breast cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

This article was retracted on 13 September 2022

This article has been updated

Abstract

Increasing evidence confirmed that the Warburg effect plays an important role involved in the progression of malignant tumors. Resibufogenin (RES) has been proved to have a therapeutic effect in multiple malignant tumors. However, the mechanism of whether RES exerted an antitumor effect on breast cancer through regulating the Warburg effect is largely unknown. The effect of RES on glycolysis was determined by glucose consumption, lactate production, ATP generation, extracellular acidification rate and oxygen consumption rate in breast cancer cells. The total RNA and protein levels were respectively measured by RT-qPCR and western blot. Cell proliferation and apoptosis were examined using the CCK-8 assay, colony formation assay, and flow cytometry, respectively. The interaction between miR-143-3p and HK2 was verified by dual-luciferase reporter gene assay. We also evaluated the influence of RES on the tumor growth and Warburg effect in vivo. RES treatment significantly decreased glycolysis, cell proliferation and induced apoptosis of both MDA-MB-453 and MCF-7 cells. Simultaneously, the expression of HK2 was decreased in breast cancer cells treated with RES, which was positively associated with tumor size and glycolysis. Moreover, HK2 was a direct target gene of miR-143-3p. Mechanistically, upregulation of miR-143-3p by RES treatment inhibited tumor growth by downregulating HK2-mediated Warburg effect in breast cancer. Our findings suggested that RES exerted anti-tumorigenesis and anti-glycolysis activities in breast cancer through upregulating the inhibitory effect of miR-143-3p on HK2 expression, which provided a new potential strategy for breast cancer clinical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Woolston C (2015) Breast cancer. Nature 527:S101

    Article  CAS  PubMed  Google Scholar 

  2. Peart O (2015) Breast intervention and breast cancer treatment options. Radiol Technol 86:535–558

    Google Scholar 

  3. Harbeck N, Gnant M (2017) Breast cancer. Lancet (Lond, Engl) 389:1134–1150

    Article  Google Scholar 

  4. Davoodvandi A, Sahebnasagh R, Mardanshah O, Asemi Z, Nejati M, Shahrzad MK, Mirzaei HR, Mirzaei H (2019) Medicinal plants as natural polarizers of macrophages: phytochemicals and pharmacological effects. Curr Pharm Des 25:3225–3238

    Article  CAS  PubMed  Google Scholar 

  5. Yu E, Xu Y, Shi Y, Yu Q, Liu J, Xu L (2019) Discovery of novel natural compound inhibitors targeting estrogen receptor alpha by an integrated virtual screening strategy. J Mol Model 25:278

    Article  PubMed  CAS  Google Scholar 

  6. Xie RF, Li ZC, Gao B, Shi ZN, Zhou X (2012) Bufothionine, a possible effective component in cinobufocini injection for hepatocellular carcinoma. J Ethnopharmacol 141:692–700

    Article  CAS  PubMed  Google Scholar 

  7. Li Q, Jiang C, Wang Y, Wei M, Zheng H, Xu Y, Xu X, Jia F, Liu K, Sun G, Zang J, Mo P (2019) Resibufogenin suppresses tumor growth and inhibits glycolysis in ovarian cancer by modulating PIM1. Naunyn-Schmiedeberg's Arch Pharmacol 392:1477–1489

    Article  CAS  Google Scholar 

  8. Qi F, Li A, Inagaki Y, Kokudo N, Tamura S, Nakata M, Tang W (2011) Antitumor activity of extracts and compounds from the skin of the toad Bufo bufo gargarizans Cantor. Int Immunopharmacol 11:342–349

    Article  CAS  PubMed  Google Scholar 

  9. Liu L, Liu Y, Liu X, Zhang N, Mao G, Zeng Q, Yin M, Song D, Deng H (2018) Resibufogenin suppresses transforming growth factor-beta-activated kinase 1-mediated nuclear factor-kappaB activity through protein kinase C-dependent inhibition of glycogen synthase kinase 3. Cancer Sci 109:3611–3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matsuura K, Canfield K, Feng W, Kurokawa M (2016) Metabolic regulation of apoptosis in cancer. Int Rev Cell Mol Biol 327:43–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li C, Zhang G, Zhao L, Ma Z, Chen H (2016) Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J Surg Oncol 14:15

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang Z, Wang N, Chen J, Shen J (2012) Emerging glycolysis targeting and drug discovery from chinese medicine in cancer therapy. eCAM 2012:873175

    PubMed  PubMed Central  Google Scholar 

  13. Jin J, Qiu S, Wang P, Liang X, Huang F, Wu H, Zhang B, Zhang W, Tian X, Xu R, Shi H, Wu X (2019) Cardamonin inhibits breast cancer growth by repressing HIF-1alpha-dependent metabolic reprogramming. J Exp Clin Cancer Res 38:377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Li Y, Xu Q, Yang W, Wu T, Lu X (2019) Oleanolic acid reduces aerobic glycolysis-associated proliferation by inhibiting yes-associated protein in gastric cancer cells. Gene 712:143956

    Article  CAS  PubMed  Google Scholar 

  15. Pan Y, Wang W, Huang S, Ni W, Wei Z, Cao Y, Yu S, Jia Q, Wu Y, Chai C, Zheng Q, Zhang L, Wang A, Sun Z, Huang S, Wang S, Chen W, Lu Y (2019) Beta-elemene inhibits breast cancer metastasis through blocking pyruvate kinase M2 dimerization and nuclear translocation. J Cell Mol Med 23:6846–6858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Knobloch TJ, Ryan NM, Bruschweiler-Li L, Wang C, Bernier MC, Somogyi A, Yan PS, Cooperstone JL, Mo X, Bruschweiler RP, Weghorst CM, Oghumu S (2019) Metabolic regulation of glycolysis and AMP activated protein kinase pathways during black raspberry-mediated oral cancer chemoprevention. Metabolites. https://doi.org/10.3390/metabo9070140

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bonatelli M, Silva ECA, Carcano FM, Zaia MG, Lopes LF, Scapulatempo-Neto C, Pinheiro C (2019) The Warburg effect is associated with tumor aggressiveness in testicular germ cell tumors. Frontiers in endocrinology 10:417

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhao X, Zhang T, Jiang K, Gao H (2019) Alpinumisoflavone exhibits anti-cancer activities in glioblastoma multiforme by suppressing glycolysis. Anat Record. https://doi.org/10.1002/ar.24242

    Article  Google Scholar 

  19. Tian Y, Chen YY, Han AL (2019) MiR-1271 inhibits cell proliferation and metastasis by targeting LDHA in endometrial cancer. Eur Rev Med Pharmacol Sci 23:5648–5656

    CAS  PubMed  Google Scholar 

  20. Nagarajan A, Dogra SK, Sun L, Gandotra N, Ho T, Cai G, Cline G, Kumar P, Cowles RA, Wajapeyee N (2017) Paraoxonase 2 facilitates pancreatic cancer growth and metastasis by stimulating GLUT1-mediated glucose transport. Mol Cell 67:685–701.e686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu K, Gao H, Wang Q, Wang L, Zhang B, Han Z, Chen X, Han M, Gao M (2018) Hispidulin suppresses cell growth and metastasis by targeting PIM1 through JAK2/STAT3 signaling in colorectal cancer. Cancer Sci 109:1369–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song W, Wang Z, Gu X, Wang A, Chen X, Miao H, Chu J, Tian Y (2019) TRIM11 promotes proliferation and glycolysis of breast cancer cells via targeting AKT/GLUT1 pathway. OncoTargets Therapy 12:4975–4984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu Z, Wu J, Zhao Q, Fu S, Jin J (2019) Emerging roles of aerobic glycolysis in breast cancer. Clin Trans Oncol. https://doi.org/10.1007/s12094-019-02187-8

    Article  Google Scholar 

  24. Marchetti P, Trinh A, Khamari R, Kluza J (1862) Melanoma metabolism contributes to the cellular responses to MAPK/ERK pathway inhibitors. Biochim Biophys Acta 2018:999–1005

    Google Scholar 

  25. Shahruzaman SH, Fakurazi S, Maniam S (2018) Targeting energy metabolism to eliminate cancer cells. Cancer Manag Res 10:2325–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu J, Hu L, Wu F, Zou L, He T (2017) Poor prognosis of hexokinase 2 overexpression in solid tumors of digestive system: a meta-analysis. Oncotarget 8:32332–32344

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fan K, Fan Z, Cheng H, Huang Q, Yang C, Jin K, Luo G, Yu X, Liu C (2019) Hexokinase 2 dimerization and interaction with voltage-dependent anion channel promoted resistance to cell apoptosis induced by gemcitabine in pancreatic cancer. Cancer Med 8:5903–5915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tao F, Zhang Y, Zhang Z (2019) The role of herbal bioactive components in mitochondria function and cancer therapy. eCAM 2019:3868354

    PubMed  PubMed Central  Google Scholar 

  29. Zhan X, Wu H, Wu H, Wang R, Luo C, Gao B, Chen Z, Li Q (2019) Natural active constituents of Bufo bufo gargarizans cantor: a review on pharmacological activity, toxicity and quality control. J Ethnopharmacol 246:112178

    Article  PubMed  CAS  Google Scholar 

  30. Schmeda-Hirschmann G, Quispe C, Arana GV, Theoduloz C, Urra FA, Cardenas C (2016) Antiproliferative activity and chemical composition of the venom from the Amazonian toad Rhinella marina (Anura: Bufonidae). Toxicon 121:119–129

    Article  CAS  PubMed  Google Scholar 

  31. Ichikawa M, Sowa Y, Iizumi Y, Aono Y, Sakai T (2015) Resibufogenin induces G1-phase arrest through the proteasomal degradation of cyclin D1 in human malignant tumor cells. PLoS ONE 10:e0129851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Han Q, Ma Y, Wang H, Dai Y, Chen C, Liu Y, Jing L, Sun X (2018) Resibufogenin suppresses colorectal cancer growth and metastasis through RIP3-mediated necroptosis. J Trans Med 16:201

    Article  CAS  Google Scholar 

  33. Hua Q, Mi B, Huang G (2018) The emerging co-regulatory role of long noncoding RNAs in epithelial-mesenchymal transition and the Warburg effect in aggressive tumors. Critic Rev Oncol/Hematol 126:112–120

    Article  Google Scholar 

  34. Thorne JL, Campbell MJ (2015) Nuclear receptors and the Warburg effect in cancer. Int J Cancer 137:1519–1527

    Article  CAS  PubMed  Google Scholar 

  35. Brodsky AN, Odenwelder DC, Harcum SW (2019) High extracellular lactate causes reductive carboxylation in breast tissue cell lines grown under normoxic conditions. PLoS ONE 14:e0213419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yao L, Wang L, Cao ZG, Hu X, Shao ZM (2019) High expression of metabolic enzyme PFKFB4 is associated with poor prognosis of operable breast cancer. Cancer Cell Int 19:165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gong W, Yang L, Wang Y, Xian J, Qiu F, Liu L, Lin M, Feng Y, Zhou Y, Lu J (2019) Analysis of survival-related lncRNA landscape identifies a role for LINC01537 in energy metabolism and lung cancer progression. Int J Mol Sci. https://doi.org/10.3390/ijms20153713

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jiang D, Zhang Y, Yang L, Lu W, Mai L, Guo H, Liu X (2019) Long noncoding RNA HCG22 suppresses proliferation and metastasis of bladder cancer cells by regulation of PTBP1. J Cell Physiol 235:1711–1722

    Article  PubMed  CAS  Google Scholar 

  39. Yang J, Ren B, Yang G, Wang H, Chen G, You L, Zhang T, Zhao Y (2019) The enhancement of glycolysis regulates pancreatic cancer metastasis. Cell Mol Life Sci 77:305–321

    Article  PubMed  CAS  Google Scholar 

  40. Luo P, Zhang C, Liao F, Chen L, Liu Z, Long L, Jiang Z, Wang Y, Wang Z, Liu Z, Miao H, Shi C (2019) Transcriptional positive cofactor 4 promotes breast cancer proliferation and metastasis through c-Myc mediated Warburg effect. Cell Commun Signal 17:36

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ye J, Zou M, Li P, Liu H (2018) MicroRNA regulation of energy metabolism to induce chemoresistance in cancers. Technol Cancer Res Treat 17:1533033818805997

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shankaraiah RC, Veronese A, Sabbioni S, Negrini M (2018) Non-coding RNAs in the reprogramming of glucose metabolism in cancer. Cancer Lett 419:167–174

    Article  CAS  PubMed  Google Scholar 

  43. Guda MR, Asuthkar S, Labak CM, Tsung AJ, Alexandrov I, Mackenzie MJ, Prasad DV, Velpula KK (2018) Targeting PDK4 inhibits breast cancer metabolism. Am J Cancer Res 8:1725–1738

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Eastlack SC, Dong S, Ivan C, Alahari SK (2018) Suppression of PDHX by microRNA-27b deregulates cell metabolism and promotes growth in breast cancer. Mol Cancer 17:100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Li L, Kang L, Zhao W, Feng Y, Liu W, Wang T, Mai H, Huang J, Chen S, Liang Y, Han J, Xu X, Ye Q (2017) miR-30a-5p suppresses breast tumor growth and metastasis through inhibition of LDHA-mediated Warburg effect. Cancer Lett 400:89–98

    Article  CAS  PubMed  Google Scholar 

  46. Zheng X, Zhou Y, Chen W, Chen L, Lu J, He F, Li X, Zhao L (2018) Ginsenoside 20(S)-Rg3 Prevents PKM2-Targeting miR-324-5p from H19 sponging to antagonize the Warburg effect in ovarian cancer cells. Cell Physiol Biochem 51:1340–1353

    Article  CAS  PubMed  Google Scholar 

  47. Zhou Y, Zheng X, Lu J, Chen W, Li X, Zhao L (2018) Ginsenoside 20(S)-Rg3 inhibits the Warburg effect via modulating DNMT3A/ MiR-532-3p/HK2 pathway in ovarian cancer cells. Cell Physiol Biochem 45:2548–2559

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s11010-022-04560-8

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Liang, F., Zhao, F. et al. RETRACTED ARTICLE: Resibufogenin suppresses tumor growth and Warburg effect through regulating miR-143-3p/HK2 axis in breast cancer. Mol Cell Biochem 466, 103–115 (2020). https://doi.org/10.1007/s11010-020-03692-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03692-z

Keywords

Navigation