Skip to main content
Log in

Discovery of novel natural compound inhibitors targeting estrogen receptor α by an integrated virtual screening strategy

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Estrogen receptor (ER) is a nuclear hormone receptor and plays an important role in mediating the cellular effects of estrogen. ER can be classified into two receptors: estrogen receptor alpha (ERα) and beta (ERβ), and the former is expressed in 50~80% of breast tumors and has been extensively investigated in breast cancer for decades. Excessive exposure to estrogen can obviously stimulate the growth of breast cancers primarily mediated by ERα, and thus anti-estrogen therapies by small molecules are of concern to clinicians and pharmaceutical industry in the treatment of ERα-positive breast cancers. Although a series of estrogen receptor modulators have been developed, these drugs can lead to resistance and side effects. Therefore, the development of small molecule inhibitors with high target specificity has been intensified. In this pursuit, an integrated computer-aided virtual screening technique, including molecular docking and pharmacophore model screening, was used to screen traditional Chinese medicine (TCM) databases. The compounds with high docking scores and fit values were subjected to ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction, and ten hits were identified as potential inhibitors targeting ERα. Molecular docking was used to investigate the binding modes between ERα and three most potent hits, and molecular dynamic simulations were chosen to explore the stability of these complexes. The rank of the predicted binding free energies evaluated by MM/GBSA is consistent with the docking score. These novel scaffolds discovered in the present study can be used as critical starting point in the drug discovery process for treating ERα-positive breast cancer.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wardell SE, Norris JD, McDonnell DP (2019). eLife 8:e44181

    Article  Google Scholar 

  2. Busonero C, Leone S, Klemm C, Acconcia F (2018). Mol Cell Endocrinol 460:229–237

    Article  CAS  Google Scholar 

  3. Jordan VC (2018) Arrive. Clin Cancer Res 24:3480–3482

    Article  CAS  Google Scholar 

  4. Ashtekar SS, Bhatia NM, Bhatia MS (2018). Steroids 131:14–22

    Article  CAS  Google Scholar 

  5. Rondón LM, Villegas V, Rangel N, Sánchez M, Zaphiropoulos P (2016). Int J Mol Sci 17:1357

    Article  Google Scholar 

  6. Thomas C, Gustafsson J (2011). Nat Rev Cancer 11:597–608

    Article  CAS  Google Scholar 

  7. Maximov PY, Abderrahman B, Fanning SW, Sengupta S, Fan P, Curpan RF, Rincon DM, Greenland JA, Rajan SS, Greene GL (2018). Mol Pharmacol 94:812–822

    Article  CAS  Google Scholar 

  8. Tria GS, Abrams T, Baird J, Burks HE, Firestone B, Gaither LA, Hamann LG, Kim S (2018). J Med Chem 61:2837–2864

    Article  CAS  Google Scholar 

  9. Xie MS, Zhao H, Liu Q, Zhu YJ, Yin F, Liang YJ, Jiang YH, Wang DY, Hu K, Qin X (2017). J Med Chem 60:8731–8740

    Article  CAS  Google Scholar 

  10. Fanning SW, Hodges L, Myles DC, Sun R, Fowler CE, Plant IN, Green BD, Harmon CL, Greene GL, Kushner PJ (2018). Nat Commun 9:2368

    Article  CAS  Google Scholar 

  11. Rohatgi N, Blau R, Lower EE (2002). J Womens Health Gend Based Med 11:291–301

    Article  Google Scholar 

  12. Vahrenkamp JM, Yang CH, Rodriguez AC, Almomen A, Berrett KC, Trujillo AN, Guillen KP, Welm BE, Jarboe EA, Janat MM (2018). Cell Rep 22:2995–3005

    Article  CAS  Google Scholar 

  13. Liu GF, Sun PM, Dong BH, Sehouli J (2018). Cancer Manag Res 10:6887–6895

    Article  Google Scholar 

  14. Wimberly H, Han G, Pinnaduwage D, Murphy LC, Yang XR, Andrulis IL, Sherman M, Figueroa J, Rimm DL (2014). Breast Cancer Res Treat 146:657–667

    Article  CAS  Google Scholar 

  15. Rugo HS, JPi D, Im S, Ott PA, Piha-Paul SA, Bedard PL, Sachdev J, Le Tourneau C, van Brummelen EMJ, Varga A (2018). Clin Cancer Res 24:2804–2811

    Article  CAS  Google Scholar 

  16. Johmura Y, Maeda I, Suzuki N, Wu WW, Goda A, Morita M, Yamaguchi K, Yamamoto M, Nagasawa S, Kojima Y (2018). J Clin Invest 128:5603–5619

    Article  Google Scholar 

  17. Kim S, Wu JY, Birzin ET, Frisch K, Chan W, Pai L, Yang YT, Mosley RT, Fitzgerald PM, Sharma N (2004). J Med Chem 47:2171–2175

    Article  CAS  Google Scholar 

  18. Blizzard TA, Dininno F, Morgan JD, Chen HY, Wu JY, Kim S, Chan W, Birzin ET, Yang YT, Pai LY (2005). Bioorg Med Chem Lett 15:107–113

    Article  CAS  Google Scholar 

  19. Dykstra KD, Guo LQ, Birzin ET, Chan W, Yang YT, Hayes EC, Dasilva CA, Pai LY, Mosley RT, Kraker B (2007). Bioorg Med Chem Lett 17:2322–2328

    Article  CAS  Google Scholar 

  20. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998). Cell 95:927–937

    Article  CAS  Google Scholar 

  21. De SC, Bradbury RH, Rabow AA, Norman RA, de Almeida C, Andrews DM, Ballard P, Buttar D, Callis RJ, Currie GS (2015). J Med Chem 58:8128–8140

    Article  Google Scholar 

  22. Scott JS, Bailey A, Davies RDM, Degorce SL, MacFaul PA, Gingell HT, Norman RA, Pink JH, Rabow AA (2015). ACS Med Chem Lett 7:94–99

    Article  Google Scholar 

  23. Li BQ, Ma CF, Zhao XY, Hu ZG, Du TF, Xu XM, Wang ZH, Lin JP (2018). Comput Struct Biotec 16:600–610

    Article  CAS  Google Scholar 

  24. Schrödinger (2009). version 9.0; Schrödinger, LLC: New York

  25. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001). J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  26. Huang XF, Xu P, Cao YJ, Liu L, Song GQ, Xu L (2018). RSC Adv 8:30481–30490

    Article  CAS  Google Scholar 

  27. Chen CY (2011). PLoS One 6:e15939

    Article  CAS  Google Scholar 

  28. Xu L, Zhang Y, Zheng LT, Qiao CH, Li YY, Li D, Zhen XC, Hou TJ (2014). J Med Chem 57:3737–3745

    Article  CAS  Google Scholar 

  29. Walters WP, Stahl MT, Murcko MA (1998). Drug Discov Today 3:160–178

    Article  CAS  Google Scholar 

  30. Discovery Studio 2.5 (2009). Accelrys Inc., San Diego

  31. Feng ZW, Hou TJ, Li YY (2012). J Chem Inf Model 52:1005–1014

    Article  CAS  Google Scholar 

  32. Feng ZW, Alqarni MH, Yang P, Tong Q, Chowdhury A, Wang L, Xie XQ (2014). J Chem Inf Model 54:2483–2499

    Article  CAS  Google Scholar 

  33. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004). J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  34. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015). J Chem Theory Comput 11:3696–3713

    Article  CAS  Google Scholar 

  35. Frisch M, Trucks GW, Schlegel H, Scuseria GE, Robb MA, Cheeseman JR, Montgomery J, Vreven T, Kudin KN, Burant JC (2004) Gaussian 03, revision c. 02, vol 4. Gaussian. Inc., Wallingford, CT

    Google Scholar 

  36. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993). J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  37. Peters MB, Yang Y, Wang B, Füsti-Molnár L, Weaver MN, Merz JK (2010). J Chem Theory Comput 6:2935–2947

    Article  CAS  Google Scholar 

  38. Darden T, York D, Pedersen L (1993). J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  39. Ryckaert JP, Ciccotti G, Berendsen HJ (1977). J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  40. Xu L, Li YY, Sun HY, Li D, Hou TJ (2013). Mol BioSyst 9:2107–2117

    Article  CAS  Google Scholar 

  41. Xu L, Sun HY, Li YY, Wang JM, Hou TJ (2013). J Phys Chem B 117:8408–8421

    Article  CAS  Google Scholar 

  42. Sun HY, Li YY, Li D, Hou TJ (2013). J Chem Inf Model 53:2376–2389

    Article  CAS  Google Scholar 

  43. Shen MY, Zhou SY, Li YY, Pan PC, Zhang LL, Hou TJ (2013). Mol BioSyst 9:361–374

    Article  CAS  Google Scholar 

  44. Li L, Li YY, Zhang LL, Hou TJ (2012). J Chem Inf Model 52:2715–2729

    Article  CAS  Google Scholar 

  45. Pan PC, Li L, Li YY, Li D, Hou TJ (2013). Antivir Res 100:356–364

    Article  CAS  Google Scholar 

  46. Pan PC, Li YY, Yu HD, Sun HY, Hou TJ (2013). J Chem Inf Model 53:997–1006

    Article  CAS  Google Scholar 

  47. Kong XT, Pan PC, Li D, Tian S, Li YY, Hou TJ (2015). Phys Chem Chem Phys 17:6098–6113

    Article  CAS  Google Scholar 

  48. Sun HY, Li YY, Shen MY, Tian S, Xu L, Pan PC, Guan Y, Hou TJ (2014). Phys Chem Chem Phys 16:22035–22045

    Article  CAS  Google Scholar 

  49. Guan Y, Sun HY, Li YY, Pan PC, Li D, Hou TJ (2014). Antivir Res 103:60–70

    Article  CAS  Google Scholar 

  50. Chen F, Liu H, Sun HY, Pan PC, Li YY, Li D, Hou TJ (2016). Phys Chem Chem Phys 18:22129–22139

    Article  CAS  Google Scholar 

  51. Bai QF, Shen YL, Jin NZ, Liu HX, Yao XJ (2014). BBA-Gen Subjects 1840:2128–2138

    Article  CAS  Google Scholar 

  52. Sun HY, Pan PC, Tian S, Xu L, Kong XT, Li YY, Li D, Hou TJ (2016). Sci Rep 6:24817

    Article  CAS  Google Scholar 

  53. Sun HY, Chen PC, Li D, Li YY, Hou TJ (2016). J Chem Theory Comput 12:851–860

    Article  CAS  Google Scholar 

  54. Hou TJ, Wang JM, Li YY, Wang W (2010). J Chem Inf Model 51:69–82

    Article  Google Scholar 

  55. Hou TJ, Wang JM, Li YY, Wang W (2011). J Comput Chem 32:866–877

    Article  CAS  Google Scholar 

  56. Hou TJ, Yu R (2007). J Med Chem 50:1177–1188

    Article  CAS  Google Scholar 

  57. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005). J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  58. Onufriev A, Bashford D, Case DA (2004). Proteins 55:383–394

    Article  CAS  Google Scholar 

  59. Weiser J, Shenkin PS, Still WC (1999). J Comput Chem 20:217–230

    Article  CAS  Google Scholar 

  60. Li YP, Peng J, Zhou YH, Li PH, Li YY, Liu XY, Siddique AN, Zhang L, Zuo ZL (2018). Comput Biol Chem 76:53–60

    Article  Google Scholar 

  61. Li YP, Pu YL, Liu H, Zhang L, Liu XY, Li Y, Zuo ZL (2018). J Comput Aid Mol Des 32:901–915

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Science Foundation of China (81803430) and Qing Lan Project and Postgraduate Research and Practice Innovation Program of Jiangsu Province (SJCX18_1051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Enguang Yu and Yueping Xu are equivalent authors.

Electronic supplementary material

Figure S1

Superposition of eight crystal bound ligands in the ERα activity site. (a) Eight ligands are displayed in sticks and colored green, blue, turquoise, dark green, yellow, orange, pink and red for different ERα crystal structures (PDB ID: 1ERR, 1SJ0, 1XP1, 2IOG, 3ERT, 5AAU, 5FQP and 6B0F). (b) Proteins are shown with ribbon and colored gray. (DOC 1118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, E., Xu, Y., Shi, Y. et al. Discovery of novel natural compound inhibitors targeting estrogen receptor α by an integrated virtual screening strategy. J Mol Model 25, 278 (2019). https://doi.org/10.1007/s00894-019-4156-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4156-7

Keywords

Navigation