Skip to main content

Advertisement

Log in

Collagen receptor- and metalloproteinase-dependent hypertensive stress response in mesangial and glomerular endothelial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Progressive alteration of the extracellular matrix (ECM) is the characteristic of hypertensive nephropathy (HN). Both mesangial and endothelial cells have the ability to synthesize and degrade ECM components, including collagens through the activation of matrix metalloproteinases (MMPs) in stress conditions, such as in hypertension. On the other hand, hydrogen sulfide (H2S) has been shown to mitigate hypertensive renal matrix remodeling. Surprisingly, whether H2S ameliorates receptor-mediated (urokinase plasminogen activator receptor-associated protein, uPARAP/Endo180) collagen dysregulation in Ang-II hypertension is not clear. The purpose of this study was to determine whether Ang-II alters the expression of Endo180, tissue plasminogen activator (tPA), MMPs, and their tissue inhibitors (TIMPs) leading to the dysregulation of cellular collagen homeostasis and whether H2S mitigates the collagen turnover. Mouse mesangial cells (MCs) and glomerular endothelial cells (MGECs) were treated without or with Ang-II and H2S donor GYY (GYY4137) for 48 h. Cell lysates were analyzed by Western blot and RT-PCR, and cells were analyzed by immunocytochemistry. The results indicated that, while Ang-II differentially expressed MMP-13 and TIMP-1 in MCs and in MGECs, it predominantly decreased tPA, Endo 180, and increased plasminogen activator inhibitor-1 (PAI-1), MMP-14, and collagen IIIA and IV in both the cell types. Interestingly, H2S donor GYY treatment normalized the above changes in both the cell types. We conclude that Ang-II treatment causes ECM remodeling in MCs and MGECs through PAI-1/tPA/Endo180 and MMP/TIMP-dependent collagen remodeling, and H2S treatment mitigates remodeling, in part, by modulating these pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Luke RG (1999) Hypertensive nephrosclerosis: pathogenesis and prevalence. Essential hypertension is an important cause of end-stage renal disease. Nephrol Dial Transpl 14:2271–2278

    Article  CAS  Google Scholar 

  2. Hill GS (2008) Hypertensive nephrosclerosis. Curr Opin Nephrol Hypertens 17:266–270. https://doi.org/10.1097/MNH.0b013e3282f88a1f

    Article  PubMed  Google Scholar 

  3. Szijarto IA, Marko L, Filipovic MR, Miljkovic JL, Tabeling C, Tsvetkov D, Wang N, Rabelo LA, Witzenrath M, Diedrich A, Tank J, Akahoshi N, Kamata S, Ishii I, Gollasch M (2018) Cystathionine gamma-lyase produced hydrogen sulfide controls endothelial no bioavailability and blood pressure. Hypertension 71:1210–1217. https://doi.org/10.1161/Hypertensionaha.117.10562

    Article  CAS  PubMed  Google Scholar 

  4. Rose P, Moore PK, Zhu YZ (2017) H2S biosynthesis and catabolism: new insights from molecular studies. Cell Mol Life Sci 74:1391–1412. https://doi.org/10.1007/s00018-016-2406-8

    Article  CAS  PubMed  Google Scholar 

  5. Ishii I, Akahoshi N, Yu XN, Kobayashi Y, Namekata K, Komaki G, Kimura H (2004) Murine cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochemical Journal 381:113–123. https://doi.org/10.1042/Bj20040243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kimura H (2011) Hydrogen sulfide: its production, release and functions. Amino Acids 41:113–121. https://doi.org/10.1007/s00726-010-0510-x

    Article  CAS  PubMed  Google Scholar 

  7. Sen U, Sathnur PB, Kundu S, Givvimani S, Coley DM, Mishra PK, Qipshidze N, Tyagi N, Metreveli N, Tyagi SC (2012) Increased endogenous H2S generation by CBS, CSE, and 3MST gene therapy improves ex vivo renovascular relaxation in hyperhomocysteinemia. Am J Physiol Cell Physiol 303:C41–C51. https://doi.org/10.1152/ajpcell.00398.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Genovese F, Manresa AA, Leeming DJ, Karsdal MA, Boor P (2014) The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenesis Tissue Repair 7:4. https://doi.org/10.1186/1755-1536-7-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gelse K, Poschl E, Aigner T (2003) Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev 55:1531–1546

    Article  CAS  Google Scholar 

  10. Schuppan D, Ruehl M, Somasundaram R, Hahn EG (2001) Matrix as a modulator of hepatic fibrogenesis. Semin Liver Dis 21:351–372. https://doi.org/10.1055/s-2001-17556

    Article  CAS  PubMed  Google Scholar 

  11. Rowe RG, Weiss SJ (2009) Navigating ECM barriers at the invasive front: the cancer cell-stroma interface. Annu Rev Cell Dev Biol 25:567–595. https://doi.org/10.1146/annurev.cellbio.24.110707.175315

    Article  CAS  PubMed  Google Scholar 

  12. Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218. https://doi.org/10.1172/JCI24282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lauer-Fields JL, Juska D, Fields GB (2002) Matrix metalloproteinases and collagen catabolism. Biopolymers 66:19–32. https://doi.org/10.1002/bip.10201

    Article  CAS  PubMed  Google Scholar 

  14. Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16:558–564. https://doi.org/10.1016/j.ceb.2004.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arpino V, Brock M, Gill SE (2015) The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol 44–46:247–254. https://doi.org/10.1016/j.matbio.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  16. Madsen DH, Jurgensen HJ, Ingvarsen S, Melander MC, Vainer B, Egerod KL, Hald A, Rono B, Madsen CA, Bugge TH, Engelholm LH, Behrendt N (2012) Endocytic collagen degradation: a novel mechanism involved in protection against liver fibrosis. J Pathol 227:94–105. https://doi.org/10.1002/path.3981

    Article  CAS  PubMed  Google Scholar 

  17. Ghosh AK, Vaughan DE (2012) PAI-1 in tissue fibrosis. J Cell Physiol 227:493–507. https://doi.org/10.1002/jcp.22783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Engelholm LH, Ingvarsen S, Jurgensen HJ, Hillig T, Madsen DH, Nielsen BS, Behrendt N (2009) The collagen receptor uPARAP/Endo180. Front Biosci (Landmark Ed) 14:2103–2114

    Article  CAS  Google Scholar 

  19. John A, Kundu S, Pushpakumar S, Fordham M, Weber G, Mukhopadhyay M, Sen U (2017) GYY4137, a hydrogen sulfide donor modulates miR194-dependent collagen realignment in diabetic kidney. Sci Rep 7:10924. https://doi.org/10.1038/s41598-017-11256-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Satoh M, Kashihara N, Yamasaki Y, Maruyama K, Okamoto K, Maeshima Y, Sugiyama H, Sugaya T, Murakami K, Makino H (2001) Renal interstitial fibrosis is reduced in angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol 12:317–325

    CAS  PubMed  Google Scholar 

  21. Pushpakumar S, Ren L, Kundu S, Gamon A, Tyagi SC, Sen U (2017) Toll-like receptor 4 deficiency reduces oxidative stress and macrophage mediated inflammation in hypertensive kidney. Sci Rep 7:6349. https://doi.org/10.1038/s41598-017-06484-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Curino AC, Engelholm LH, Yamada SS, Holmbeck K, Lund LR, Molinolo AA, Behrendt N, Nielsen BS, Bugge TH (2005) Intracellular collagen degradation mediated by uPARAP/Endo180 is a major pathway of extracellular matrix turnover during malignancy. J Cell Biol 169:977–985. https://doi.org/10.1083/jcb.200411153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Humphreys BD (2018) Mechanisms of renal fibrosis. Annu Rev Physiol 80:309–326. https://doi.org/10.1146/annurev-physiol-022516-034227

    Article  CAS  PubMed  Google Scholar 

  24. Wolf G (1998) Angiotensin II is involved in the progression of renal disease: importance of non-hemodynamic mechanisms. Nephrologie 19:451–456

    CAS  PubMed  Google Scholar 

  25. Kim S, Iwao H (2000) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 52:11–34

    CAS  PubMed  Google Scholar 

  26. Weir MR, Dzau VJ (1999) The renin-angiotensin-aldosterone system: a specific target for hypertension management. Am J Hypertens 12:205S–213S

    Article  CAS  Google Scholar 

  27. Kagami S, Kuhara T, Okada K, Kuroda Y, Border WA, Noble NA (1997) Dual effects of angiotensin II on the plasminogen/plasmin system in rat mesangial cells. Kidney Int 51:664–671

    Article  CAS  Google Scholar 

  28. Pushpakumar S, Kundu S, Pryor T, Givvimani S, Lederer E, Tyagi SC, Sen U (2013) Angiotensin-II induced hypertension and renovascular remodelling in tissue inhibitor of metalloproteinase 2 knockout mice. J Hypertens 31:2270–2281. https://doi.org/10.1097/HJH.0b013e3283649b33. (discussion 2281)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ichikawi I, Harris RC (1991) Angiotensin actions in the kidney: renewed insight into the old hormone. Kidney Int 40:583–596

    Article  CAS  Google Scholar 

  30. Wolf G, Neilson EG (1993) Angiotensin II as a renal growth factor. J Am Soc Nephrol 3:1531–1540

    CAS  PubMed  Google Scholar 

  31. Egido J (1996) Vasoactive hormones and renal sclerosis. Kidney Int 49:578–597

    Article  CAS  Google Scholar 

  32. Ruiz-Ortega M, Egido J (1997) Angiotensin II modulates cell growth-related events and synthesis of matrix proteins in renal interstitial fibroblasts. Kidney Int 52:1497–1510

    Article  CAS  Google Scholar 

  33. Mezzano SA, Ruiz-Ortega M, Egido J (2001) Angiotensin II and renal fibrosis. Hypertension 38:635–638

    Article  CAS  Google Scholar 

  34. Frenay ARS, Snijder PM, Koning AM, Bachtler M, Pasch A, Kwakernaak AJ, van den Berg E, Bos EM, Hillebrands JL, Navis G, Leuvenink HGD, van Goor H (2014) Hydrogen sulfide attenuates angiotensin II-induced hypertension, proteinuria and renal damage. Nitric Oxide Biol Chem 39:S23–S24. https://doi.org/10.1016/j.niox.2014.03.075

    Article  Google Scholar 

  35. Holwerda KM, Burke SD, Faas MM, Zsengeller Z, Stillman IE, Kang PM, van Goor H, McCurley A, Jaffe IZ, Karumanchi SA, Lely AT (2014) Hydrogen sulfide attenuates sFlt1-induced hypertension and renal damage by upregulating vascular endothelial growth factor. J Am Soc Nephrol 25:717–725. https://doi.org/10.1681/Asn.2013030291

    Article  CAS  PubMed  Google Scholar 

  36. Madhusudhan T, Kerlin BA, Isermann B (2016) The emerging role of coagulation proteases in kidney disease. Nat Rev Nephrol 12:94–109. https://doi.org/10.1038/nrneph.2015.177

    Article  CAS  PubMed  Google Scholar 

  37. Svenningsen P, Hinrichs GR, Zachar R, Ydegaard R, Jensen BL (2017) Physiology and pathophysiology of the plasminogen system in the kidney. Pflug Arch 469:1415–1423. https://doi.org/10.1007/s00424-017-2014-y

    Article  CAS  Google Scholar 

  38. Eddy AA (2002) Plasminogen activator inhibitor-1 and the kidney. Am J Physiol Renal Physiol 283:F209–F220. https://doi.org/10.1152/ajprenal.00032.2002

    Article  CAS  PubMed  Google Scholar 

  39. Zhang G, Kernan KA, Collins SJ, Cai X, Lopez-Guisa JM, Degen JL, Shvil Y, Eddy AA (2007) Plasmin(ogen) promotes renal interstitial fibrosis by promoting epithelial-to-mesenchymal transition: role of plasmin-activated signals. J Am Soc Nephrol 18:846–859. https://doi.org/10.1681/ASN.2006080886

    Article  CAS  PubMed  Google Scholar 

  40. Olson JA Jr, Shiverick KT, Ogilvie S, Buhi WC, Raizada MK (1991) Angiotensin II induces secretion of plasminogen activator inhibitor 1 and a tissue metalloprotease inhibitor-related protein from rat brain astrocytes. Proc Natl Acad Sci USA 88:1928–1932

    Article  CAS  Google Scholar 

  41. Zelezna B, Rydzewski B, Lu D, Olson JA, Shiverick KT, Tang W, Sumners C, Raizada MK (1992) Angiotensin-II induction of plasminogen activator inhibitor-1 gene expression in astroglial cells of normotensive and spontaneously hypertensive rat brain. Mol Endocrinol 6:2009–2017. https://doi.org/10.1210/mend.6.12.1491687

    Article  CAS  PubMed  Google Scholar 

  42. Vaughan DE, Lazos SA, Tong K (1995) Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis. J Clin Invest 95:995–1001. https://doi.org/10.1172/JCI117809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao W, Chen SS, Chen Y, Ahokas RA, Sun Y (2008) Kidney fibrosis in hypertensive rats: role of oxidative stress. Am J Nephrol 28:548–554. https://doi.org/10.1159/000115289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tharaux PL, Chatziantoniou C, Fakhouri F, Dussaule JC (2000) Angiotensin II activates collagen I gene through a mechanism involving the MAP/ER kinase pathway. Hypertension 36:330–336

    Article  CAS  Google Scholar 

  45. Boffa JJ, Lu Y, Placier S, Stefanski A, Dussaule JC, Chatziantoniou C (2003) Regression of renal vascular and glomerular fibrosis: role of angiotensin II receptor antagonism and matrix metalloproteinases. J Am Soc Nephrol 14:1132–1144

    Article  CAS  Google Scholar 

  46. Song K, Wang F, Li Q, Shi YB, Zheng HF, Peng HJ, Shen HY, Liu CF, Hu LF (2014) Hydrogen sulfide inhibits the renal fibrosis of obstructive nephropathy. Kidney Int 85:1318–1329. https://doi.org/10.1038/ki.2013.449

    Article  CAS  PubMed  Google Scholar 

  47. Melander MC, Jurgensen HJ, Madsen DH, Engelholm LH, Behrendt N (2015) The collagen receptor uPARAP/Endo180 in tissue degradation and cancer. Int J Oncol 47:1177–1188. https://doi.org/10.3892/ijo.2015.3120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Behrendt N (2004) The urokinase receptor (uPAR) and the uPAR-associated protein (uPARAP/Endo180): membrane proteins engaged in matrix turnover during tissue remodeling. Biol Chem 385:103–136. https://doi.org/10.1515/BC.2004.031

    Article  CAS  PubMed  Google Scholar 

  49. Zhang G, Eddy AA (2008) Urokinase and its receptors in chronic kidney disease. Front Biosci 13:5462–5478

    Article  CAS  Google Scholar 

  50. Messaritou G, East L, Roghi C, Isacke CM, Yarwood H (2009) Membrane type-1 matrix metalloproteinase activity is regulated by the endocytic collagen receptor Endo180. J Cell Sci 122:4042–4048

    Article  CAS  Google Scholar 

  51. Cheng Z, Limbu MH, Wang Z, Liu J, Liu L, Zhang X, Chen P, Liu B (2017) MMP-2 and 9 in chronic kidney disease. Int J Mol Sci. https://doi.org/10.3390/ijms18040776

    Article  PubMed  PubMed Central  Google Scholar 

  52. Itoh Y, Seiki M (2006) MT1-MMP: a potent modifier of pericellular microenvironment. J Cell Physiol 206:1–8. https://doi.org/10.1002/jcp.20431

    Article  CAS  PubMed  Google Scholar 

  53. Engelholm LH, Nielsen BS, Netzel-Arnett S, Solberg H, Chen XD, Lopez Garcia JM, Lopez-Otin C, Young MF, Birkedal-Hansen H, Dano K, Lund LR, Behrendt N, Bugge TH (2001) The urokinase plasminogen activator receptor-associated protein/endo180 is coexpressed with its interaction partners urokinase plasminogen activator receptor and matrix metalloprotease-13 during osteogenesis. Lab Invest 81:1403–1414. https://doi.org/10.1038/labinvest.3780354

    Article  CAS  PubMed  Google Scholar 

  54. Carmeliet P, Moons L, Lijnen R, Baes M, Lemaitre V, Tipping P, Drew A, Eeckhout Y, Shapiro S, Lupu F, Collen D (1997) Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet 17:439–444. https://doi.org/10.1038/ng1297-439

    Article  CAS  PubMed  Google Scholar 

  55. Pushpakumar SB, Kundu S, Metreveli N, Sen U (2013) Folic acid mitigates angiotensin-II-induced blood pressure and renal remodeling. PLoS ONE 8:e83813. https://doi.org/10.1371/journal.pone.0083813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zakiyanov O, Kalousova M, Zima T, Tesar V (2019) Matrix metalloproteinases In renal diseases: a critical appraisal. Kidney Blood Press Res 44:298–330. https://doi.org/10.1159/000499876

    Article  CAS  PubMed  Google Scholar 

  57. Ren J, Zhang J, Rudemiller NP, Griffiths R, Wen Y, Lu X, Privratsky JR, Gunn MD, Crowley SD (2019) Twist1 in Infiltrating macrophages attenuates kidney fibrosis via matrix metallopeptidase 13-mediated matrix degradation. J Am Soc Nephrol 30:1674–1685. https://doi.org/10.1681/ASN.2018121253

    Article  PubMed  Google Scholar 

  58. Cai G, Zhang X, Hong Q, Shao F, Shang X, Fu B, Feng Z, Lin H, Wang J, Shi S, Yin Z, Chen X (2008) Tissue inhibitor of metalloproteinase-1 exacerbated renal interstitial fibrosis through enhancing inflammation. Nephrol Dial Transpl 23:1861–1875. https://doi.org/10.1093/ndt/gfm666

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Naira Metreveli for her technical assistance related to cell culture experiments and the acquisition of confocal images. This work was supported in part by National Institutes of Health Grants, DK104653 and DK116591 (to U.S.) and American Heart Association Scientist Development Grant, 15SDG25840013 (to S.P.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Sen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, S., Amin, M., Pushpakumar, S. et al. Collagen receptor- and metalloproteinase-dependent hypertensive stress response in mesangial and glomerular endothelial cells. Mol Cell Biochem 466, 1–15 (2020). https://doi.org/10.1007/s11010-019-03680-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03680-y

Keywords

Navigation