Skip to main content
Log in

Calycosin-7-O-β-d-glucoside attenuates myocardial ischemia–reperfusion injury by activating JAK2/STAT3 signaling pathway via the regulation of IL-10 secretion in mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Calycosin-7-O-β-d-glucoside (CG) is the component of Astragali Radix, and the aim of the present study is to investigate whether CG protects myocardium from I/R-induced damage by the regulation of IL-10/JAK2/STAT3 signaling pathway. H9C2 cells were subjected to I/R treatment and pretreated with 1 μm CG in vitro. In addition, a mouse model of myocardial I/R injury was induced by left anterior descending (LAD) coronary artery ligation and administrated with 30 mg/kg CG by intravenous injection before I/R surgery. In vitro and in vivo results showed that CG up-regulated IL-10 level, activated the JAK2/STAT3 pathway, and protected myocardial cells from I/R-induced apoptosis. The hemodynamic measurement, TTC staining, TUNEL staining, and western blot results in vivo showed that the protective effects of CG on myocardial function and cell apoptosis were all reversed by the IL-10R α neutralizing antibody. CG-induced phosphorylation activation of JAK2/STAT3 signaling pathway was also suppressed by the blocking of IL-10. In summary, these findings suggest that CG might alleviate myocardial I/R injury by activating the JAK2/STAT3 signaling pathway via up-regulation of IL-10 secretion, which provides us insights into the mechanism underlying the protective effect of CG on myocardial I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2013) Executive summary: heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127(1):143–152. https://doi.org/10.1161/CIR.0b013e318282ab8f

    Article  PubMed  Google Scholar 

  2. Cannon CP, Gibson CM, Lambrew CT, Shoultz DA, Levy D, French WJ, Gore JM, Weaver WD, Rogers WJ, Tiefenbrunn AJ (2000) Relationship of symptom-onset-to-balloon time and door-to-balloon time with mortality in patients undergoing angioplasty for acute myocardial infarction. JAMA 283(22):2941–2947

    Article  CAS  Google Scholar 

  3. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357(11):1121–1135. https://doi.org/10.1056/NEJMra071667

    Article  CAS  PubMed  Google Scholar 

  4. Zhu HJ, Wang DG, Yan J, Xu J (2015) Up-regulation of microRNA-135a protects against myocardial ischemia/reperfusion injury by decreasing TXNIP expression in diabetic mice. Am J Transl Res 7(12):2661–2671

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cao J, Xie H, Sun Y, Zhu J, Ying M, Qiao S, Shao Q, Wu H, Wang C (2015) Sevoflurane post-conditioning reduces rat myocardial ischemia reperfusion injury through an increase in NOS and a decrease in phopshorylated NHE1 levels. Am J Transl Res 36(6):1529–1537. https://doi.org/10.3892/ijmm.2015.2366

    Article  CAS  Google Scholar 

  6. Liu XH, Zhao JB, Guo L, Yang YL, Hu F, Zhu RJ, Feng SL (2014) Simultaneous determination of calycosin-7-O-beta-d-glucoside, ononin, calycosin, formononetin, astragaloside IV, and astragaloside II in rat plasma after oral administration of Radix Astragali extraction for their pharmacokinetic studies by ultra-pressure liquid chromatography with tandem mass spectrometry. Am J Transl Res 70(1):677–686. https://doi.org/10.1007/s12013-014-9972-x

    Article  CAS  Google Scholar 

  7. Zhao P, Su G, Xiao X, Hao E, Zhu X, Ren J (2008) Chinese medicinal herb Radix Astragali suppresses cardiac contractile dysfunction and inflammation in a rat model of autoimmune myocarditis. Toxicol Lett 182(1–3):29–35. https://doi.org/10.1016/j.toxlet.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  8. Yin B, Hou XW, Lu ML (2018) Astragaloside IV attenuates myocardial ischemia/reperfusion injury in rats via inhibition of calcium-sensing receptor-mediated apoptotic signaling pathways. Acta Pharmacol Sin. https://doi.org/10.1038/s41401-018-0082-y

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ren M, Wang X, Du G, Tian J, Liu Y (2016) Calycosin7Obetadglucoside attenuates ischemiareperfusion injury in vivo via activation of the PI3K/Akt pathway. Mol Med Rep 13(1):633–640. https://doi.org/10.3892/mmr.2015.4611

    Article  CAS  PubMed  Google Scholar 

  10. Fu S, Gu Y, Jiang JQ, Chen X, Xu M, Shen J (2014) Calycosin-7-O-beta-d-glucoside regulates nitric oxide/caveolin-1/matrix metalloproteinases pathway and protects blood-brain barrier integrity in experimental cerebral ischemia–reperfusion injury. J Ethnopharmacol 155(1):692–701. https://doi.org/10.1016/j.jep.2014.06.015

    Article  CAS  Google Scholar 

  11. Manukyan MC, Alvernaz CH, Poynter JA, Wang Y, Brewster BD, Weil BR, Abarbanell AM, Herrmann JL, Crowe BJ, Keck AC, Meldrum DR (2011) Interleukin-10 protects the ischemic heart from reperfusion injury via the STAT3 pathway. Surgery 150(2):231–239. https://doi.org/10.1016/j.surg.2011.05.017

    Article  PubMed  Google Scholar 

  12. Gupta M, Han JJ, Stenson M, Maurer M, Wellik L, Hu G, Ziesmer S, Dogan A, Witzig TE (2012) Elevated serum IL-10 levels in diffuse large B-cell lymphoma: a mechanism of aberrant JAK2 activation. Blood 119(12):2844–2853. https://doi.org/10.1182/blood-2011-10-388538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O’Farrell AM, Liu Y, Moore KW, Mui AL (1998) IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. EMBO J 17(4):1006–1018. https://doi.org/10.1093/emboj/17.4.1006

    Article  PubMed  PubMed Central  Google Scholar 

  14. Staples KJ, Smallie T, Williams LM, Foey A, Burke B, Foxwell BM, Ziegler-Heitbrock L (2007) IL-10 induces IL-10 in primary human monocyte-derived macrophages via the transcription factor Stat3. J Immunol 178(8):4779–4785

    Article  CAS  Google Scholar 

  15. Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, Margolick JB, Liotta LA, Petricoin E 3rd, Zhang Y (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci USA 104(41):16158–16163. https://doi.org/10.1073/pnas.0702596104

    Article  PubMed  Google Scholar 

  16. Gonzalez-Reyes A, Menaouar A, Yip D, Danalache B, Plante E, Noiseux N, Gutkowska J, Jankowski M (2015) Molecular mechanisms underlying oxytocin-induced cardiomyocyte protection from simulated ischemia–reperfusion. Mol Cell Endocrinol 412:170–181. https://doi.org/10.1016/j.mce.2015.04.028

    Article  CAS  PubMed  Google Scholar 

  17. Mizukami Y, Kobayashi S, Uberall F, Hellbert K, Kobayashi N, Yoshida K (2000) Nuclear mitogen-activated protein kinase activation by protein kinase czeta during reoxygenation after ischemic hypoxia. J Biol Chem 275(26):19921–19927. https://doi.org/10.1074/jbc.M907901199

    Article  CAS  PubMed  Google Scholar 

  18. Parajuli N, Yuan Y, Zheng X, Bedja D, Cai ZP (2012) Phosphatase PTEN is critically involved in post-myocardial infarction remodeling through the Akt/interleukin-10 signaling pathway. Basic Res Cardiol 107(2):248. https://doi.org/10.1007/s00395-012-0248-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cai ZP, Parajuli N, Zheng X, Becker L (2012) Remote ischemic preconditioning confers late protection against myocardial ischemia–reperfusion injury in mice by upregulating interleukin-10. Basic Res Cardiol 107(4):277. https://doi.org/10.1007/s00395-012-0277-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prasad A, Stone GW, Holmes DR, Gersh B (2009) Reperfusion injury, microvascular dysfunction, and cardioprotection: the “dark side” of reperfusion. Circulation 120(21):2105–2112. https://doi.org/10.1161/CIRCULATIONAHA.108.814640

    Article  PubMed  Google Scholar 

  21. Ahmed LA, Salem HA, Attia AS, El-Sayed ME (2009) Enhancement of amlodipine cardioprotection by quercetin in ischaemia/reperfusion injury in rats. J Clin Pharm Ther 61(9):1233–1241. https://doi.org/10.1211/jpp/61.09.0014

    Article  CAS  Google Scholar 

  22. Moens AL, Claeys MJ, Timmermans JP, Vrints CJ (2005) Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. J Clin Pharm Ther 100(2):179–190. https://doi.org/10.1016/j.ijcard.2004.04.013

    Article  CAS  Google Scholar 

  23. Buja LM, Weerasinghe P (2010) Unresolved issues in myocardial reperfusion injury. J Clin Pharm Ther 19(1):29–35. https://doi.org/10.1016/j.carpath.2008.10.001

    Article  Google Scholar 

  24. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. J Clin Pharm Ther 19:683–765. https://doi.org/10.1146/annurev.immunol.19.1.683

    Article  CAS  Google Scholar 

  25. Yang Z, Zingarelli B, Szabo C (2000) Crucial role of endogenous interleukin-10 production in myocardial ischemia/reperfusion injury. Circulation 101(9):1019–1026. https://doi.org/10.1161/01.cir.101.9.1019

    Article  CAS  PubMed  Google Scholar 

  26. Hayward R, Nossuli TO, Scalia R, Lefer AM (1997) Cardioprotective effect of interleukin-10 in murine myocardial ischemia–reperfusion. Eur J Pharmacol 334(2–3):157–163

    Article  CAS  Google Scholar 

  27. Krishnamurthy P, Rajasingh J, Lambers E, Qin G, Losordo DW, Kishore R (2009) IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circ Res 104(2):e9–18. https://doi.org/10.1161/CIRCRESAHA.108.188243

    Article  CAS  PubMed  Google Scholar 

  28. Markowski P, Boehm O, Goelz L, Haesner AL, Ehrentraut H, Bauerfeld K, Tran N, Zacharowski K, Weisheit C, Langhoff P, Schwederski M, Hilbert T, Klaschik S, Hoeft A, Baumgarten G, Meyer R, Knuefermann P (2013) Pre-conditioning with synthetic CpG-oligonucleotides attenuates myocardial ischemia/reperfusion injury via IL-10 up-regulation. Basic Res Cardiol 108(5):376. https://doi.org/10.1007/s00395-013-0376-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barry SP, Townsend PA, Latchman DS, Stephanou A (2007) Role of the JAK-STAT pathway in myocardial injury. Trends Mol Med 13(2):82–89. https://doi.org/10.1016/j.molmed.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  30. Yang Y, Duan W, Jin Z, Yi W, Yan J, Zhang S, Wang N, Liang Z, Li Y, Chen W, Yi D, Yu S (2013) JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J Pineal Res 55(3):275–286. https://doi.org/10.1111/jpi.12070

    Article  CAS  PubMed  Google Scholar 

  31. Fickenscher H, Hor S, Kupers H, Knappe A, Wittmann S, Sticht H (2002) The interleukin-10 family of cytokines. Trends Immunol 23(2):89–96

    Article  CAS  Google Scholar 

  32. Finbloom DS, Winestock KD (1995) IL-10 induces the tyrosine phosphorylation of tyk2 and Jak1 and the differential assembly of STAT1 alpha and STAT3 complexes in human T cells and monocytes. J Immunol 155(3):1079–1090

    CAS  PubMed  Google Scholar 

  33. Seidel HM, Lamb P, Rosen J (2000) Pharmaceutical intervention in the JAK/STAT signaling pathway. Oncogene 19(21):2645–2656. https://doi.org/10.1038/sj.onc.1203550

    Article  CAS  PubMed  Google Scholar 

  34. Duan W, Yang Y, Yan J, Yu S, Liu J, Zhou J, Zhang J, Jin Z, Yi D (2012) The effects of curcumin post-treatment against myocardial ischemia and reperfusion by activation of the JAK2/STAT3 signaling pathway. Basic Res Cardiol 107(3):263. https://doi.org/10.1007/s00395-012-0263-7

    Article  CAS  PubMed  Google Scholar 

  35. Wang Z, Yu J, Wu J, Qi F, Wang H, Xu Z (2016) Scutellarin protects cardiomyocyte ischemia–reperfusion injury by reducing apoptosis and oxidative stress. Life Sci 157:200–207. https://doi.org/10.1016/j.lfs.2016.01.018

    Article  CAS  PubMed  Google Scholar 

  36. Luan HF, Zhao ZB, Zhao QH, Zhu P, Xiu MY, Ji Y (2012) Hydrogen sulfide postconditioning protects isolated rat hearts against ischemia and reperfusion injury mediated by the JAK2/STAT3 survival pathway. Braz J Med Biol Res 45(10):898–905

    Article  CAS  Google Scholar 

  37. Fan Y, Zhang R, Liu B, Zhang Z (2001) Studies on association between lipoprotein lipase gene polymorphisms of Pvu II site and hypertriglyceridemics in Chinese. Chin J Med Genet 18(4):296–298

    CAS  Google Scholar 

  38. Hattori R, Maulik N, Otani H, Zhu L, Cordis G, Engelman RM, Siddiqui MA, Das DK (2001) Role of STAT3 in ischemic preconditioning. J Mol Cell Cardiol 33(11):1929–1936. https://doi.org/10.1006/jmcc.2001.1456

    Article  CAS  PubMed  Google Scholar 

  39. Goodman MD, Koch SE, Afzal MR, Butler KL (2011) STAT subtype specificity and ischemic preconditioning in mice: is STAT-3 enough? AM J Physiol-heart C 300(2):H522–H526. https://doi.org/10.1152/ajpheart.00231.2010

    Article  CAS  Google Scholar 

  40. Frangogiannis NG, Mendoza LH, Lindsey ML, Ballantyne CM, Michael LH, Smith CW, Entman ML (2000) IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury. J Immunol 165(5):2798–2808. https://doi.org/10.4049/jimmunol.165.5.2798

    Article  CAS  PubMed  Google Scholar 

  41. Curato C, Slavic S, Dong J, Skorska A, Altarche-Xifro W, Miteva K, Kaschina E, Thiel A, Imboden H, Wang J, Steckelings U, Steinhoff G, Unger T, Li J (2010) Identification of noncytotoxic and IL-10-producing CD8+AT2R+ T cell population in response to ischemic heart injury. J Immunol 185(10):6286–6293. https://doi.org/10.4049/jimmunol.0903681

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Wei L, Sun D, Cao F, Gao H, Zhao L, Du J, Li Y, Wang H (2010) Tanshinone IIA pretreatment protects myocardium against ischaemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway in diabetic rats. Diabetes Obes Metab 12(4):316–322. https://doi.org/10.1111/j.1463-1326.2009.01166.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (Nos. 81701720 and 81571680).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiawei Tian or Min Ren.

Ethics declarations

Conflict of interest

All authors declare that there are no conflicts of interest in this study.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Che, G., Di, Z. et al. Calycosin-7-O-β-d-glucoside attenuates myocardial ischemia–reperfusion injury by activating JAK2/STAT3 signaling pathway via the regulation of IL-10 secretion in mice. Mol Cell Biochem 463, 175–187 (2020). https://doi.org/10.1007/s11010-019-03639-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03639-z

Keywords

Navigation