Skip to main content
Log in

Ameliorating effect of lipo-ATRA treatment on the expression of TIG3 and its suppressing effect on PPARγ gene expression in lung cancer animal model

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study aimed to find out the molecular therapeutic effect of lipo-ATRA on tumour suppressor TIG3 and cell proliferative biomarker PPARγ in B (a) P-induced lung cancer model. In RT-PCR study, ATRA- and lipo-ATRA-treated mice samples showed relatively higher TIG3 expression and decreased PPARγ expression (Band density) than cancer control. Among treatments, lipo-ATRA showed vital effect than free ATRA by enhancing TIG3 and decreasing PPARγ. The qPCR results also showed significant (p ≤ 0.05) difference in both TIG3 and PPAR (RQ values of TIG3, lipo-ATRA 23.85 ± 1.29; free ATRA 10.43 ± 1.81 and for PPARγ, lipo-ATRA 4.707 ± 1.21; free ATRA 15.78 ± 2.34). From this, we conclude that liposomal ATRA formulation is most preferable for prolonged delivery of ATRA at targeted site to favour molecular action. It implies that the therapeutic effect of lipo-ATRA in lung cancer was exhibited by ameliorating the TIG3 expression and by suppressing the expression of PPARγ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

TIG3:

Tazarotene-induced gene 3

PPARγ:

Peroxisome proliferator-activated receptor gamma

RAR:

Retinoic acid receptor

RXR:

Retinoid X receptor

ATRA:

All trans retinoic acid

RARE:

Retinoic acid-responsive elements

B (a) P:

Benzo (a) Pyrene

DOTAP:

1, 2-Dioleoyl-3-trimethylammonium-propane

RQ:

Relative quantity

References

  1. World Health Statistics (2018) Monitoring health for sustainable development goals. World Health Organization 2018

  2. Toh CK (2009) The changing epidemiology of lung cancer. Cancer epidemiology. Humana Press, New York, pp 397–411. https://doi.org/10.1007/978-1-60327-492-0_19

    Chapter  Google Scholar 

  3. Pleasance ED, Stephens PJ, O’meara S S, McBride DJ, Meynert A, Jones D et al (2010) A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463(7278):184. https://doi.org/10.1038/nature08629

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi H, Ogata H, Nishigaki R, Broide DH, Karin M (2010) Tobacco smoke promotes lung tumorigenesis by triggering IKKβ-and JNK1-dependent inflammation. Cancer Cell 17(1):89–97. https://doi.org/10.1016/j.ccr.2009.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hecht SS (2012) Lung carcinogenesis by tobacco smoke. Int J Cancer 131(12):2724–2732. https://doi.org/10.1002/ijc.27816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim JH, Yamaguchi K, Lee SH, Tithof PK, Sayler GS, Yoon JH, Baek SJ (2005) Evaluation of polycyclic aromatic hydrocarbons in the activation of early growth response-1 and peroxisome proliferator activated receptors. ToxicologicalSciences 85(1):585–593. https://doi.org/10.1093/toxsci/kfi118

    Article  CAS  Google Scholar 

  7. Shafey O, Eriksen M, Ross H, Mackay J (2009) The tobacco atlas. Atlanta 3:38–39

    Google Scholar 

  8. Kometani T, Yoshino I, Miura N, Okazaki H, Ohba T, Takenaka T, Maehara Y (2009) Benzo [a] pyrene promotes proliferation of human lung cancer cells by accelerating the epidermal growth factor receptor signaling pathway. Cancer Lett 278(1):27–33. https://doi.org/10.1016/j.canlet.2008.12.017

    Article  CAS  PubMed  Google Scholar 

  9. Klaunig JE, Wang Z, Pu X, Zhou S (2011) Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol 254(2):86–99. https://doi.org/10.1016/j.taap.2009.11.028

    Article  CAS  PubMed  Google Scholar 

  10. Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P (2002) Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21(48):7435. https://doi.org/10.1038/sj.onc.1205803

    Article  CAS  PubMed  Google Scholar 

  11. Kasala ER, Bodduluru LN, Barua CC, Sriram CS, Gogoi R (2015) Benzo (a) pyrene induced lung cancer: role of dietary phytochemicals in chemoprevention. Pharmacol Rep 67(5):996–1009. https://doi.org/10.1016/j.pharep.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  12. Miller KP, Ramos KS (2001) Impact of cellular metabolism on the biological effects of benzo [a] pyrene and related hydrocarbons. Drug Metab Rev 33(1):1–35. https://doi.org/10.1081/DMR-100000138

    Article  CAS  PubMed  Google Scholar 

  13. Kang L, Gao Z, Huang W, Jin M, Wang Q (2015) Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment. Acta Pharm Sin B 5(3):169–175. https://doi.org/10.1016/j.apsb.2015.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  14. Barr Kumarakulasinghe N, Zanwijk NV, Soo RA (2015) Molecular targeted therapy in the treatment of advanced stage non-small cell lung cancer (NSCLC). Respirology 20(3):370–378. https://doi.org/10.1111/resp.12490

    Article  Google Scholar 

  15. Regazzi MB, Iacona I, Gervasutti C, Lazzarino M, Toma S (1997) Clinical pharmacokinetics of tretinoin. Clin Pharmacokinet 32(5):382–402. https://doi.org/10.2165/00003088-199732050-00004

    Article  CAS  PubMed  Google Scholar 

  16. Ozpolat B, Lopez-Berestein G, Adamson P, Fu CJ, Williams AH (2003) Pharmacokinetics of intravenously administered liposomal all-trans-retinoic acid (ATRA) and orally administered ATRA in healthy volunteers. J Pharm Pharm Sci 6(2):292–301

    CAS  PubMed  Google Scholar 

  17. McGowan SE, Harvey CS, Jackson SK (1995) Retinoids, retinoic acid receptors, and cytoplasmic retinoid binding proteins in perinatal rat lung fibroblasts. Am J Phys 269(4):L463–L472. https://doi.org/10.1152/ajplung.1995.269.4.L463

    Article  CAS  Google Scholar 

  18. Choi EJ, Whang YM, Kim SJ, Kim HJ, Kim YH (2007) Combinational treatment with retinoic acid derivatives in non-small cell lung carcinoma in vitro. J Korean Med Sci 22(Suppl):S52–S60. https://doi.org/10.3346/jkms.2007.22.S.S52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Siddikuzzaman GC, Berlin Grace VM (2011) All trans retinoic acid and cancer. Immunopharmacol Immunotoxicol 33(2):241–249

    Article  CAS  PubMed  Google Scholar 

  20. Higuchi E, Chandraratna RA, Hong WK, Lotan R (2003) Induction of TIG3, a putative class II tumor suppressor gene, by retinoic acid in head and neck and lung carcinoma cells and its association with suppression of the transformed phenotype. Oncogene 22(30):4627. https://doi.org/10.1038/sj.onc.1206235

    Article  CAS  PubMed  Google Scholar 

  21. DiSepio D, Ghosn C, Eckert RL, Deucher A, Robinson N, Duvic M, Nagpal S (1998) Identification and characterization of a retinoid-induced class II tumor suppressor/growth regulatory gene. Proc Natl Acad Sci USA 95(25):14811–14815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klaunig JE, Babich MA, Baetcke KP, Cook JC, Corton JC, David RM, Roberts RA (2003) PPARα agonist-induced rodent tumors: modes of action and human relevance. Crit Rev Toxicol 33(6):655–780. https://doi.org/10.1080/713608372

    Article  CAS  PubMed  Google Scholar 

  23. Michalik L, Desvergne B, Wahli W (2004) Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer 4(1):61. https://doi.org/10.1038/nrc1254

    Article  CAS  PubMed  Google Scholar 

  24. Genini D, Garcia-Escudero R, Carbone GM, Catapano CV (2012) Transcriptional and non-transcriptional functions of PPARβ/δ in Non-small cell lung cancer. PLoS ONE 7(9):e46009. https://doi.org/10.1371/journal.pone.0046009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mader S, Chen JY, Chen Z, White J, Chambon P, Gronemeyer H (1993) The patterns of binding of RAR, RXR and TR homo-and heterodimers to direct repeats are dictated by the binding specificites of the DNA binding domains. EMBO J 12(13):5029–5041. https://doi.org/10.1002/j.1460-2075.1993.tb06196.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Inoue K, Kawahito Y, Tsubouchi Y, Yamada R, Kohno M, Hosokawa Y, Sano H (2001) Expression of peroxisome proliferator-activated receptor (PPAR)-gamma in human lung cancer. Anticancer Res 21(4A):2471–2476 (PMID:11724309)

    CAS  PubMed  Google Scholar 

  27. Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease. Nature 405(6785):421. https://doi.org/10.1038/35013000

    Article  CAS  PubMed  Google Scholar 

  28. Georgiadi A, Kersten S (2012) Mechanisms of gene regulation by fatty acids. Adv Nutr 3(2):127–134. https://doi.org/10.3945/an.111.001602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grace VB, Viswanathan S (2017) Pharmacokinetics and therapeutic efficiency of a novel cationic liposome nano-formulated all trans retinoic acid in lung cancer mice model. J Drug Deliv Sci Technol 39:223–236. https://doi.org/10.1016/j.jddst.2017.04.005

    Article  CAS  Google Scholar 

  30. Viswanathan S, Grace VB (2018) Reduced RAR-β gene expression in Benzo (a) Pyrene induced lung cancer mice is upregulated by DOTAP lipo-ATRA treatment. Gene 668:18–26. https://doi.org/10.1016/j.gene.2018.05.051

    Article  CAS  PubMed  Google Scholar 

  31. Larsen JE, Minna JD (2011) Molecular biology of lung cancer: clinical implications. Clin Chest Med 32(4):703–740. https://doi.org/10.1016/j.ccm.2011.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chang WA, Hung JY, Tsai YM, Hsu YL, Chiang HH, Chou SH, Kuo PL (2016) Laricitrin suppresses increased benzo (a) pyrene-induced lung tumor-associated monocyte-derived dendritic cell cancer progression. Oncol Lett 11(3):1783–1790. https://doi.org/10.3892/ol.2016.4153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen J, Li Q (2016) Implication of retinoic acid receptor selective signaling in myogenic differentiation. Sci Rep 6:18856. https://doi.org/10.1038/srep18856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramya D, Siddikuzzaman, Grace VB (2012) Effect of all-trans retinoic acid (ATRA) on syndecan-1 expression and its chemoprotective effect in benzo (α) pyrene-induced lung cancer mice model. Immunopharmacol Immunotoxicol 34(6):1020–1027. https://doi.org/10.3109/08923973.2012.693086

    Article  CAS  PubMed  Google Scholar 

  35. Huang SL, Shyu RY, Yeh MY, Jiang SY (2000) Cloning and characterization of a novel retinoid-inducible gene 1 (RIG1) deriving from human gastric cancer cells. Mol Cell Endocrinol 159(1–2):15–24. https://doi.org/10.1016/S0303-7207(99)00207-5

    Article  CAS  PubMed  Google Scholar 

  36. Mangelsdorf DJ (1994) Vitamin A receptors. Nutr Rev 52(2):S32–S44

    Article  CAS  PubMed  Google Scholar 

  37. Han S, Roman J (2007) Peroxisome proliferator-activated receptor γ: a novel target for cancer therapeutics? Anticancer Drugs 18(3):237–244. https://doi.org/10.1097/CAD.0b013e328011e67d

    Article  CAS  PubMed  Google Scholar 

  38. Li MY, Yuan H, Ma LT, Kong AW, Hsin MK, Yip JH, Chen GG (2010) Roles of peroxisome proliferator-activated receptor–α and–γ in the Development of non-small cell lung cancer. Am J Respir Cell Mol Biol 43(6):674–683. https://doi.org/10.1165/rcmb.2009-0349OC

    Article  CAS  PubMed  Google Scholar 

  39. Berry DC, Noy N (2009) All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor β/δ and retinoic acid receptor. Mol Cell Biol 29(12):3286–3296. https://doi.org/10.1128/MCB.01742-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very grateful to thank the Department of Science and Technology-Science and Engineering Research board (DST-SERB), Govt. of India [SB/YS/LS-252/2013 (May 15, 2014)], Department of Biotechnology (DBT), Govt of India [BT/PR14632/NNT/28/824/2015] and Karunya short-term Research grant 2018–2019 [KITS/KSG/56/2018] for the financial support given to complete this work successfully. We extend our thanks to Ms. Perinba Danisha J, SRF, KITS, and Mr. P. Jeyakumar for their valuable guidance and technical assistance during this research work. We acknowledge the Karunya Institute of Technology and Sciences, Coimbatore, for providing instruments and laboratory facilities. We also thank the timely help rendered by the authorities of Sugarcane Breeding Institute, Coimbatore, to carry out the real-time qPCR for the gene expression study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Berlin Grace.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravichandran, R., Viswanathan, S., Berlin Grace, V.M. et al. Ameliorating effect of lipo-ATRA treatment on the expression of TIG3 and its suppressing effect on PPARγ gene expression in lung cancer animal model. Mol Cell Biochem 460, 105–112 (2019). https://doi.org/10.1007/s11010-019-03574-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03574-z

Keywords

Navigation