Skip to main content

Advertisement

Log in

Vascular endothelial growth factor-C promotes human mesenchymal stem cell migration via an ERK-and FAK-dependent mechanism

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Vascular endothelial cell growth factor-C (VEGF-C) is a member of the VEGF family and plays a role in various biological activities. VEGF-C enhances proliferation and migration of lymphatic endothelial cells and vascular endothelial cells through VEGF receptor 2 (VEGFR2) and/or receptor 3 (VEGFR3), and thereby induces lymphangiogenesis or angiogenesis. However, it remains unclear whether VEGF-C promotes the migration of mesenchymal stem cells (MSCs). Here, we investigated the effects of VEGF-C on the migration of MSCs and evaluated the underlying molecular mechanisms. VEGF-C treatment significantly induced the migration of MSCs, which is accompanied by the promotion of actin cytoskeletal reorganization and focal adhesion assembly. VEGF-C treatment enhanced the phosphorylation of VEGFR2 and VEGFR3 proteins in MSCs, and pretreatment with VEGFR2 and VEGFR3 kinase inhibitors effectively suppressed the VEGF-C-induced MSC migration. In addition, VEGF-C treatment promoted phosphorylation of ERK and FAK proteins in MSCs, and inhibition of VEGFR2 and VEGFR3 signaling pathways abolished the VEGF-C-induced activation of ERK and FAK proteins. Furthermore, treatment with ERK and FAK inhibitors suppressed VEGF-C-induced actin cytoskeletal reorganization and focal adhesion assembly, and then significantly inhibited MSCs migration. These results suggest that VEGF-C-induced MSC migration is mediated via VEGFR2 and VEGFR3, and follows the activation of the ERK and FAK signaling pathway. Thus, VEGF-C may be valuable in tissue regeneration and repair in MSC-based therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  2. Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36(4):568–584. https://doi.org/10.1016/j.biocel.2003.11.001

    Article  CAS  PubMed  Google Scholar 

  3. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95(1):9–20. https://doi.org/10.1161/01.RES.0000135902.99383.6f95/1/9

    Article  CAS  PubMed  Google Scholar 

  4. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33(5):907–921. https://doi.org/10.1006/jmcc.2001.1367S0022-2828(01)91367-7

    Article  CAS  PubMed  Google Scholar 

  5. Quintavalla J, Uziel-Fusi S, Yin J, Boehnlein E, Pastor G, Blancuzzi V, Singh HN, Kraus KH, O’Byrne E, Pellas TC (2002) Fluorescently labeled mesenchymal stem cells (MSCs) maintain multilineage potential and can be detected following implantation into articular cartilage defects. Biomaterials 23(1):109–119

    Article  CAS  PubMed  Google Scholar 

  6. Liu X, Duan B, Cheng Z, Jia X, Mao L, Fu H, Che Y, Ou L, Liu L, Kong D (2011) SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell 2(10):845–854. https://doi.org/10.1007/s13238-011-1097-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ozaki Y, Nishimura M, Sekiya K, Suehiro F, Kanawa M, Nikawa H, Hamada T, Kato Y (2007) Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells. Stem Cells Dev 16(1):119–129. https://doi.org/10.1089/scd.2006.0032

    Article  CAS  PubMed  Google Scholar 

  8. Herbert SP, Stainier DY (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12(9):551–564. https://doi.org/10.1038/nrm3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang H, Wang X, Qu J, Yue Q, Hu Y, Zhang H (2015) VEGF enhances the migration of MSCs in neural differentiation by regulating focal adhesion turnover. J Cell Physiol 230(11):2728–2742. https://doi.org/10.1002/jcp.24997

    Article  CAS  PubMed  Google Scholar 

  10. Deng Y, Zhang X, Simons M (2015) Molecular controls of lymphatic VEGFR3 signaling. Arterioscler Thromb Vasc Biol 35(2):421–429. https://doi.org/10.1161/ATVBAHA.114.304881

    Article  CAS  PubMed  Google Scholar 

  11. Han J, Calvo CF, Kang TH, Baker KL, Park JH, Parras C, Levittas M, Birba U, Pibouin-Fragner L, Fragner P, Bilguvar K, Duman RS, Nurmi H, Alitalo K, Eichmann AC, Thomas JL (2015) Vascular endothelial growth factor receptor 3 controls neural stem cell activation in mice and humans. Cell Rep 10(7):1158–1172. https://doi.org/10.1016/j.celrep.2015.01.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Q, Guo R, Lu Y, Zhao L, Zhou Q, Schwarz EM, Huang J, Chen D, Jin ZG, Boyce BF, Xing L (2008) VEGF-C, a lymphatic growth factor, is a RANKL target gene in osteoclasts that enhances osteoclastic bone resorption through an autocrine mechanism. J Biol Chem 283(19):13491–13499. https://doi.org/10.1074/jbc.M708055200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Murakami J, Ishii M, Suehiro F, Ishihata K, Nakamura N, Nishimura M (2017) Vascular endothelial growth factor-C induces osteogenic differentiation of human mesenchymal stem cells through the ERK and RUNX2 pathway. Biochem Biophys Res Commun 484(3):710–718. https://doi.org/10.1016/j.bbrc.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  14. Friedl P, Wolf K (2009) Proteolytic interstitial cell migration: a five-step process. Cancer Metastasis Rev 28(1–2):129–135. https://doi.org/10.1007/s10555-008-9174-3

    Article  PubMed  Google Scholar 

  15. Chen BH, Tzen JT, Bresnick AR, Chen HC (2002) Roles of Rho-associated kinase and myosin light chain kinase in morphological and migratory defects of focal adhesion kinase-null cells. J Biol Chem 277(37):33857–33863. https://doi.org/10.1074/jbc.M204429200

    Article  CAS  PubMed  Google Scholar 

  16. Jimenez C, Portela RA, Mellado M, Rodriguez-Frade JM, Collard J, Serrano A, Martinez AC, Avila J, Carrera AC (2000) Role of the PI3K regulatory subunit in the control of actin organization and cell migration. J Cell Biol 151(2):249–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang C, Jacobson K, Schaller MD (2004) MAP kinases and cell migration. J Cell Sci 117(Pt 20):4619–4628. https://doi.org/10.1242/jcs.01481

    Article  CAS  PubMed  Google Scholar 

  18. Zhao X, Guan JL (2011) Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev 63(8):610–615. https://doi.org/10.1016/j.addr.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  19. Abedi H, Zachary I (1997) Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem 272(24):15442–15451

    Article  CAS  PubMed  Google Scholar 

  20. Hu Y, Lu J, Xu X, Lyu J, Zhang H (2017) Regulation of focal adhesion turnover in SDF-1alpha-stimulated migration of mesenchymal stem cells in neural differentiation. Sci Rep 7(1):10013. https://doi.org/10.1038/s41598-017-09736-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu YL, Lu S, Szeto KW, Sun J, Wang Y, Lasheras JC, Chien S (2014) FAK and paxillin dynamics at focal adhesions in the protrusions of migrating cells. Sci Rep 4:6024. https://doi.org/10.1038/srep06024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12(1):9–18. https://doi.org/10.1038/sj.cr.7290105

    Article  CAS  PubMed  Google Scholar 

  23. Gao H, Priebe W, Glod J, Banerjee D (2009) Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells 27(4):857–865. https://doi.org/10.1002/stem.23

    Article  CAS  PubMed  Google Scholar 

  24. Conrad C, Niess H, Huss R, Huber S, von Luettichau I, Nelson PJ, Ott HC, Jauch KW, Bruns CJ (2009) Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo. Circulation 119(2):281–289. https://doi.org/10.1161/CIRCULATIONAHA.108.793208

    Article  PubMed  Google Scholar 

  25. Igarashi Y, Chosa N, Sawada S, Kondo H, Yaegashi T, Ishisaki A (2016) VEGF-C and TGF-beta reciprocally regulate mesenchymal stem cell commitment to differentiation into lymphatic endothelial or osteoblastic phenotypes. Int J Mol Med 37(4):1005–1013. https://doi.org/10.3892/ijmm.2016.2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coso S, Zeng Y, Opeskin K, Williams ED (2012) Vascular endothelial growth factor receptor-3 directly interacts with phosphatidylinositol 3-kinase to regulate lymphangiogenesis. PLoS ONE 7(6):e39558. https://doi.org/10.1371/journal.pone.0039558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang WH, Chang AC, Wang SW, Wang SJ, Chang YS, Chang TM, Hsu SK, Fong YC, Tang CH (2016) Leptin promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-27b in human chondrosarcoma cells. Sci Rep 6:28647. https://doi.org/10.1038/srep28647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuo TK, Hung SP, Chuang CH, Chen CT, Shih YR, Fang SC, Yang VW, Lee OK (2008) Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology 134(7):2111–2121. https://doi.org/10.1053/j.gastro.2008.03.015

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cai M, Shen R, Song L, Lu M, Wang J, Zhao S, Tang Y, Meng X, Li Z, He ZX (2016) Bone marrow mesenchymal stem cells (BM-MSCs) improve heart function in swine myocardial infarction model through paracrine effects. Sci Rep 6:28250. https://doi.org/10.1038/srep28250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yao Y, Huang J, Geng Y, Qian H, Wang F, Liu X, Shang M, Nie S, Liu N, Du X, Dong J, Ma C (2015) Paracrine action of mesenchymal stem cells revealed by single cell gene profiling in infarcted murine hearts. PLoS ONE 10(6):e0129164. https://doi.org/10.1371/journal.pone.0129164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gnecchi M, He H, Melo LG, Noiseaux N, Morello F, de Boer RA, Zhang L, Pratt RE, Dzau VJ, Ingwall JS (2009) Early beneficial effects of bone marrow-derived mesenchymal stem cells overexpressing Akt on cardiac metabolism after myocardial infarction. Stem Cells 27(4):971–979. https://doi.org/10.1002/stem.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paquet J, Deschepper M, Moya A, Logeart-Avramoglou D, Boisson-Vidal C, Petite H (2015) Oxygen tension regulates human mesenchymal stem cell paracrine functions. Stem Cells Transl Med 4(7):809–821. https://doi.org/10.5966/sctm.2014-0180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Deckers MM, Karperien M, van der Bent C, Yamashita T, Papapoulos SE, Lowik CW (2000) Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology 141(5):1667–1674. https://doi.org/10.1210/endo.141.5.7458

    Article  CAS  PubMed  Google Scholar 

  34. Iwasaki T, Takeda Y, Maruyama K, Yokosaki Y, Tsujino K, Tetsumoto S, Kuhara H, Nakanishi K, Otani Y, Jin Y, Kohmo S, Hirata H, Takahashi R, Suzuki M, Inoue K, Nagatomo I, Goya S, Kijima T, Kumagai T, Tachibana I, Kawase I, Kumanogoh A (2013) Deletion of tetraspanin CD9 diminishes lymphangiogenesis in vivo and in vitro. J Biol Chem 288(4):2118–2131. https://doi.org/10.1074/jbc.M112.424291

    Article  CAS  PubMed  Google Scholar 

  35. Sorrentino A, Ferracin M, Castelli G, Biffoni M, Tomaselli G, Baiocchi M, Fatica A, Negrini M, Peschle C, Valtieri M (2008) Isolation and characterization of CD146 + multipotent mesenchymal stromal cells. Exp Hematol 36(8):1035–1046. https://doi.org/10.1016/j.exphem.2008.03.004

    Article  CAS  PubMed  Google Scholar 

  36. Cao W, Zheng W, Chen T (2015) Ruthenium polypyridyl complex inhibits growth and metastasis of breast cancer cells by suppressing FAK signaling with enhancement of TRAIL-induced apoptosis. Sci Rep 5:9157. https://doi.org/10.1038/srep09157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aksamitiene E, Achanta S, Kolch W, Kholodenko BN, Hoek JB, Kiyatkin A (2011) Prolactin-stimulated activation of ERK1/2 mitogen-activated protein kinases is controlled by PI3-kinase/Rac/PAK signaling pathway in breast cancer cells. Cell Signal 23(11):1794–1805. https://doi.org/10.1016/j.cellsig.2011.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun J, Luo Q, Liu L, Song G (2018) Low-level shear stress promotes migration of liver cancer stem cells via the FAK-ERK1/2 signalling pathway. Cancer Lett 427:1–8. https://doi.org/10.1016/j.canlet.2018.04.015

    Article  CAS  PubMed  Google Scholar 

  39. Yanoshita M, Hirose N, Okamoto Y, Sumi C, Takano M, Nishiyama S, Asakawa-Tanne Y, Horie K, Onishi A, Yamauchi Y, Mitsuyoshi T, Kunimatsu R, Tanimoto K (2018) Cyclic tensile strain upregulates pro-inflammatory cytokine expression via FAK-MAPK signaling in chondrocytes. Inflammation 41(5):1621–1630. https://doi.org/10.1007/s10753-018-0805-8

    Article  CAS  PubMed  Google Scholar 

  40. Song J, Ye B, Liu H, Bi R, Zhang N, Hu J, Luo E (2018) Fak-Mapk, Hippo and Wnt signalling pathway expression and regulation in distraction osteogenesis. Cell Prolif 51(4):e12453. https://doi.org/10.1111/cpr.12453

    Article  CAS  PubMed  Google Scholar 

  41. Westhoff MA, Serrels B, Fincham VJ, Frame MC, Carragher NO (2004) SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Mol Cell Biol 24(18):8113–8133. https://doi.org/10.1128/MCB.24.18.8113-8133.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deng Y, Yang Y, Yao B, Ma L, Wu Q, Yang Z, Zhang L, Liu B (2018) Paracrine signaling by VEGF-C promotes non-small cell lung cancer cell metastasis via recruitment of tumor-associated macrophages. Exp Cell Res 364(2):208–216. https://doi.org/10.1016/j.yexcr.2018.02.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was in part supported by Grant-in Aid for Scientific Research B (Grant No. 17H04394), and Grant-in Aid for Scientific Research C (Grant No. 15K11169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Ishii.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishii, M., Takahashi, M., Murakami, J. et al. Vascular endothelial growth factor-C promotes human mesenchymal stem cell migration via an ERK-and FAK-dependent mechanism. Mol Cell Biochem 455, 185–193 (2019). https://doi.org/10.1007/s11010-018-3481-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3481-y

Keywords

Navigation