Skip to main content
Log in

AG1031 induces apoptosis through suppressing SIRT1/p53 pathway in human neuroblastoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Neuroblastoma is the most common extra-cranial tumor in childhood. As an antineoplastic medicine, the effect of AG-1031 on the neuroblastoma is still unclear. Silent information regulator 1 (SIRT1) is a conserved NAD+-dependent deacetylase, which plays a key role in carcinogenesis through the deacetylation of important regulatory proteins, including p53. The purpose of the present study was to determine whether there was a significant anti-tumor effect of AG-1031 on the human neuroblastoma cells through suppressing SIRT1/p53 pathway. Our study showed that AG1031 treatment resulted in a dose-dependent decrease in human neuroblastoma SH-SY5Y cell viability. The data, obtained from both Western blot assay and Hoechst 33258 staining, further showed that AG1031 exhibited strong anti-tumor activity closely associated with significantly increasing apoptotic indices and enhancing oxidative stress levels. Moreover, AG1031 treatment could down-regulate SIRT1 in a dose-dependent manner and up-regulate p53 acetylation, while overexpression of SIRT1 significantly attenuated the anti-tumor effect of AG1031 in SH-SY5Y cells. AG1031 potently induced SH-SY5Y cells apoptosis through suppressing SIRT1/p53 signaling. These data suggest that AG1031 may be used for therapeutic intervention in neuroblastoma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3(3):203–216. https://doi.org/10.1038/nrc1014

    Article  CAS  PubMed  Google Scholar 

  2. Mondal T, Juvvuna PK, Kirkeby A, Mitra S, Kosalai ST, Traxler L, Hertwig F, Wernig-Zorc S, Miranda C, Deland L, Volland R, Bartenhagen C, Bartsch D, Bandaru S, Engesser A, Subhash S, Martinsson T, Caren H, Akyurek LM, Kurian L, Kanduri M, Huarte M, Kogner P, Fischer M, Kanduri C (2018) Sense-antisense lncRNA pair encoded by locus 6p22.3 determines neuroblastoma susceptibility via the USP36-CHD7-SOX9 regulatory axis. Cancer Cell 33(3):417–434 e417. https://doi.org/10.1016/j.ccell.2018.01.020

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Q, Ma Y, Cheng YF, Li WJ, Zhang Z, Chen SY (2011) Involvement of reactive oxygen species in 2-methoxyestradiol-induced apoptosis in human neuroblastoma cells. Cancer Lett 313(2):201–210. https://doi.org/10.1016/j.canlet.2011.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Naz H, Tarique M, Khan P, Luqman S, Ahamad S, Islam A, Ahmad F, Hassan MI (2018) Evidence of vanillin binding to CAMKIV explains the anti-cancer mechanism in human hepatic carcinoma and neuroblastoma cells. Mol Cell Biochem 438(1–2):35–45. https://doi.org/10.1007/s11010-017-3111-0

    Article  CAS  PubMed  Google Scholar 

  5. Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma Lancet 369(9579):2106–2120. https://doi.org/10.1016/S0140-6736(07)60983-0

    Article  CAS  PubMed  Google Scholar 

  6. Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, Swift P, Shimada H, Black CT, Brodeur GM, Gerbing RB, Reynolds CP (1999) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. N Engl J Med 341(16):1165–1173. https://doi.org/10.1056/NEJM199910143411601

    Article  CAS  PubMed  Google Scholar 

  7. Sawada T, Kidowaki T, Sakamoto I, Hashida T, Matsumura T, Nakagawa M, Kusunoki T (1984) Neuroblastoma. Mass screening for early detection and its prognosis. Cancer 53(12):2731–2735

    Article  CAS  PubMed  Google Scholar 

  8. Wang HJ, Tashiro S, Onodera S, Ikejima T (2008) Inhibition of insulin-like growth factor 1 receptor signaling enhanced silibinin-induced activation of death receptor and mitochondrial apoptotic pathways in human breast cancer MCF-7 cells. J Pharmacol Sci 107(3):260–269

    Article  CAS  PubMed  Google Scholar 

  9. Corbi G, Conti V, Scapagnini G, Filippelli A, Ferrara N (2012) Role of sirtuins, calorie restriction and physical activity in aging. Front Biosci 4:768–778

    Article  Google Scholar 

  10. Guo Y, Li P, Gao L, Zhang J, Yang Z, Bledsoe G, Chang E, Chao L, Chao J (2017) Kallistatin reduces vascular senescence and aging by regulating microRNA-34a-SIRT1 pathway. Aging Cell 16(4):837–846. https://doi.org/10.1111/acel.12615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rahman S, Islam R (2011) Mammalian Sirt1: insights on its biological functions. CCS 9:11. https://doi.org/10.1186/1478-811X-9-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vaziri H, Dessain SK, Eagon EN, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107(2):149–159. https://doi.org/10.1016/S0092-8674(01)00527-X

    Article  CAS  PubMed  Google Scholar 

  13. Yang YH, Hou HY, Haller EM, Nicosia SV, Bai WL (2005) Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. Embo J 24(5):1021–1032. https://doi.org/10.1038/sj.emboj.7600570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen L, Fischle W, Verdin E, Greene WC (2001) Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293(5535):1653–1657. https://doi.org/10.1126/science.1062374

    Article  CAS  Google Scholar 

  15. Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y, Rosenbaum M, Zhao Y, Gu W, Farmer SR, Accili D (2012) Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell 150(3):620–632. https://doi.org/10.1016/j.cell.2012.06.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1 ALPHA. Mol Cell 38(6):864–878. https://doi.org/10.1016/j.molcel.2010.05.023

    Article  CAS  PubMed  Google Scholar 

  17. Mei Z, Zhang X, Yi J, Huang J, He J, Tao Y (2016) Sirtuins in metabolism, DNA repair and cancer. J Exp Clin Cancer Res 35(1):182. https://doi.org/10.1186/s13046-016-0461-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martinez-Pastor B, Mostoslavsky R (2012) Sirtuins, metabolism, and cancer. Front Pharmacol 3:22. https://doi.org/10.3389/fphar.2012.00022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deng CX (2009) SIRT1, is it a tumor promoter or tumor suppressor? Int J Biol Sci 5(2):147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schug TT, Xu Q, Gao H, Peres-da-Silva A, Draper DW, Fessler MB, Purushotham A, Li X (2010) Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Mol Cell Biol 30(19):4712–4721. https://doi.org/10.1128/MCB.00657-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kong S, Kim SJ, Sandal B, Lee SM, Gao B, Zhang DD, Fang D (2011) The type III histone deacetylase Sirt1 protein suppresses p300-mediated histone H3 lysine 56 acetylation at Bclaf1 promoter to inhibit T cell activation. J Biol Chem 286(19):16967–16975. https://doi.org/10.1074/jbc.M111.218206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Y, Wang H, Ge H, Yang Z (2018) AG-1031 induced autophagic cell death and apoptosis in C6 glioma cells associated with Notch-1 signaling pathway. J Cell Biochem 119(7):5893–5903. https://doi.org/10.1002/jcb.26781

    Article  CAS  PubMed  Google Scholar 

  23. Fu J, Wang H, Gao J, Yu M, Wang R, Yang Z, Zhang T (2017) Rapamycin effectively impedes melamine-induced impairments of cognition and synaptic plasticity in Wistar rats. Mol Neurobiol 54(2):819–832. https://doi.org/10.1007/s12035-016-9687-7

    Article  CAS  PubMed  Google Scholar 

  24. Wang H, Jiang T, Li W, Gao N, Zhang T (2018) Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease. Toxicol Lett 282:100–108. https://doi.org/10.1016/j.toxlet.2017.10.021

    Article  CAS  PubMed  Google Scholar 

  25. Lv Y, Lin S, Peng F (2017) SIRT1 gene polymorphisms and risk of lung cancer. Cancer Manag Res 9:381–386. https://doi.org/10.2147/CMAR.S142677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng Y, Cai L, Jiang P, Wang J, Gao C, Feng H, Wang C, Pan H, Yang Y (2013) SIRT1 inhibition by melatonin exerts antitumor activity in human osteosarcoma cells. Eur J Pharmacol 715(1–3):219–229. https://doi.org/10.1016/j.ejphar.2013.05.017

    Article  CAS  PubMed  Google Scholar 

  27. Jung-Hynes B, Schmit TL, Reagan-Shaw SR, Siddiqui IA, Mukhtar H, Ahmad N (2011) Melatonin, a novel Sirt1 inhibitor, imparts antiproliferative effects against prostate cancer in vitro in culture and in vivo in TRAMP model. J Pineal Res 50(2):140–149. https://doi.org/10.1111/j.1600-079X.2010.00823.x

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki K, Hayashi R, Ichikawa T, Imanishi S, Yamada T, Inomata M, Miwa T, Matsui S, Usui I, Urakaze M, Matsuya Y, Ogawa H, Sakurai H, Saiki I, Tobe K (2012) SRT1720, a SIRT1 activator, promotes tumor cell migration, and lung metastasis of breast cancer in mice. Oncol Rep 27(6):1726–1732. https://doi.org/10.3892/or.2012.1750

    Article  CAS  PubMed  Google Scholar 

  29. Li L, Yuan L, Luo J, Gao J, Guo J, Xie X (2013) MiR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1. Clin Exp Med 13(2):109–117. https://doi.org/10.1007/s10238-012-0186-5

    Article  CAS  PubMed  Google Scholar 

  30. Ye Z, Fang B, Pan J, Zhang N, Huang J, Xie C, Lou T, Cao Z (2017) miR-138 suppresses the proliferation, metastasis and autophagy of non-small cell lung cancer by targeting Sirt1. Oncol Rep 37(6):3244–3252. https://doi.org/10.3892/or.2017.5619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. George J, Ahmad N (2016) Mitochondrial sirtuins in cancer: emerging roles and therapeutic potential. Cancer Res 76(9):2500–2506. https://doi.org/10.1158/0008-5472.CAN-15-2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roth M, Chen WY (2014) Sorting out functions of sirtuins in cancer. Oncogene 33(13):1609–1620. https://doi.org/10.1038/onc.2013.120

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Q, Zeng SX, Zhang Y, Zhang Y, Ding D, Ye Q, Meroueh SO, Lu H (2012) A small molecule Inauhzin inhibits SIRT1 activity and suppresses tumour growth through activation of p53. EMBO Mol Med 4(4):298–312. https://doi.org/10.1002/emmm.201100211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137(3):413–431. https://doi.org/10.1016/j.cell.2009.04.037

    Article  CAS  PubMed  Google Scholar 

  35. Li L, Wang L, Li L, Wang Z, Ho Y, McDonald T, Holyoake TL, Chen W, Bhatia R (2012) Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell 21(2):266–281. https://doi.org/10.1016/j.ccr.2011.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang Y, Zhao W, Chen Y, Zhao Y, Gu W (2008) Acetylation is indispensable for p53 activation. Cell 133(4):612–626. https://doi.org/10.1016/j.cell.2008.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee JS, Lee HJ, Moon BH, Song SH, Lee MO, Shim SH, Kim HS, Lee MC, Kwon JT, Fornace AJ Jr, Kim SU, Cha HJ (2012) Generation of cancerous neural stem cells forming glial tumor by oncogenic stimulation. Stem Cell Rev 8(2):532–545. https://doi.org/10.1007/s12015-011-9280-4

    Article  PubMed Central  Google Scholar 

  38. Hussain A, Mohsin J, Prabhu SA, Begum S, Nusri Qel A, Harish G, Javed E, Khan MA, Sharma C (2013) Sulforaphane inhibits growth of human breast cancer cells and augments the therapeutic index of the chemotherapeutic drug, gemcitabine. APJCP 14(10):5855–5860

    PubMed  Google Scholar 

  39. Nguyen KC, Willmore WG, Tayabali AF (2013) Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Toxicology 306:114–123. https://doi.org/10.1016/j.tox.2013.02.010

    Article  CAS  PubMed  Google Scholar 

  40. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275(5303):1132–1136

    Article  CAS  PubMed  Google Scholar 

  41. Basu A, Haldar S (2003) Identification of a novel Bcl-xL phosphorylation site regulating the sensitivity of taxol- or 2-methoxyestradiol-induced apoptosis. FEBS Lett 538(1–3):41–47

    Article  CAS  PubMed  Google Scholar 

  42. Rosse T, Olivier R, Monney L, Rager M, Conus S, Fellay I, Jansen B, Borner C (1998) Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391(6666):496–499. https://doi.org/10.1038/35160

    Article  CAS  PubMed  Google Scholar 

  43. Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP, Saville MK, Lane DP (2005) p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19(18):2122–2137. https://doi.org/10.1101/gad.1339905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schott AF, Apel IJ, Nunez G, Clarke MF (1995) Bcl-XL protects cancer cells from p53-mediated apoptosis. Oncogene 11(7):1389–1394

    CAS  PubMed  Google Scholar 

  45. Chiou SK, Rao L, White E (1994) Bcl-2 blocks p53-dependent apoptosis. Mol Cell Biol 14(4):2556–2563

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schuler M, Bossy-Wetzel E, Goldstein JC, Fitzgerald P, Green DR (2000) p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J Biol Chem 275(10):7337–7342

    Article  CAS  PubMed  Google Scholar 

  47. Ran F, An L, Fan Y, Hang H, Wang S (2016) Simulated microgravity potentiates generation of reactive oxygen species in cells. Biophys Rep 2(5):100–105. https://doi.org/10.1007/s41048-016-0029-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Uzilday B, Turkan I, Ozgur R, Sekmen AH (2014) Strategies of ROS regulation and antioxidant defense during transition from C(3) to C(4) photosynthesis in the genus Flaveria under PEG-induced osmotic stress. J Plant Physiol 171(1):65–75. https://doi.org/10.1016/j.jplph.2013.06.016

    Article  CAS  PubMed  Google Scholar 

  49. Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215(2):213–219

    Article  CAS  PubMed  Google Scholar 

  50. Rees JN, Florang VR, Anderson DG, Doorn JA (2007) Lipid peroxidation products inhibit dopamine catabolism yielding aberrant levels of a reactive intermediate. Chem Res Toxicol 20(10):1536–1542. https://doi.org/10.1021/tx700248y

    Article  CAS  PubMed  Google Scholar 

  51. Satomi A, Murakami S, Hashimoto T, Ishida K, Matsuki M, Sonoda M (1995) Significance of superoxide dismutase (SOD) in human colorectal cancer tissue: correlation with malignant intensity. J Gastroenterol 30(2):177–182

    Article  CAS  PubMed  Google Scholar 

  52. Boojar MM, Goodarzi F (2006) Cytotoxicity and the levels of oxidative stress parameters in WI38 cells following 2 macrocyclic crown ethers treatment. Clin Chim Acta 364(1–2):321–327. https://doi.org/10.1016/j.cca.2005.07.033

    Article  CAS  PubMed  Google Scholar 

  53. Wang H, Gao N, Li Z, Yang Z, Zhang T (2016) Autophagy alleviates melamine-induced cell death in PC12 cells via decreasing ROS level. Mol Neurobiol 53(3):1718–1729. https://doi.org/10.1007/s12035-014-9073-2

    Article  CAS  PubMed  Google Scholar 

  54. Barim-Oz O, Sahin H (2016) Oxidative stress and some biochemical parameters during starvation and refeeding in Astacus leptodactylus (Esch., 1823). Cell Mol Biol 62(13):35–43. https://doi.org/10.14715/cmb/2016.62.13.7

    Article  CAS  PubMed  Google Scholar 

  55. Kovacic P, Osuna JA Jr (2000) Mechanisms of anti-cancer agents: emphasis on oxidative stress and electron transfer. Curr Pharm Des 6(3):277–309

    Article  CAS  PubMed  Google Scholar 

  56. Miyazaki S, Kakutani K, Yurube T, Maeno K, Takada T, Zhang Z, Kurakawa T, Terashima Y, Ito M, Ueha T, Matsushita T, Kuroda R, Kurosaka M, Nishida K (2015) Recombinant human SIRT1 protects against nutrient deprivation-induced mitochondrial apoptosis through autophagy induction in human intervertebral disc nucleus pulposus cells. Arthritis Res Ther 17:253. https://doi.org/10.1186/s13075-015-0763-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192(7):1001–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vandamme M, Robert E, Lerondel S, Sarron V, Ries D, Dozias S, Sobilo J, Gosset D, Kieda C, Legrain B, Pouvesle JM, Pape AL (2012) ROS implication in a new antitumor strategy based on non-thermal plasma. Int J Cancer 130(9):2185–2194. https://doi.org/10.1002/ijc.26252

    Article  CAS  PubMed  Google Scholar 

  59. Yin Y, Terauchi Y, Solomon GG, Aizawa S, Rangarajan PN, Yazaki Y, Kadowaki T, Barrett JC (1998) Involvement of p85 in p53-dependent apoptotic response to oxidative stress. Nature 391(6668):707–710. https://doi.org/10.1038/35648

    Article  CAS  PubMed  Google Scholar 

  60. Russo T, Zambrano N, Esposito F, Ammendola R, Cimino F, Fiscella M, Jackman J, O’Connor PM, Anderson CW, Appella E (1995) A p53-independent pathway for activation of WAF1/CIP1 expression following oxidative stress. J Biol Chem 270(49):29386–29391

    Article  CAS  PubMed  Google Scholar 

  61. Kume S, Haneda M, Kanasaki K, Sugimoto T, Araki S, Isono M, Isshiki K, Uzu T, Kashiwagi A, Koya D (2006) Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation. Free Radic Biol Med 40(12):2175–2182. https://doi.org/10.1016/j.freeradbiomed.2006.02.014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31771148), National nature science foundation of Tianjin (14JCQNJC10500) and 111 Project (B08011).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: JF, TZ. Performed the experiments and analyzed the data: JF, HZ, YZ. Wrote the manuscript: JF, TZ. Authors approved final version for publication.

Corresponding author

Correspondence to Tao Zhang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Zhang, H., Zhang, Y. et al. AG1031 induces apoptosis through suppressing SIRT1/p53 pathway in human neuroblastoma cells. Mol Cell Biochem 454, 165–175 (2019). https://doi.org/10.1007/s11010-018-3461-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3461-2

Keywords

Navigation