Advertisement

PI3K–Akt signaling controls PFKFB3 expression during human T-lymphocyte activation

  • Helga Simon-Molas
  • Claudia Arnedo-Pac
  • Pere Fontova
  • Anna Vidal-Alabró
  • Esther Castaño
  • Ana Rodríguez-García
  • Àurea Navarro-Sabaté
  • Núria Lloberas
  • Anna Manzano
  • Ramon Bartrons
Article

Abstract

Lymphocyte activation is associated with rapid increase of both the glycolytic activator fructose 2,6-bisphosphate (Fru-2,6-P2) and the enzyme responsible for its synthesis, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). PFKFB3 gene, which encodes for the most abundant PFK-2 isoenzyme in proliferating tissues, has been found overexpressed during cell activation in several models, including immune cells. However, there is limited knowledge on the pathways underlying PFKFB3 regulation in human T-lymphocytes, and the role of this gene in human immune response. The aim of this work is to elucidate the molecular mechanisms of PFKFB3 induction during human T-lymphocyte activation by mitotic agents. The results obtained showed PFKFB3 induction during human T-lymphocyte activation by mitogens such as phytohemagglutinin (PHA). PFKFB3 increase occurred concomitantly with GLUT-1, HK-II, and PCNA upregulation, showing that mitotic agents induce a metabolic reprograming process that is required for T-cell proliferation. PI3K–Akt pathway inhibitors, Akti-1/2 and LY294002, reduced PFKFB3 gene induction by PHA, as well as Fru-2,6-P2 and lactate production. Moreover, both inhibitors blocked activation and proliferation in response to PHA, showing the importance of PI3K/Akt signaling pathway in the antigen response of T-lymphocytes. These results provide a link between metabolism and T-cell antigen receptor signaling in human lymphocyte biology that can help to better understand the importance of modulating both pathways to target complex diseases involving the activation of the immune system.

Keywords

PFKFB3 PI3K–Akt Mitogens Lymphocytes Glycolysis Metabolism 

Abbreviations

3PO

3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one

7-AAD

7-Aminoactinomycin D

AICD

Activation-induced cell death

CFSE

Carboxyfluorescein succinimidyl ester

ConA

Concanavalin A

FBS

Fetal bovine serum

Fru-2,6-P2

Fructose 2,6-bisphosphate

GLUT-1

Glucose transporter 1

HIF

Hypoxia-inducible factor

HK-II

Hexokinase-II

IL2RA

Interleukin-2 receptor alpha chain

LPS

Lipopolysaccharide

MFI

Mean fluorescence intensity

mTORC1

Mammalian target of rapamycin

mTORC1

Mammalian target of rapamycin complex 1

OXPHOS

Oxidative phosphorylation

PBMCs

Peripheral blood mononuclear cells

PCNA

Proliferating cell nuclear antigen

PFK-1

Phosphofructokinase-1

PFK-2/FBPase-2

6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase

PFKFB3

6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase 3

PHA

Phytohemagglutinin

P-S6

S6 ribosomal protein

TCR

T-cell antigen receptor

Notes

Acknowledgements

We are grateful to B. Torrejón from the Microscopy Unit of Centres Científics i Tecnològics of the Universitat de Barcelona (CCiT-UB) for excellent technical assistance and advice; A. M. Cosialls for technical advice in blood cells cultures; J. L. Rosa and F. Viñals for providing reagents; P. Giménez-Bonafé for English revision and E. Adanero for technical assistance.

Author contributions

RB and AM conceived and designed the experiments; HS, CA, PF, and AV performed the experiments; HS, CA, AM, PF, AV, and EC analyzed the data; NLL, AR, and AN critically commented and revised the work; and HS, RB, and AM wrote the manuscript.

Funding

This work was supported by Instituto de Salud Carlos III—FIS [PI13/0096] and FIS [PI17/00412]—and Fondo Europeo de Desarrollo Regional (FEDER), and by Astellas European Foundation Award (13th European Society of Transplantation). HS was recipient of a fellowship from Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya and AR was recipient of a fellowship from the University of Barcelona.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11010_2018_3325_MOESM1_ESM.docx (4.5 mb)
Supplementary material 1 (DOCX 4587 KB)

References

  1. 1.
    Maciolek JA, Pasternak JA, Wilson HL (2014) Metabolism of activated T lymphocytes. Curr Opin Immunol 27:60–74.  https://doi.org/10.1016/j.coi.2014.01.006 CrossRefPubMedGoogle Scholar
  2. 2.
    Chang CH, Pearce EL (2016) Emerging concepts of T cell metabolism as a target of immunotherapy. Nat Immunol 17(4):364–368.  https://doi.org/10.1038/ni.3415 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Frauwirth KA, Riley JL, Harris MH et al (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16(6):769–777.  https://doi.org/10.1016/S1074-7613(02)00323-0 CrossRefPubMedGoogle Scholar
  4. 4.
    Marko AJ, Miller RA, Kelman A, Frauwirth KA (2010) Induction of glucose metabolism in stimulated T lymphocytes is regulated by mitogen-activated protein kinase signaling. PLoS ONE 5(11):e15425.  https://doi.org/10.1371/journal.pone.0015425 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang R, Dillon CP, Shi LZ et al (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35(6):871–882.  https://doi.org/10.1016/j.immuni.2011.09.021 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Colomer D, Vives-Corrons JL, Pujades A, Bartrons R (1987) Control of phosphofructokinase by fructose 2,6-bisphosphate in B-lymphocytes and B-chronic lymphocytic leukemia cells. Cancer Res 47(7):1859–1862PubMedGoogle Scholar
  7. 7.
    Colomer D, Vives-Corrons JL, Bartrons R (1991) Effect of TPA on fructose 2,6-bisphosphate levels and protein kinase C activity in B-chronic lymphocytic leukemia (B-CLL). Biochim Biophys Acta 1097(4):270–274CrossRefPubMedGoogle Scholar
  8. 8.
    Hue L, Rousseau GG (1993) Fructose 2,6-bisphosphate and the control of glycolysis by growth factors, tumor promoters and oncogenes. Adv Enzyme Regul 33:97–110CrossRefPubMedGoogle Scholar
  9. 9.
    Telang S, Clem BF, Klarer AC, Clem AL, Trent JO, Bucala R et al (2012) Small molecule inhibition of 6-phosphofructo-2-kinase suppresses t cell activation. J Transl Med 10:95.  https://doi.org/10.1186/1479-5876-10-95 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Van Schaftingen E (1987) Fructose 2,6-bisphosphate. Adv Enzymol Relat Areas Mol Biol 59:315–395PubMedGoogle Scholar
  11. 11.
    Okar DA, Manzano A, Navarro-Sabatè A, Riera L, Bartrons R, Lange AJ (2001) PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem Sci 26(1):30–35.  https://doi.org/10.1016/S0968-0004(00)01699-6 CrossRefPubMedGoogle Scholar
  12. 12.
    Sakakibara R, Uemura M, Hirata T, Okamura N, Kato M (1997) Human placental fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase: its isozymic form, expression and characterization. Biosci Biotechnol Biochem 61(11):1949–1952.  https://doi.org/10.1271/bbb.61.1949 CrossRefPubMedGoogle Scholar
  13. 13.
    Hamilton JA, Callaghan MJ, Sutherland RL, Watts CK (1997) Identification of PRG1, a novel progestin-responsive gene with sequence homology to 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Mol Endocrinol 11(4):490–502.  https://doi.org/10.1210/mend.11.4.9909 CrossRefPubMedGoogle Scholar
  14. 14.
    Manzano A, Rosa JL, Ventura F et al (1998) Molecular cloning, expression, and chromosomal localization of a ubiquitously expressed human 6-phosphofructo-2-kinase/ fructose-2, 6-bisphosphatase gene (PFKFB3). Cytogenet Cell Genet 83(3–4):214–217.  https://doi.org/10.1159/000015181 CrossRefPubMedGoogle Scholar
  15. 15.
    Duran J, Obach M, Navarro-Sabate A et al (2009) Pfkfb3 is transcriptionally upregulated in diabetic mouse liver through proliferative signals. FEBS J 276(16):4555–4568.  https://doi.org/10.1111/j.1742-4658.2009.07161.x CrossRefPubMedGoogle Scholar
  16. 16.
    Chesney J, Mitchell R, Benigni F et al (1999) An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. Proc Natl Acad Sci USA 96(6):3047–3052.  https://doi.org/10.1073/pnas.96.6.3047 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Riera L, Manzano A, Navarro-Sabaté A, Perales JC, Bartrons R (2002) Insulin induces PFKFB3 gene expression in HT29 human colon adenocarcinoma cells. Biochim Biophys Acta 1589(2):89–92.  https://doi.org/10.1016/S0167-4889(02)00169-6 CrossRefPubMedGoogle Scholar
  18. 18.
    Calvo MN, Bartrons R, Castaño E, Perales JC, Navarro-Sabaté A, Manzano A (2006) PFKFB3 gene silencing decreases glycolysis, induces cell-cycle delay and inhibits anchorage-independent growth in HeLa cells. FEBS Lett 580(13):3308–3314.  https://doi.org/10.1016/j.febslet.2006.04.093 CrossRefPubMedGoogle Scholar
  19. 19.
    Atsumi T, Chesney J, Metz C et al (2002) High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res 62(20):5881–5887PubMedGoogle Scholar
  20. 20.
    Kessler R, Bleichert F, Warnke JP, Eschrich K (2008) 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) is up-regulated in high-grade astrocytomas. J Neurooncol 86(3):257–264.  https://doi.org/10.1007/s11060-007-9471-7 CrossRefPubMedGoogle Scholar
  21. 21.
    Obach M, Navarro-Sabaté A, Caro J et al (2004) 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J Biol Chem 279(51):53562–53570.  https://doi.org/10.1074/jbc.M406096200 CrossRefPubMedGoogle Scholar
  22. 22.
    Novellasdemunt L, Obach M, Millán-Ariño L et al (2012) Progestins activate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in breast cancer cells. Biochem J 442(2):345–356.  https://doi.org/10.1042/BJ20111418 CrossRefPubMedGoogle Scholar
  23. 23.
    Rodríguez-García A, Samsó P, Fontova P et al (2017) TGF-β1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells. FEBS J 284(20):3437–3454.  https://doi.org/10.1111/febs.14201 CrossRefPubMedGoogle Scholar
  24. 24.
    Ando M, Uehara I, Kogure K et al (2010) Interleukin 6 enhances glycolysis through expression of the glycolytic enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3. J Nippon Med Sch 77(2):97–105.  https://doi.org/10.1272/jnms.77.97 CrossRefPubMedGoogle Scholar
  25. 25.
    Ruiz-García A, Monsalve E, Novellasdemunt L et al (2011) Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J Biol Chem 286(22):19247–19258.  https://doi.org/10.1074/jbc.M110.190298 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Novellasdemunt L, Bultot L, Manzano A et al (2013) PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli. Biochem J 452(3):531–543.  https://doi.org/10.1042/BJ20121886 CrossRefPubMedGoogle Scholar
  27. 27.
    Tawakol A, Singh P, Mojena M et al (2015) HIF-1α and PFKFB3 mediate a tight relationship between proinflammatory activation and anerobic metabolism in atherosclerotic macrophages. Arterioscler Thromb Vasc Biol 35(6):1463–1471.  https://doi.org/10.1161/ATVBAHA.115.305551 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yang Z, Fujii H, Mohan SV, Goronzy JJ, Weyand CM (2013) Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J Exp Med 210(10):2119–2134.  https://doi.org/10.1084/jem.20130252 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jiang H, Shi H, Sun M et al (2016) PFKFB3-driven macrophage glycolytic metabolism is a crucial component of innate antiviral defense. J Immunol 197(7):2880–2890.  https://doi.org/10.4049/jimmunol.1600474 CrossRefPubMedGoogle Scholar
  30. 30.
    Houddane A, Bultot L, Novellasdemunt L et al (2017) Role of Akt/PKB and PFKFB isoenzymes in the control of glycolysis, cell proliferation and protein synthesis in mitogen-stimulated thymocytes. Cell Signal 34:23–37.  https://doi.org/10.1016/j.cellsig.2017.02.019 CrossRefPubMedGoogle Scholar
  31. 31.
    Lloberas N, Rama I, Llaudó I et al (2013) Dendritic cells phenotype fitting under hypoxia or lipopolysaccharide; adenosine 5′-triphosphate-binding cassette transporters far beyond an efflux pump. Clin Exp Immunol 172(3):444–454.  https://doi.org/10.1111/cei.12067 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Simon-Molas H, Calvo-Vidal MN, Castaño E et al (2016) Akt mediates TIGAR induction in HeLa cells following PFKFB3 inhibition. FEBS Lett 590(17):2915–2926.  https://doi.org/10.1002/1873-3468.12338 CrossRefPubMedGoogle Scholar
  33. 33.
    Van Schaftingen E, Lederer B, Bartrons R, Hers HG (1982) A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem 129(1):191–195.  https://doi.org/10.1111/j.1432-1033.1982.tb07039.x CrossRefPubMedGoogle Scholar
  34. 34.
    Gutmann I, Wahlefeld A (1974) L-(+)-lactate determination with lactate dehydrogenase and NAD. In: Bergmeyer H (ed) Methods of enzymatic analysis, 2nd edn. Academic Press, New York, pp 1464–1468Google Scholar
  35. 35.
    Nowell PC (1960) Phytohemagglutinin: an initiator of mitosis in cultures of normal human leukocytes. Cancer Res 20(4):462–466PubMedGoogle Scholar
  36. 36.
    Green DR, Droin N, Pinkoski M (2003) Activation-induced cell death in T cells. Immunol Rev 193:70–81.  https://doi.org/10.1034/j.1600-065X.2003.00051.x CrossRefPubMedGoogle Scholar
  37. 37.
    Wieland E, Shipkova M (2016) Lymphocyte surface molecules as immune activation biomarkers. Clin Biochem 49(4–5):347–354.  https://doi.org/10.1016/j.clinbiochem.2015.07.099 CrossRefPubMedGoogle Scholar
  38. 38.
    Mire-Sluis AR, Wickremasinghe RG, Hoffbrand AV, Timms AM, Francis GE (1987) Human T lymphocytes stimulated by phytohaemagglutinin undergo a single round of cell division without a requirement for interleukin-2 or accessory cells. Immunology 60(1):7–12PubMedPubMedCentralGoogle Scholar
  39. 39.
    Moreno-Aurioles VR, Montaño R, Conde M, Bustos R, Sobrino F (1996) Streptozotocin-induced diabetes increases fructose 2, 6-biphosfhate levels and glucose metabolism in thymus lymphocytes. Life Sci 58(6):477–484.  https://doi.org/10.1016/0024-3205(95)02312-7 CrossRefPubMedGoogle Scholar
  40. 40.
    Chakrabarti R, Jung CY, Lee TP, Liu H, Mookerjee BK (1994) Changes in glucose transport and transporter isoforms during the activation of human peripheral blood lymphocytes by phytohemagglutinin. J Immunol 152(6):2660–2668PubMedGoogle Scholar
  41. 41.
    Liu C, Chapman NM, Karmaus PW, Zeng H, Chi H (2015) mTOR and metabolic regulation of conventional and regulatory T cells. J Leukoc Biol 97(5):837–847.  https://doi.org/10.1189/jlb.2RI0814-408R CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Basu S, Hubbard B, Shevach EM (2015) Foxp3-mediated inhibition of Akt inhibits Glut1 (glucose transporter 1) expression in human T regulatory cells. J Leukoc Biol 97(2):279–283.  https://doi.org/10.1189/jlb.2AB0514-273RR CrossRefPubMedGoogle Scholar
  43. 43.
    Siska PJ, van der Windt GJ, Kishton RJ et al (2016) Suppression of Glut1 and glucose metabolism by decreased Akt/mTORC1 signaling drives T cell impairment in B cell leukemia. J Immunol 197(6):2532–2540.  https://doi.org/10.4049/jimmunol.1502464 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Trefely S, Khoo PS, Krycer JR et al (2015) Kinome screen identifies PFKFB3 and glucose metabolism as important regulators of the insulin/insulin-like growth factor (IGF)-1 signaling pathway. J Biol Chem 290(43):25834–25846.  https://doi.org/10.1074/jbc.M115.658815 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Renner K, Geiselhöringer AL, Fante M et al (2015) Metabolic plasticity of human T cells: preserved cytokine production under glucose deprivation or mitochondrial restriction, but 2-deoxy-glucose affects effector functions. Eur J Immunol 45(9):2504–2516.  https://doi.org/10.1002/eji.201545473 CrossRefPubMedGoogle Scholar
  46. 46.
    Nguyen HD, Chatterjee S, Haarberg KM et al (2016) Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation. J Clin Invest 126(4):1337–1352.  https://doi.org/10.1172/JCI82587 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    De Bock K, Georgiadou M, Schoors S et al (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154(3):651–663.  https://doi.org/10.1016/j.cell.2013.06.037 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la SalutUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departament de NefrologiaHospital Universitari de Bellvitge, IDIBELLBarcelonaSpain
  3. 3.Centres Científics i TecnològicsUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations