Skip to main content

Advertisement

Log in

PI3K–Akt signaling controls PFKFB3 expression during human T-lymphocyte activation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Lymphocyte activation is associated with rapid increase of both the glycolytic activator fructose 2,6-bisphosphate (Fru-2,6-P2) and the enzyme responsible for its synthesis, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). PFKFB3 gene, which encodes for the most abundant PFK-2 isoenzyme in proliferating tissues, has been found overexpressed during cell activation in several models, including immune cells. However, there is limited knowledge on the pathways underlying PFKFB3 regulation in human T-lymphocytes, and the role of this gene in human immune response. The aim of this work is to elucidate the molecular mechanisms of PFKFB3 induction during human T-lymphocyte activation by mitotic agents. The results obtained showed PFKFB3 induction during human T-lymphocyte activation by mitogens such as phytohemagglutinin (PHA). PFKFB3 increase occurred concomitantly with GLUT-1, HK-II, and PCNA upregulation, showing that mitotic agents induce a metabolic reprograming process that is required for T-cell proliferation. PI3K–Akt pathway inhibitors, Akti-1/2 and LY294002, reduced PFKFB3 gene induction by PHA, as well as Fru-2,6-P2 and lactate production. Moreover, both inhibitors blocked activation and proliferation in response to PHA, showing the importance of PI3K/Akt signaling pathway in the antigen response of T-lymphocytes. These results provide a link between metabolism and T-cell antigen receptor signaling in human lymphocyte biology that can help to better understand the importance of modulating both pathways to target complex diseases involving the activation of the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

3PO:

3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one

7-AAD:

7-Aminoactinomycin D

AICD:

Activation-induced cell death

CFSE:

Carboxyfluorescein succinimidyl ester

ConA:

Concanavalin A

FBS:

Fetal bovine serum

Fru-2,6-P2 :

Fructose 2,6-bisphosphate

GLUT-1:

Glucose transporter 1

HIF:

Hypoxia-inducible factor

HK-II:

Hexokinase-II

IL2RA:

Interleukin-2 receptor alpha chain

LPS:

Lipopolysaccharide

MFI:

Mean fluorescence intensity

mTORC1:

Mammalian target of rapamycin

mTORC1:

Mammalian target of rapamycin complex 1

OXPHOS:

Oxidative phosphorylation

PBMCs:

Peripheral blood mononuclear cells

PCNA:

Proliferating cell nuclear antigen

PFK-1:

Phosphofructokinase-1

PFK-2/FBPase-2:

6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase

PFKFB3:

6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase 3

PHA:

Phytohemagglutinin

P-S6:

S6 ribosomal protein

TCR:

T-cell antigen receptor

References

  1. Maciolek JA, Pasternak JA, Wilson HL (2014) Metabolism of activated T lymphocytes. Curr Opin Immunol 27:60–74. https://doi.org/10.1016/j.coi.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  2. Chang CH, Pearce EL (2016) Emerging concepts of T cell metabolism as a target of immunotherapy. Nat Immunol 17(4):364–368. https://doi.org/10.1038/ni.3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Frauwirth KA, Riley JL, Harris MH et al (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16(6):769–777. https://doi.org/10.1016/S1074-7613(02)00323-0

    Article  CAS  PubMed  Google Scholar 

  4. Marko AJ, Miller RA, Kelman A, Frauwirth KA (2010) Induction of glucose metabolism in stimulated T lymphocytes is regulated by mitogen-activated protein kinase signaling. PLoS ONE 5(11):e15425. https://doi.org/10.1371/journal.pone.0015425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang R, Dillon CP, Shi LZ et al (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35(6):871–882. https://doi.org/10.1016/j.immuni.2011.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Colomer D, Vives-Corrons JL, Pujades A, Bartrons R (1987) Control of phosphofructokinase by fructose 2,6-bisphosphate in B-lymphocytes and B-chronic lymphocytic leukemia cells. Cancer Res 47(7):1859–1862

    CAS  PubMed  Google Scholar 

  7. Colomer D, Vives-Corrons JL, Bartrons R (1991) Effect of TPA on fructose 2,6-bisphosphate levels and protein kinase C activity in B-chronic lymphocytic leukemia (B-CLL). Biochim Biophys Acta 1097(4):270–274

    Article  CAS  Google Scholar 

  8. Hue L, Rousseau GG (1993) Fructose 2,6-bisphosphate and the control of glycolysis by growth factors, tumor promoters and oncogenes. Adv Enzyme Regul 33:97–110

    Article  CAS  Google Scholar 

  9. Telang S, Clem BF, Klarer AC, Clem AL, Trent JO, Bucala R et al (2012) Small molecule inhibition of 6-phosphofructo-2-kinase suppresses t cell activation. J Transl Med 10:95. https://doi.org/10.1186/1479-5876-10-95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Schaftingen E (1987) Fructose 2,6-bisphosphate. Adv Enzymol Relat Areas Mol Biol 59:315–395

    PubMed  Google Scholar 

  11. Okar DA, Manzano A, Navarro-Sabatè A, Riera L, Bartrons R, Lange AJ (2001) PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem Sci 26(1):30–35. https://doi.org/10.1016/S0968-0004(00)01699-6

    Article  CAS  PubMed  Google Scholar 

  12. Sakakibara R, Uemura M, Hirata T, Okamura N, Kato M (1997) Human placental fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase: its isozymic form, expression and characterization. Biosci Biotechnol Biochem 61(11):1949–1952. https://doi.org/10.1271/bbb.61.1949

    Article  CAS  PubMed  Google Scholar 

  13. Hamilton JA, Callaghan MJ, Sutherland RL, Watts CK (1997) Identification of PRG1, a novel progestin-responsive gene with sequence homology to 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Mol Endocrinol 11(4):490–502. https://doi.org/10.1210/mend.11.4.9909

    Article  CAS  PubMed  Google Scholar 

  14. Manzano A, Rosa JL, Ventura F et al (1998) Molecular cloning, expression, and chromosomal localization of a ubiquitously expressed human 6-phosphofructo-2-kinase/ fructose-2, 6-bisphosphatase gene (PFKFB3). Cytogenet Cell Genet 83(3–4):214–217. https://doi.org/10.1159/000015181

    Article  CAS  PubMed  Google Scholar 

  15. Duran J, Obach M, Navarro-Sabate A et al (2009) Pfkfb3 is transcriptionally upregulated in diabetic mouse liver through proliferative signals. FEBS J 276(16):4555–4568. https://doi.org/10.1111/j.1742-4658.2009.07161.x

    Article  CAS  PubMed  Google Scholar 

  16. Chesney J, Mitchell R, Benigni F et al (1999) An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. Proc Natl Acad Sci USA 96(6):3047–3052. https://doi.org/10.1073/pnas.96.6.3047

    Article  CAS  PubMed  Google Scholar 

  17. Riera L, Manzano A, Navarro-Sabaté A, Perales JC, Bartrons R (2002) Insulin induces PFKFB3 gene expression in HT29 human colon adenocarcinoma cells. Biochim Biophys Acta 1589(2):89–92. https://doi.org/10.1016/S0167-4889(02)00169-6

    Article  CAS  PubMed  Google Scholar 

  18. Calvo MN, Bartrons R, Castaño E, Perales JC, Navarro-Sabaté A, Manzano A (2006) PFKFB3 gene silencing decreases glycolysis, induces cell-cycle delay and inhibits anchorage-independent growth in HeLa cells. FEBS Lett 580(13):3308–3314. https://doi.org/10.1016/j.febslet.2006.04.093

    Article  CAS  PubMed  Google Scholar 

  19. Atsumi T, Chesney J, Metz C et al (2002) High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res 62(20):5881–5887

    CAS  PubMed  Google Scholar 

  20. Kessler R, Bleichert F, Warnke JP, Eschrich K (2008) 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) is up-regulated in high-grade astrocytomas. J Neurooncol 86(3):257–264. https://doi.org/10.1007/s11060-007-9471-7

    Article  CAS  PubMed  Google Scholar 

  21. Obach M, Navarro-Sabaté A, Caro J et al (2004) 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J Biol Chem 279(51):53562–53570. https://doi.org/10.1074/jbc.M406096200

    Article  CAS  PubMed  Google Scholar 

  22. Novellasdemunt L, Obach M, Millán-Ariño L et al (2012) Progestins activate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in breast cancer cells. Biochem J 442(2):345–356. https://doi.org/10.1042/BJ20111418

    Article  CAS  PubMed  Google Scholar 

  23. Rodríguez-García A, Samsó P, Fontova P et al (2017) TGF-β1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells. FEBS J 284(20):3437–3454. https://doi.org/10.1111/febs.14201

    Article  CAS  PubMed  Google Scholar 

  24. Ando M, Uehara I, Kogure K et al (2010) Interleukin 6 enhances glycolysis through expression of the glycolytic enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3. J Nippon Med Sch 77(2):97–105. https://doi.org/10.1272/jnms.77.97

    Article  CAS  PubMed  Google Scholar 

  25. Ruiz-García A, Monsalve E, Novellasdemunt L et al (2011) Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J Biol Chem 286(22):19247–19258. https://doi.org/10.1074/jbc.M110.190298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Novellasdemunt L, Bultot L, Manzano A et al (2013) PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli. Biochem J 452(3):531–543. https://doi.org/10.1042/BJ20121886

    Article  CAS  PubMed  Google Scholar 

  27. Tawakol A, Singh P, Mojena M et al (2015) HIF-1α and PFKFB3 mediate a tight relationship between proinflammatory activation and anerobic metabolism in atherosclerotic macrophages. Arterioscler Thromb Vasc Biol 35(6):1463–1471. https://doi.org/10.1161/ATVBAHA.115.305551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang Z, Fujii H, Mohan SV, Goronzy JJ, Weyand CM (2013) Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J Exp Med 210(10):2119–2134. https://doi.org/10.1084/jem.20130252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang H, Shi H, Sun M et al (2016) PFKFB3-driven macrophage glycolytic metabolism is a crucial component of innate antiviral defense. J Immunol 197(7):2880–2890. https://doi.org/10.4049/jimmunol.1600474

    Article  CAS  PubMed  Google Scholar 

  30. Houddane A, Bultot L, Novellasdemunt L et al (2017) Role of Akt/PKB and PFKFB isoenzymes in the control of glycolysis, cell proliferation and protein synthesis in mitogen-stimulated thymocytes. Cell Signal 34:23–37. https://doi.org/10.1016/j.cellsig.2017.02.019

    Article  CAS  PubMed  Google Scholar 

  31. Lloberas N, Rama I, Llaudó I et al (2013) Dendritic cells phenotype fitting under hypoxia or lipopolysaccharide; adenosine 5′-triphosphate-binding cassette transporters far beyond an efflux pump. Clin Exp Immunol 172(3):444–454. https://doi.org/10.1111/cei.12067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Simon-Molas H, Calvo-Vidal MN, Castaño E et al (2016) Akt mediates TIGAR induction in HeLa cells following PFKFB3 inhibition. FEBS Lett 590(17):2915–2926. https://doi.org/10.1002/1873-3468.12338

    Article  CAS  PubMed  Google Scholar 

  33. Van Schaftingen E, Lederer B, Bartrons R, Hers HG (1982) A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem 129(1):191–195. https://doi.org/10.1111/j.1432-1033.1982.tb07039.x

    Article  PubMed  Google Scholar 

  34. Gutmann I, Wahlefeld A (1974) L-(+)-lactate determination with lactate dehydrogenase and NAD. In: Bergmeyer H (ed) Methods of enzymatic analysis, 2nd edn. Academic Press, New York, pp 1464–1468

    Google Scholar 

  35. Nowell PC (1960) Phytohemagglutinin: an initiator of mitosis in cultures of normal human leukocytes. Cancer Res 20(4):462–466

    CAS  PubMed  Google Scholar 

  36. Green DR, Droin N, Pinkoski M (2003) Activation-induced cell death in T cells. Immunol Rev 193:70–81. https://doi.org/10.1034/j.1600-065X.2003.00051.x

    Article  CAS  PubMed  Google Scholar 

  37. Wieland E, Shipkova M (2016) Lymphocyte surface molecules as immune activation biomarkers. Clin Biochem 49(4–5):347–354. https://doi.org/10.1016/j.clinbiochem.2015.07.099

    Article  CAS  PubMed  Google Scholar 

  38. Mire-Sluis AR, Wickremasinghe RG, Hoffbrand AV, Timms AM, Francis GE (1987) Human T lymphocytes stimulated by phytohaemagglutinin undergo a single round of cell division without a requirement for interleukin-2 or accessory cells. Immunology 60(1):7–12

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Moreno-Aurioles VR, Montaño R, Conde M, Bustos R, Sobrino F (1996) Streptozotocin-induced diabetes increases fructose 2, 6-biphosfhate levels and glucose metabolism in thymus lymphocytes. Life Sci 58(6):477–484. https://doi.org/10.1016/0024-3205(95)02312-7

    Article  CAS  PubMed  Google Scholar 

  40. Chakrabarti R, Jung CY, Lee TP, Liu H, Mookerjee BK (1994) Changes in glucose transport and transporter isoforms during the activation of human peripheral blood lymphocytes by phytohemagglutinin. J Immunol 152(6):2660–2668

    CAS  PubMed  Google Scholar 

  41. Liu C, Chapman NM, Karmaus PW, Zeng H, Chi H (2015) mTOR and metabolic regulation of conventional and regulatory T cells. J Leukoc Biol 97(5):837–847. https://doi.org/10.1189/jlb.2RI0814-408R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Basu S, Hubbard B, Shevach EM (2015) Foxp3-mediated inhibition of Akt inhibits Glut1 (glucose transporter 1) expression in human T regulatory cells. J Leukoc Biol 97(2):279–283. https://doi.org/10.1189/jlb.2AB0514-273RR

    Article  CAS  PubMed  Google Scholar 

  43. Siska PJ, van der Windt GJ, Kishton RJ et al (2016) Suppression of Glut1 and glucose metabolism by decreased Akt/mTORC1 signaling drives T cell impairment in B cell leukemia. J Immunol 197(6):2532–2540. https://doi.org/10.4049/jimmunol.1502464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Trefely S, Khoo PS, Krycer JR et al (2015) Kinome screen identifies PFKFB3 and glucose metabolism as important regulators of the insulin/insulin-like growth factor (IGF)-1 signaling pathway. J Biol Chem 290(43):25834–25846. https://doi.org/10.1074/jbc.M115.658815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Renner K, Geiselhöringer AL, Fante M et al (2015) Metabolic plasticity of human T cells: preserved cytokine production under glucose deprivation or mitochondrial restriction, but 2-deoxy-glucose affects effector functions. Eur J Immunol 45(9):2504–2516. https://doi.org/10.1002/eji.201545473

    Article  CAS  PubMed  Google Scholar 

  46. Nguyen HD, Chatterjee S, Haarberg KM et al (2016) Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation. J Clin Invest 126(4):1337–1352. https://doi.org/10.1172/JCI82587

    Article  PubMed  PubMed Central  Google Scholar 

  47. De Bock K, Georgiadou M, Schoors S et al (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154(3):651–663. https://doi.org/10.1016/j.cell.2013.06.037

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Torrejón from the Microscopy Unit of Centres Científics i Tecnològics of the Universitat de Barcelona (CCiT-UB) for excellent technical assistance and advice; A. M. Cosialls for technical advice in blood cells cultures; J. L. Rosa and F. Viñals for providing reagents; P. Giménez-Bonafé for English revision and E. Adanero for technical assistance.

Funding

This work was supported by Instituto de Salud Carlos III—FIS [PI13/0096] and FIS [PI17/00412]—and Fondo Europeo de Desarrollo Regional (FEDER), and by Astellas European Foundation Award (13th European Society of Transplantation). HS was recipient of a fellowship from Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya and AR was recipient of a fellowship from the University of Barcelona.

Author information

Authors and Affiliations

Authors

Contributions

RB and AM conceived and designed the experiments; HS, CA, PF, and AV performed the experiments; HS, CA, AM, PF, AV, and EC analyzed the data; NLL, AR, and AN critically commented and revised the work; and HS, RB, and AM wrote the manuscript.

Corresponding author

Correspondence to Ramon Bartrons.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Helga Simon-Molas and Claudia Arnedo-Pac have contributed equally to this work.

Anna Manzano and Ramon Bartrons share senior co-authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4587 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon-Molas, H., Arnedo-Pac, C., Fontova, P. et al. PI3K–Akt signaling controls PFKFB3 expression during human T-lymphocyte activation. Mol Cell Biochem 448, 187–197 (2018). https://doi.org/10.1007/s11010-018-3325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3325-9

Keywords

Navigation