Skip to main content
Log in

Changes in metabolic proteins in ex vivo rat retina during glutamate-induced neural progenitor cell induction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Understanding how energy metabolism and related proteins influence neural progenitor cells in adult tissues is critical for developing new strategies in clinical tissue regeneration therapy. We have recently reported that a subtoxic concentration of glutamate-induced neural progenitor cells in the mature ex vivo rat retina. We herein explore changes in the metabolic pathways during the process. We firstly observed an increase in lactate and lactate dehydrogenase concentration in the glutamate-treated retina. We then investigated the levels of glycolytic enzymes and confirmed significant upregulation of pyruvate kinase M type (PKM), especially PKM2, enolase, phosphoglycerate mutase 1 (PGAM1), and inosine-5′-monophosphate dehydrogenase (IMPDH1) in the glutamate-treated retina compared to the untreated retina. An analysis of the subcellular localization of PKM2 revealed nuclear translocation in the treated retina, which has been reported to regulate cell cycle proliferation and glycolytic enzymes. Our findings indicate that the mature rat retina undergoes an increase in aerobic glycolysis. PKM2, both in the cytoplasm and in the nucleus, may thus play an important role during neural progenitor cell induction, as it does in other proliferating cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Geschwind DH, Ou J, Easterday MC, Dougherty JD, Jackson RL, Chen Z, Antoine H, Terskikh A, Weissman IL, Nelson SF, Kornblum HI (2001) A genetic analysis of neural progenitor differentiation. Neuron 29:325–339

    Article  CAS  PubMed  Google Scholar 

  2. Karsten SL, Kudo LC, Jackson R, Sabatti C, Kornblum HI, Geschwind DH (2003) Global analysis of gene expression in neural progenitors reveals specific cell-cycle, signaling, and metabolic networks. Dev Biol 261:165–182

    Article  CAS  PubMed  Google Scholar 

  3. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR (2002) A stem cell molecular signature. Science 298:601–604

    Article  CAS  PubMed  Google Scholar 

  4. Agathocleous M, Love NK, Randlett O, Harris JJ, Liu J, Murray AJ, Harris WA (2012) Metabolic differentiation in the embryonic retina. Nat Cell Biol 14:859–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fischer AJ, Reh TA (2001) Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4:247–252

    Article  CAS  PubMed  Google Scholar 

  6. Takeda M, Takamiya A, Jiao JW, Cho KS, Trevino SG, Matsuda T, Chen DF (2008) Alpha-aminoadipate induces progenitor cell properties of Müller glia in adult mice. Invest Ophthalmol Vis Sci 49:1142–1150

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tokuda K, Kuramitsu Y, Byron B, Kitagawa T, Tokuda N, Kobayashi D, Nagayama M, Araki N, Sonoda KH, Nakamura K (2015) Up-regulation of DRP-3 long isoform during the induction of neural progenitor cells by glutamate treatment in the ex vivo rat retina. Biochem Biophys Res Commun 463:593–599

    Article  CAS  PubMed  Google Scholar 

  8. Tokuda K, Zorumski CF, Izumi Y (2009) Involvement of illumination in indocyanine green toxicity after its washout in the ex vivo rat retina. Retina 29:371–379

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  10. Kuramitsu Y, Harada T, Takashima M, Yokoyama Y, Hidaka I, Iizuka N, Toda T, Fujimoto M, Zhang X, Sakaida I, Okita K, Oka M, Nakamura K (2006) Increased expression and phosphorylation of liver glutamine synthetase in well-differentiated hepatocellular carcinoma tissues from patients infected with hepatitis C virus. Electrophoresis 27:1651–1658

    Article  CAS  PubMed  Google Scholar 

  11. Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28:721–733

    Article  CAS  PubMed  Google Scholar 

  12. Candelario KM, Shuttleworth CW, Cunningham LA (2013) Neural stem/progenitor cells display a low requirement for oxidative metabolism independent of hypoxia inducible factor-1alpha expression. J Neurochem 125:420–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang HJ, Hsieh YJ, Cheng WC, Lin CP, Lin YS, Yang SF, Chen CC, Izumiya Y, Yu JS, Kung HJ, Wang WC (2014) JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1α-mediated glucose metabolism. Proc Natl Acad Sci USA 111:279–284

    Article  CAS  PubMed  Google Scholar 

  14. Bani-Yaghoub M, Felker JM, Ozog MA, Bechberger JF, Naus CC (2001) Array analysis of the genes regulated during neuronal differentiation of human embryonal cells. Biochem Cell Biol 79:387–398

    Article  CAS  PubMed  Google Scholar 

  15. Venkatesan A, Uzasci L, Chen Z, Rajbhandari L, Anderson C, Lee MH, Bianchet MA, Cotter R, Song H, Nath A (2011) Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: role for nitrotyrosination. Mol Brain 4:28. doi:10.1186/1756-6606-4-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Durany N, Joseph J, Campo E, Molina R, Carreras J (1997) Phosphoglycerate mutase, 2,3-bisphosphoglycerate phosphatase and enolase activity and isoenzymes in lung, colon and liver carcinomas. Br J Cancer 75:969–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K, Lu Z (2011) Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature 480:118–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McLean JE, Hamaguchi N, Belenky P, Mortimer SE, Stanton M, Hedstrom L (2004) Inosine 5′-monophosphate dehydrogenase binds nucleic acids in vitro and in vivo. Biochem J 379:243–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taniguchi K, Ito Y, Sugito N, Kumazaki M, Shinohara H, Yamada N, Nakagawa Y, Sugiyama T, Futamura M, Otsuki Y, Yoshida K, Uchiyama K, Akao Y (2015) Organ-specific PTB1-associated microRNAs determine expression of pyruvate kinase isoforms. Sci Rep 5:8647. doi:10.1038/srep08647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Noguchi T, Yamada K, Inoue H, Matsuda T, Tanaka T (1987) The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J Biol Chem 262:14366–14371

    CAS  PubMed  Google Scholar 

  21. Noguchi T, Inoue H, Tanaka T (1986) The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem 261:13807–13812

    CAS  PubMed  Google Scholar 

  22. Jurica MS, Mesecar A, Heath PJ, Shi W, Nowak T, Stoddard BL (1998) The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 6:195–210

    Article  CAS  PubMed  Google Scholar 

  23. Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, Christofk HR, Wagner G, Rabinowitz JD, Asara JM, Cantley LC (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329:1492–1499

    Article  CAS  PubMed  Google Scholar 

  24. Wisniewska MB (2013) Physiological role of β-catenin/TCF signaling in neurons of the adult brain. Neurochem Res 38:1144–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao X, Wang H, Yang JJ, Liu X, Liu ZR (2012) Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell 45:598–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis CA, Aldape K, Cantley LC, Lu Z (2012) ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol 14:1295–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fothergill-Gilmore LA, Watson HC (1990) Phosphoglycerate mutases. Biochem Soc Trans 18:190–193

    Article  CAS  PubMed  Google Scholar 

  28. Yalowitz JA, Jayaram HN (2000) Molecular targets of guanine nucleotides in differentiation, proliferation and apoptosis. Anticancer Res 20:2329–2338

    CAS  PubMed  Google Scholar 

  29. Natsumeda Y, Ohno S, Kawasaki H, Konno Y, Weber G, Suzuki K (1990) Two distinct cDNAs for human IMP dehydrogenase. J Biol Chem 265:5292–5295

    CAS  PubMed  Google Scholar 

  30. Bowne SJ, Sullivan LS, Mortimer SE, Hedstrom L, Zhu J, Spellicy CJ, Gire AI, Hughbanks-Wheaton D, Birch DG, Lewis RA, Heckenlively JR, Daiger SP (2006) Spectrum and frequency of mutations in IMPDH1 associated with autosomal dominant retinitis pigmentosa and Leber congenital amaurosis. Invest Ophthalmol Vis Sci 47:34–42

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mortimer SE, Xu D, McGrew D, Hamaguchi N, Lim HC, Bowne SJ, Daiger SP, Hedstrom L (2008) IMP dehydrogenase type 1 associates with polyribosomes translating rhodopsin mRNA. J Biol Chem 283:36354–36360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bowne SJ, Sullivan LS, Blanton SH, Cepko CL, Blackshaw S, Birch DG, Hughbanks-Wheaton D, Heckenlively JR, Daiger SP (2002) Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) cause the RP10 form of autosomal dominant retinitis pigmentosa. Hum Mol Genet 11:559–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kennan A, Aherne A, Palfi A, Humphries M, McKee A, Stitt A, Simpson DA, Demtroder K, Orntoft T, Ayuso C, Kenna PF, Farrar GJ, Humphries P (2002) Identification of an IMPDH1 mutation in autosomal dominant retinitis pigmentosa (RP10) revealed following comparative microarray analysis of transcripts derived from retinas of wild-type and Rho(-/-) mice. Hum Mol Genet 11:547–557

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Yukari Mizuno and Shizuka Murata for technical assistance and support. Immunoblot detection by LAS-1000 and colorimetric measurement by iMark were carried out at the Gene Research Centre of Yamaguchi University. This work was supported by Grants-in-Aid from the Ministry of Education, Science, Sports, and Culture of Japan (No. 26293373 to Koh-Hei Sonoda).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Kuramitsu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokuda, K., Kuramitsu, Y., Baron, B. et al. Changes in metabolic proteins in ex vivo rat retina during glutamate-induced neural progenitor cell induction. Mol Cell Biochem 419, 177–184 (2016). https://doi.org/10.1007/s11010-016-2769-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2769-z

Keywords

Navigation