Skip to main content

Stem Cell Therapy for Parkinson’s Disease

  • Chapter
  • First Online:
Stem Cell-based Therapy for Neurodegenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1266))

Abstract

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases caused by specific degeneration and loss of dopamine neurons in substantia nigra of the midbrain. PD is clinically characterized by motor dysfunctions and non-motor symptoms. Even though the dopamine replacement can improve the motor symptoms of PD, it cannot stop the neural degeneration and disease progression. Electrical deep brain stimulation (DBS) to the specific brain areas can improve the symptoms, but it eventually loses the effectiveness. Stem cell transplantation provides an exciting potential for the treatment of PD. Current available cell sources include neural stem cells (NSCs) from fetal brain tissues, human embryonic stem cells (hESCs) isolated from blastocyst, and induced pluripotent stem cells (iPSCs) reprogrammed from the somatic cells such as the fibroblasts and blood cells. Here, we summarize the research advance in experimental and clinical studies to transplant these cells into animal models and clinical patients, and specifically highlight the studies to use hESCs /iPSCs-derived dopaminergic precursor cells and dopamine neurons for the treatment of PD, at last propose future challenges for developing clinical-grade dopaminergic cells for treating the PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • S. Bandres-Ciga, M. Diez-Fairen, J.J. Kim, A.B. Singleton, Genetics of Parkinson's disease: an introspection of its journey towards precision medicine. Neurobiol. Dis. 137, 104782 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R.A. Barker, J. Barrett, S.L. Mason, A. Bjorklund, Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol. 12, 84–91 (2013)

    CAS  PubMed  Google Scholar 

  • R.A. Barker, M. Parmar, L. Studer, J. Takahashi, Human trials of stem cell-derived dopamine neurons for Parkinson’s disease: dawn of a new era. Cell Stem Cell 21, 569–573 (2017)

    Article  CAS  PubMed  Google Scholar 

  • R. Barzilay, T. Ben-Zur, S. Bulvik, E. Melamed, D. Offen, Lentiviral delivery of LMX1a enhances dopaminergic phenotype in differentiated human bone marrow mesenchymal stem cells. Stem Cells Dev. 18, 591–601 (2009)

    Article  CAS  PubMed  Google Scholar 

  • D. Berg, R.B. Postuma, B. Bloem, P. Chan, B. Dubois, T. Gasser, C.G. Goetz, G.M. Halliday, J. Hardy, A.E. Lang, et al., Time to redefine PD? Introductory statement of the MDS task force on the definition of Parkinson”s disease. Mov. Disord. 29, 454–462 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • F. Blandini, L. Cova, M.T. Armentero, E. Zennaro, G. Levandis, P. Bossolasco, C. Calzarossa, M. Mellone, B. Giuseppe, G.L. Deliliers, et al., Transplantation of undifferentiated human mesenchymal stem cells protects against 6-hydroxydopamine neurotoxicity in the rat. Cell Transplant. 19, 203–217 (2010)

    Article  PubMed  Google Scholar 

  • J. Blanz, P. Saftig, Parkinson's disease: acid-glucocerebrosidase activity and alpha-synuclein clearance. J. Neurochem 139, 198 (2016)

    Article  CAS  PubMed  Google Scholar 

  • M. Caiazzo, M.T. Dell'Anno, E. Dvoretskova, D. Lazarevic, S. Taverna, D. Leo, T.D. Sotnikova, A. Menegon, P. Roncaglia, G. Colciago, et al., Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476, 224–227 (2011)

    Article  CAS  PubMed  Google Scholar 

  • S.M. Chambers, C.A. Fasano, E.P. Papapetrou, M. Tomishima, M. Sadelain, L. Studer, Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • J.H. Chang, P.H. Tsai, K.Y. Wang, Y.T. Wei, S.H. Chiou, C.Y. Mou, Generation of functional dopaminergic neurons from reprogramming fibroblasts by nonviral-based mesoporous silica nanoparticles. Sci. Rep. 8, 11 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • J.D. Chao Chen, A. Shen, W. Wang, H. Song, Y. Liu, X. Lu, X. Wang, Z. You, Z. Han, F. Han, Transplantation of human umbilical cord blood-derived mononuclear cells induces recovery of motor dysfunction in a rat model of Parkinson's disease. J. Neurorestoratol. 2016(4), 23–33 (2016)

    Google Scholar 

  • M.L. Chen, C.H. Lin, M.J. Lee, R.M. Wu, BST1 rs11724635 interacts with environmental factors to increase the risk of Parkinson’s disease in a Taiwanese population. Parkinsonism Relat. Disord. 20, 280–283 (2014)

    Article  PubMed  Google Scholar 

  • M.F. Chesselet, S. Fleming, F. Mortazavi, B. Meurers, Strengths and limitations of genetic mouse models of Parkinson’s disease. Parkinsonism Relat. Disord. 14(Suppl 2), S84–S87 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  • S.J. Chung, S.M. Armasu, K.J. Anderson, J.M. Biernacka, T.G. Lesnick, D.N. Rider, J.M. Cunningham, J.E. Ahlskog, R. Frigerio, D.M. Maraganore, Genetic susceptibility loci, environmental exposures, and Parkinson’s disease: a case-control study of gene-environment interactions. Parkinsonism Relat. Disord. 19, 595–599 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  • E.T. Courtois, C.G. Castillo, E.G. Seiz, M. Ramos, C. Bueno, I. Liste, A. Martinez-Serrano, In vitro and in vivo enhanced generation of human A9 dopamine neurons from neural stem cells by Bcl-XL. J. Biol. Chem. 285, 9881–9897 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • T.M. Dawson, H.S. Ko, V.L. Dawson, Genetic animal models of Parkinson's disease. Neuron 66, 646–661 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • H. Deng, P. Wang, J. Jankovic, The genetics of Parkinson disease. Ageing Res. Rev. 42, 72–85 (2018)

    Article  CAS  PubMed  Google Scholar 

  • N. Egawa, S. Kitaoka, K. Tsukita, M. Naitoh, K. Takahashi, T. Yamamoto, F. Adachi, T. Kondo, K. Okita, I. Asaka, et al., Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci. Transl. Med. 4, 145ra104 (2012)

    Article  PubMed  CAS  Google Scholar 

  • P.S. Eriksson, E. Perfilieva, T. Bjork-Eriksson, A.M. Alborn, C. Nordborg, D.A. Peterson, F.H. Gage, Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313–1317 (1998)

    Article  CAS  PubMed  Google Scholar 

  • J.R. Evans, S.L. Mason, R.A. Barker, Current status of clinical trials of neural transplantation in Parkinson's disease. Prog. Brain Res. 200, 169–198 (2012)

    Article  PubMed  Google Scholar 

  • R. Fang, K. Liu, Y. Zhao, H. Li, D. Zhu, Y. Du, C. Xiang, X. Li, H. Liu, Z. Miao, et al., Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts. Cell Stem Cell 15, 488–496 (2014)

    Article  CAS  PubMed  Google Scholar 

  • M.B. Fares, N. Ait-Bouziad, I. Dikiy, M.K. Mbefo, A. Jovicic, A. Kiely, J.L. Holton, S.J. Lee, A.D. Gitler, D. Eliezer, et al., The novel Parkinson's disease linked mutation G51D attenuates in vitro aggregation and membrane binding of alpha-synuclein, and enhances its secretion and nuclear localization in cells. Hum. Mol. Genet. 23, 4491–4509 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S.H. Fox, J.M. Brotchie, The MPTP-lesioned non-human primate models of Parkinson's disease. Past, present, and future. Prog. Brain Res. 184, 133–157 (2010)

    Article  CAS  PubMed  Google Scholar 

  • C.R. Freed, P.E. Greene, R.E. Breeze, W.Y. Tsai, W. DuMouchel, R. Kao, S. Dillon, H. Winfield, S. Culver, J.Q. Trojanowski, et al., Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N. Engl. J. Med. 344, 710–719 (2001)

    Article  CAS  PubMed  Google Scholar 

  • I. Garitaonandia, R. Gonzalez, G. Sherman, A. Semechkin, A. Evans, R. Kern, Novel approach to stem cell therapy in Parkinson's disease. Stem Cells Dev. 27, 951–957 (2018)

    Article  PubMed  Google Scholar 

  • A. Gonzalez-Horta, The interaction of alpha-synuclein with membranes and its implication in Parkinson's disease: a literature review. Nat. Prod. Commun. 10, 1775–1778 (2015)

    PubMed  Google Scholar 

  • S. Grealish, E. Diguet, A. Kirkeby, B. Mattsson, A. Heuer, Y. Bramoulle, N. Van Camp, A.L. Perrier, P. Hantraye, A. Bjorklund, et al., Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson's disease. Cell Stem Cell 15, 653–665 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D.A. Grimes, F. Han, M. Panisset, L. Racacho, F. Xiao, R. Zou, K. Westaff, D.E. Bulman, Translated mutation in the Nurr1 gene as a cause for Parkinson's disease. Mov. Disord. 21, 906–909 (2006)

    Article  PubMed  Google Scholar 

  • D.A. Grimes, L. Racacho, F. Han, M. Panisset, D.E. Bulman, LRRK2 screening in a Canadian Parkinson's disease cohort. Can. J. Neurol. Sci. 34, 336–338 (2007)

    Article  CAS  PubMed  Google Scholar 

  • P. Hagell, P. Brundin, Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J. Neuropathol. Exp. Neurol. 60, 741–752 (2001)

    Article  CAS  PubMed  Google Scholar 

  • P. Hagell, A. Schrag, P. Piccini, M. Jahanshahi, R. Brown, S. Rehncrona, H. Widner, P. Brundin, J.C. Rothwell, P. Odin, et al., Sequential bilateral transplantation in Parkinson's disease: effects of the second graft. Brain 122(Pt 6), 1121–1132 (1999)

    Article  PubMed  Google Scholar 

  • F. Han, The applications of the induced pluripotent stem cells in studying the neurodegenerative diseases. Chin. J. Cell Biol. 34, 13 (2012)

    Google Scholar 

  • F. Han, D. Baremberg, J. Gao, J. Duan, X. Lu, N. Zhang, Q. Chen, Development of Stem Cell-Based Therapy for Parkinson’s Disease. Transl. Neurodegener. 4, 16 (2015a)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • F. Han, W. Wang, B. Chen, C. Chen, S. Li, X. Lu, J. Duan, Y. Zhang, Y.A. Zhang, W. Guo, et al., Human induced pluripotent stem cell-derived neurons improve motor asymmetry in a 6-hydroxydopamine-induced rat model of Parkinson's disease. Cytotherapy 17, 665–679 (2015b)

    Article  CAS  PubMed  Google Scholar 

  • F. Han, D.A. Grimes, F. Li, T. Wang, Z. Yu, N. Song, S. Wu, L. Racacho, D.E. Bulman, Mutations in the glucocerebrosidase gene are common in patients with Parkinson's disease from Eastern Canada. Int. J. Neurosci. 126, 415–421 (2016)

    Article  CAS  PubMed  Google Scholar 

  • F. Han, C. Chen, W. Wang, H. Song, S. Li, J. Duan, X. Lu, S. Wu, N. Zhang, Q. Chen, Human umbilical cord-derived mesenchymal stromal cells ameliorated motor defects of 6-OHDA-induced rat model of Parkinson’s disease. Oncotarget (2018). https://doi.org/10.18632/oncotarget.24103

  • G. Hargus, O. Cooper, M. Deleidi, A. Levy, K. Lee, E. Marlow, A. Yow, F. Soldner, D. Hockemeyer, P.J. Hallett, et al., Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc. Natl. Acad. Sci. U. S. A. 107, 15921–15926 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R. Hass, C. Kasper, S. Bohm, R. Jacobs, Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal 9, 12 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • P. Hou, Y. Li, X. Zhang, C. Liu, J. Guan, H. Li, T. Zhao, J. Ye, W. Yang, K. Liu, et al., Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651–654 (2013)

    Article  CAS  PubMed  Google Scholar 

  • K. Isobe, Z. Cheng, N. Nishio, T. Suganya, Y. Tanaka, S. Ito, Reprint of “iPSCs, aging and age-related diseases”. New Biotechnol. 32, 169–179 (2015)

    Article  CAS  Google Scholar 

  • X.D. Jiaxin Xie, F. Yu, N. Cao, X. Zhang, F. Fang, S. Zhang, Y. Feng, Early intradural microsurgery improves neurological recovery of acute spinal cord injury: a study of 87 cases. J. Neurorestoratol. 6, 152–157 (2018)

    Google Scholar 

  • A. Kadari, M. Lu, M. Li, T. Sekaran, R.P. Thummer, N. Guyette, V. Chu, F. Edenhofer, Excision of viral reprogramming cassettes by Cre protein transduction enables rapid, robust and efficient derivation of transgene-free human induced pluripotent stem cells. Stem Cell Res Ther 5, 47 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • T. Kallur, V. Darsalia, O. Lindvall, Z. Kokaia, Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differentiate extensively to neurons after intrastriatal transplantation in neonatal rats. J. Neurosci. Res. 84, 1630–1644 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Z. Kefalopoulou, M. Politis, P. Piccini, N. Mencacci, K. Bhatia, M. Jahanshahi, H. Widner, S. Rehncrona, P. Brundin, A. Bjorklund, et al., Long-term clinical outcome of fetal cell transplantation for Parkinson disease: Two case reports. JAMA Neurol. 71, 83–87 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • T. Kikuchi, A. Morizane, D. Doi, H. Magotani, H. Onoe, T. Hayashi, H. Mizuma, S. Takara, R. Takahashi, H. Inoue, et al., Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease model. Nature 548, 592–596 (2017)

    Article  CAS  PubMed  Google Scholar 

  • H.T. Kim, I.S. Kim, I.S. Lee, J.P. Lee, E.Y. Snyder, K.I. Park, Human neurospheres derived from the fetal central nervous system are regionally and temporally specified but are not committed. Exp. Neurol. 199, 222–235 (2006)

    Article  CAS  PubMed  Google Scholar 

  • H.J. Kim, E. McMillan, F. Han, C.N. Svendsen, Regionally specified human neural progenitor cells derived from the mesencephalon and forebrain undergo increased neurogenesis following overexpression of ASCL1. Stem Cells 27, 390–398 (2009)

    Article  CAS  PubMed  Google Scholar 

  • H.S. Kim, J. Kim, Y. Jo, D. Jeon, Y.S. Cho, Direct lineage reprogramming of mouse fibroblasts to functional midbrain dopaminergic neuronal progenitors. Stem Cell Res. 12, 60–68 (2014)

    Article  CAS  PubMed  Google Scholar 

  • E. Kiskinis, K. Eggan, Progress toward the clinical application of patient-specific pluripotent stem cells. J. Clin. Invest. 120, 51–59 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • J.B. Koprich, T.H. Johnston, M.G. Reyes, X. Sun, J.M. Brotchie, Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson's disease. Mol. Neurodegener. 5, 43 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • J.H. Kordower, Y. Chu, R.A. Hauser, T.B. Freeman, C.W. Olanow, Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat. Med. 14, 504–506 (2008)

    Article  CAS  PubMed  Google Scholar 

  • S. Kriks, J.W. Shim, J. Piao, Y.M. Ganat, D.R. Wakeman, Z. Xie, L. Carrillo-Reid, G. Auyeung, C. Antonacci, A. Buch, et al., Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 480, 547–551 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S. Lesage, A. Brice, Parkinson's disease: from monogenic forms to genetic susceptibility factors. Hum. Mol. Genet. 18, R48–R59 (2009)

    Article  CAS  PubMed  Google Scholar 

  • J.Y. Li, E. Englund, J.L. Holton, D. Soulet, P. Hagell, A.J. Lees, T. Lashley, N.P. Quinn, S. Rehncrona, A. Bjorklund, et al., Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Y. Li, Q. Zhang, X. Yin, W. Yang, Y. Du, P. Hou, J. Ge, C. Liu, W. Zhang, X. Zhang, et al., Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res. 21, 196–204 (2011)

    Article  CAS  PubMed  Google Scholar 

  • W. Li, E. Englund, H. Widner, B. Mattsson, D. van Westen, J. Lätt, S. Rehncrona, P. Brundin, A. Björklund, O. Lindvall, J.-Y. Li, Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proc. Natl. Acad. Sci. USA 113(23), 6544–6549 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O. Lindvall, Treatment of Parkinson's disease using cell transplantation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 370, 20140370 (2015)

    Article  CAS  Google Scholar 

  • O. Lindvall, A. Bjorklund, Cell therapy in Parkinson's disease. NeuroRx 1, 382–393 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  • O. Lindvall, A. Björklund, Cell therapeutics in Parkinson’s disease. Neurotherapeutics 8, 539–548 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  • O. Lindvall, P. Brundin, H. Widner, S. Rehncrona, B. Gustavii, R. Frackowiak, K.L. Leenders, G. Sawle, J.C. Rothwell, C.D. Marsden, et al., Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science 247, 574–577 (1990)

    Article  CAS  PubMed  Google Scholar 

  • O. Lindvall, G. Sawle, H. Widner, J.C. Rothwell, A. Bjorklund, D. Brooks, P. Brundin, R. Frackowiak, C.D. Marsden, P. Odin, et al., Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson's disease. Ann. Neurol. 35, 172–180 (1994)

    Article  CAS  PubMed  Google Scholar 

  • R. Lister, M. Pelizzola, Y.S. Kida, R.D. Hawkins, J.R. Nery, G. Hon, J. Antosiewicz-Bourget, R. O'Malley, R. Castanon, S. Klugman, et al., Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • T.W. Liu, Z.G. Ma, Y. Zhou, J.X. Xie, Transplantation of mouse CGR8 embryonic stem cells producing GDNF and TH protects against 6-hydroxydopamine neurotoxicity in the rat. Int. J. Biochem. Cell Biol. 45, 1265–1273 (2013)

    Article  CAS  PubMed  Google Scholar 

  • M. Lundblad, M. Decressac, B. Mattsson, A. Bjorklund, Impaired neurotransmission caused by overexpression of alpha-synuclein in nigral dopamine neurons. Proc. Natl. Acad. Sci. U. S. A. 109, 3213–3219 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Y. Ma, C. Tang, T. Chaly, P. Greene, R. Breeze, S. Fahn, C. Freed, V. Dhawan, D. Eidelberg, Dopamine cell implantation in Parkinson's disease: long-term clinical and (18)F-FDOPA PET outcomes. J. Nucl. Med. 51, 7–15 (2010)

    Article  PubMed  Google Scholar 

  • L. Ma, Y. Liu, S.C. Zhang, Directed differentiation of dopamine neurons from human pluripotent stem cells. Methods Mol. Biol. 767, 411–418 (2011)

    Article  CAS  PubMed  Google Scholar 

  • I. Martin, V.L. Dawson, T.M. Dawson, Recent advances in the genetics of Parkinson's disease. Annu. Rev. Genomics Hum. Genet. 12, 301–325 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • I. Martin, J.W. Kim, V.L. Dawson, T.M. Dawson, LRRK2 pathobiology in Parkinson's disease. J. Neurochem. 131, 554–565 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • I. Mendez, A. Viñuela, A. Astradsson, K. Mukhida, P. Hallett, H. Robertson, T. Tierney, R. Holness, A. Dagher, J.Q. Trojanowski, Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat. Med. 14, 507–509 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D. Michel-Monigadon, V. Nerriere-Daguin, X. Leveque, M. Plat, E. Venturi, P. Brachet, P. Naveilhan, I. Neveu, Minocycline promotes long-term survival of neuronal transplant in the brain by inhibiting late microglial activation and T-cell recruitment. Transplantation 89, 816–823 (2010)

    Article  CAS  PubMed  Google Scholar 

  • E. Monni, C. Cusulin, M. Cavallaro, O. Lindvall, Z. Kokaia, Human fetal striatum-derived neural stem (NS) cells differentiate to mature neurons in vitro and in vivo. Curr. Stem Cell Res. Ther. 9, 338–346 (2014)

    Article  CAS  PubMed  Google Scholar 

  • S.F. Moore, N.V. Guzman, S.L. Mason, C.H. Williams-Gray, R.A. Barker, Which patients with Parkinson's disease participate in clinical trials? One centre's experiences with a new cell based therapy trial (TRANSEURO). J. Parkinsons Dis. 4, 671–676 (2014)

    Article  PubMed  Google Scholar 

  • M. Nakagawa, Y. Taniguchi, S. Senda, N. Takizawa, T. Ichisaka, K. Asano, A. Morizane, D. Doi, J. Takahashi, M. Nishizawa, et al., A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci. Rep. 4, 3594 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • M.A. Nalls, V. Plagnol, D.G. Hernandez, M. Sharma, U.M. Sheerin, M. Saad, J. Simon-Sanchez, C. Schulte, S. Lesage, S. Sveinbjornsdottir, et al., Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet 377, 641–649 (2011)

    Article  PubMed  CAS  Google Scholar 

  • K. Okita, Y. Matsumura, Y. Sato, A. Okada, A. Morizane, S. Okamoto, H. Hong, M. Nakagawa, K. Tanabe, K. Tezuka, et al., A more efficient method to generate integration-free human iPS cells. Nat. Methods 8, 409–412 (2011)

    Article  CAS  PubMed  Google Scholar 

  • C.W. Olanow, R.L. Watts, W.C. Koller, An algorithm (decision tree) for the management of Parkinson's disease (2001): treatment guidelines. Neurology 56, S1–S88 (2001)

    Article  CAS  PubMed  Google Scholar 

  • C.W. Olanow, C.G. Goetz, J.H. Kordower, A.J. Stoessl, V. Sossi, M.F. Brin, K.M. Shannon, G.M. Nauert, D.P. Perl, J. Godbold, et al., A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann. Neurol. 54, 403–414 (2003)

    Article  PubMed  Google Scholar 

  • H.J. Park, P.H. Lee, O.Y. Bang, G. Lee, Y.H. Ahn, Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson's disease. J. Neurochem. 107, 141–151 (2008a)

    Article  CAS  PubMed  Google Scholar 

  • I.H. Park, R. Zhao, J.A. West, A. Yabuuchi, H. Huo, T.A. Ince, P.H. Lerou, M.W. Lensch, G.Q. Daley, Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008b)

    Article  CAS  PubMed  Google Scholar 

  • K.L. Paumier, K.C. Luk, F.P. Manfredsson, N.M. Kanaan, J.W. Lipton, T.J. Collier, K. Steece-Collier, C.J. Kemp, S. Celano, E. Schulz, et al., Intrastriatal injection of pre-formed mouse alpha-synuclein fibrils into rats triggers alpha-synuclein pathology and bilateral nigrostriatal degeneration. Neurobiol. Dis. 82, 185–199 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • P. Piccini, D.J. Brooks, A. Bjorklund, R.N. Gunn, P.M. Grasby, O. Rimoldi, P. Brundin, P. Hagell, S. Rehncrona, H. Widner, et al., Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient. Nat. Neurosci. 2, 1137–1140 (1999)

    Article  CAS  PubMed  Google Scholar 

  • N. Plotegher, M.R. Duchen, Crosstalk between lysosomes and mitochondria in Parkinson's disease. Front. Cell Dev. Biol. 5, 110 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • O. Pogarell, W. Koch, F.J. Gildehaus, A. Kupsch, O. Lindvall, W.H. Oertel, K. Tatsch, Long-term assessment of striatal dopamine transporters in Parkinsonian patients with intrastriatal embryonic mesencephalic grafts. Eur. J. Nucl. Med. Mol. Imaging 33, 407–411 (2006)

    Article  PubMed  Google Scholar 

  • M. Politis, K. Wu, C. Loane, N.P. Quinn, D.J. Brooks, S. Rehncrona, A. Bjorklund, O. Lindvall, P. Piccini, Serotonergic neurons mediate dyskinesia side effects in Parkinson's patients with neural transplants. Sci. Transl. Med. 2, 38ra46 (2010)

    Article  PubMed  CAS  Google Scholar 

  • M. Politis, K. Wu, C. Loane, N.P. Quinn, D.J. Brooks, W.H. Oertel, A. Bjorklund, O. Lindvall, P. Piccini, Serotonin neuron loss and nonmotor symptoms continue in Parkinson's patients treated with dopamine grafts. Sci. Transl. Med. 4, 128ra141 (2012)

    Article  Google Scholar 

  • M.H. Polymeropoulos, C. Lavedan, E. Leroy, S.E. Ide, A. Dehejia, A. Dutra, B. Pike, H. Root, J. Rubenstein, R. Boyer, et al., Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997)

    Article  CAS  PubMed  Google Scholar 

  • R.B. Postuma, D. Berg, M. Stern, W. Poewe, C.W. Olanow, W. Oertel, J. Obeso, K. Marek, I. Litvan, A.E. Lang, et al., MDS clinical diagnostic criteria for Parkinson's disease. Mov. Disord. 30, 1591–1601 (2015)

    Article  PubMed  Google Scholar 

  • P. Reinhardt, B. Schmid, L.F. Burbulla, D.C. Schondorf, L. Wagner, M. Glatza, S. Hoing, G. Hargus, S.A. Heck, A. Dhingra, et al., Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 12, 354–367 (2013)

    Article  CAS  PubMed  Google Scholar 

  • D. Ribeiro, R. Laguna Goya, G. Ravindran, R. Vuono, C.L. Parish, C. Foldi, T. Piroth, S. Yang, M. Parmar, G. Nikkhah, et al., Efficient expansion and dopaminergic differentiation of human fetal ventral midbrain neural stem cells by midbrain morphogens. Neurobiol. Dis. 49, 118–127 (2013)

    Article  CAS  PubMed  Google Scholar 

  • F. Safari, G. Hatam, A.B. Behbahani, V. Rezaei, M. Barekati-Mowahed, P. Petramfar, F. Khademi, CRISPR system: a high-throughput toolbox for research and treatment of Parkinson's disease. Cell. Mol. Neurobiol 40, 477 (2019)

    Article  PubMed  CAS  Google Scholar 

  • B. Samata, D. Doi, K. Nishimura, T. Kikuchi, A. Watanabe, Y. Sakamoto, J. Kakuta, Y. Ono, J. Takahashi, Purification of functional human ES and iPSC-derived midbrain dopaminergic progenitors using LRTM1. Nat. Commun. 7, 13097 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • A. Sanchez-Danes, A. Consiglio, Y. Richaud, I. Rodriguez-Piza, B. Dehay, M. Edel, J. Bove, M. Memo, M. Vila, A. Raya, et al., Efficient generation of A9 midbrain dopaminergic neurons by lentiviral delivery of LMX1A in human embryonic stem cells and induced pluripotent stem cells. Hum. Gene Ther. 23, 56–69 (2012)

    Article  CAS  PubMed  Google Scholar 

  • D.A. Sliter, J. Martinez, L. Hao, X. Chen, N. Sun, T.D. Fischer, J.L. Burman, Y. Li, Z. Zhang, D.P. Narendra, et al., Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258–262 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • F. Soldner, J. Laganiere, A.W. Cheng, D. Hockemeyer, Q. Gao, R. Alagappan, V. Khurana, L.I. Golbe, R.H. Myers, S. Lindquist, et al., Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146, 318–331 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • L. Studer, V. Tabar, R.D. McKay, Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci. 1, 290–295 (1998)

    Article  CAS  PubMed  Google Scholar 

  • M. Sundberg, H. Bogetofte, T. Lawson, J. Jansson, G. Smith, A. Astradsson, M. Moore, T. Osborn, O. Cooper, R. Spealman, Improved cell therapy protocols for Parkinson's disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells 31, 1548–1562 (2013)

    Article  CAS  PubMed  Google Scholar 

  • D.J. Surmeier, Determinants of dopaminergic neuron loss in Parkinson's disease. FEBS J. 285, 3657–3668 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • J. Takahashi, Preparing for first human trial of induced pluripotent stem cell-derived cells for Parkinson's disease: an interview with Jun Takahashi. Regen. Med. 14, 93–95 (2019)

    Article  CAS  PubMed  Google Scholar 

  • K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006)

    Article  CAS  PubMed  Google Scholar 

  • K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka, Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007)

    Article  CAS  PubMed  Google Scholar 

  • C.M. Tanner, R. Ottman, S.M. Goldman, J. Ellenberg, P. Chan, R. Mayeux, J.W. Langston, Parkinson disease in twins: an etiologic study. JAMA 281, 341–346 (1999)

    Article  CAS  PubMed  Google Scholar 

  • P. Taupin, F.H. Gage, Adult neurogenesis and neural stem cells of the central nervous system in mammals. J. Neurosci. Res. 69, 745–749 (2002)

    Article  CAS  PubMed  Google Scholar 

  • J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, J.M. Jones, Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998)

    Article  CAS  PubMed  Google Scholar 

  • L.A. Volpicelli-Daley, K.C. Luk, T.P. Patel, S.A. Tanik, D.M. Riddle, A. Stieber, D.F. Meaney, J.Q. Trojanowski, V.M. Lee, Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Q. Wang, X. Xu, J. Li, J. Liu, H. Gu, R. Zhang, J. Chen, Y. Kuang, J. Fei, C. Jiang, et al., Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells. Cell Res. 21, 1424–1435 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • W. Wang, H. Song, A. Shen, C. Chen, Y. Liu, Y. Dong, F. Han, Differentiated cells derived from fetal neural stem cells improve motor deficits in a rat model of Parkinson's disease. Transl. Neurosci. 1, 75–85 (2015)

    Article  Google Scholar 

  • H. Wang, M. La Russa, L.S. Qi, CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. 85, 227–264 (2016)

    Article  CAS  PubMed  Google Scholar 

  • G. Wang, L. Yang, D. Grishin, X. Rios, L.Y. Ye, Y. Hu, K. Li, D. Zhang, G.M. Church, W.T. Pu, Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies. Nat. Protoc. 12, 88–103 (2017)

    Article  CAS  PubMed  Google Scholar 

  • G.K. Wenning, P. Odin, P. Morrish, S. Rehncrona, H. Widner, P. Brundin, J.C. Rothwell, R. Brown, B. Gustavii, P. Hagell, et al., Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson's disease. Ann. Neurol. 42, 95–107 (1997)

    Article  CAS  PubMed  Google Scholar 

  • M. Wernig, J.-P. Zhao, J. Pruszak, E. Hedlund, D. Fu, F. Soldner, V. Broccoli, M. Constantine-Paton, O. Isacson, R. Jaenisch, Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc. Natl. Acad. Sci. 105, 5856–5861 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • J. Xi, Y. Liu, H. Liu, H. Chen, M.E. Emborg, S.C. Zhang, Specification of midbrain dopamine neurons from primate pluripotent stem cells. Stem Cells 30, 1655–1663 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Y. Yan, D. Yang, E.D. Zarnowska, Z. Du, B. Werbel, C. Valliere, R.A. Pearce, J.A. Thomson, S.C. Zhang, Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23, 781–790 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • H. Ye, Q. Wang, Efficient generation of non-integration and feeder-free induced pluripotent stem cells from human peripheral blood cells by sendai virus. Cell. Physiol. Biochem. 50, 1318–1331 (2018)

    Article  CAS  PubMed  Google Scholar 

  • J. Yu, M.A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J.L. Frane, S. Tian, J. Nie, G.A. Jonsdottir, V. Ruotti, R. Stewart, et al., Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Z. Yu, T. Wang, J. Xu, W. Wang, G. Wang, C. Chen, L. Zheng, L. Pan, D. Gong, X. Li, et al., Mutations in the glucocerebrosidase gene are responsible for Chinese patients with Parkinson's disease. J. Hum. Genet. 60, 85–90 (2015)

    Article  CAS  PubMed  Google Scholar 

  • X. Zeng, J. Cai, J. Chen, Y. Luo, Z.B. You, E. Fotter, Y. Wang, B. Harvey, T. Miura, C. Backman, et al., Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22, 925–940 (2004)

    Article  CAS  PubMed  Google Scholar 

  • N. Zhang, B. Chen, W. Wang, C. Chen, J. Kang, S.Q. Deng, B. Zhang, S. Liu, F. Han, Isolation, characterization and multi-lineage differentiation of stem cells from human exfoliated deciduous teeth. Mol. Med. Rep. 14, 95–102 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • J. Zhang, M.L. Culp, J.G. Craver, V. Darley-Usmar, Mitochondrial function and autophagy: integrating proteotoxic, redox, and metabolic stress in Parkinson's disease. J. Neurochem. 144, 691–709 (2018a)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • N. Zhang, X. Lu, S. Wu, X. Li, J. Duan, C. Chen, W. Wang, H. Song, J. Tong, S. Li, Y. Liu, X. Kang, X. Wang, F. Han, Intrastriatal transplantation of stem cells from human exfoliated deciduous teeth reduces motor defects in Parkinsonian rats. Cytotherapy. 20(5), 670–686 (2018b)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China (NSFC 81571241), Department of Science and Technology of Shandong Province, China (2017GSF18104), Science and Technology Innovation Committee of Shenzhen Municipality, China (JCYJ201803051642562) and Basic Research Fund from Natural Science Foundation of Shandong Province, China (ZR2019ZD39). We also thank Wei Wang, Jing Duan, Xianjie Lu, Hao Song, Nan Zhang, and Yanming Liu in our lab for technically editing the references and preparing figures of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabin Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, F., Hu, B. (2020). Stem Cell Therapy for Parkinson’s Disease. In: Han, F., Lu, P.(. (eds) Stem Cell-based Therapy for Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, vol 1266. Springer, Singapore. https://doi.org/10.1007/978-981-15-4370-8_3

Download citation

Publish with us

Policies and ethics