Skip to main content
Log in

Sex differences in the regulation of spatially distinct cardiac mitochondrial subpopulations

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Spatially distinct mitochondrial subpopulation may mediate myocardial pathology through permeability transition pore opening (MPTP). The goal of this study was to assess sex differences on the two spatially distinct mitochondrial subpopulations: subsarcolemmal mitochondria (SSM) and intermyofibrillar mitochondria (IFM) based on morphology, membrane potential, mitochondrial function, oxidative phosphorylation, and MPTP. Aged matched Wistar rats were used to study SSM and IFM. Mitochondrial size was larger in SSM than in IFM in both genders. However, SSM internal complexity, yield, and membrane potential were higher in male than in female. The maximal rate of mitochondrial respiration, states 3 and 4, using glutamate + malate as substrate, were higher in IFM and SSM in the male group compared to female. The respiratory control ratio (RCR—state3/state 4), was not different in both SSM and IFM with glutamate + malate. The ADP:O ratio was found higher in IFM and SSM from female compared to males. When pyruvate was used, state 3 was found unchanged in both IFM and SSM, state 4 was also greater in male IFM compared to female. The RCR increased in the SSM while IFM remained the same. State 4 was higher in male SSM while in the IFM remained the same. The IFM presented a higher Ca2+ retention capacity compared with SSM, however, there was a greater sensitivity to Ca2+-induced MPTP in SSM and IFM in the male group compared to female. In conclusion, our data show that spatially distinct mitochondrial subpopulations have sex-based differences in oxidative phosphorylation, morphology, and calcium retention capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dias FM, Ribeiro RF Jr, Fernandes AA, Fiorim J, Travaglia TC, Vassallo DV, Stefanon I (2014) Na + K+-ATPase activity and K + channels differently contribute to vascular relaxation in male and female rats. PLoS One 9(9):e106345

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dantas AP, Franco MC, Silva-Antonialli MM, Tostes RC, Fortes ZB, Nigro D, Carvalho MH (2004) Gender differences in superoxide generation in microvessels of hypertensive rats: role of NAD(P)H-oxidase. Cardiovasc Res 61:22–29

    Article  CAS  PubMed  Google Scholar 

  3. Vitale C, Mendelsohn ME, Rosano GM (2009) Gender differences in the cardiovascular effect of sex hormones. Nat Rev Cardiol 6:532–542

    Article  CAS  PubMed  Google Scholar 

  4. Murphy E (2011) Estrogen signaling and cardiovascular disease. Circ Res 109:687–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ayaz O, Howlett SE (2015) Testosterone modulates cardiac contraction and calcium homeostasis: cellular and molecular mechanisms. Biol Sex Differ 6:9

    Article  PubMed  PubMed Central  Google Scholar 

  6. Oskui PM, French WJ, Herring MJ, Mayeda GS, Burstein S, Kloner RA (2013) Testosterone and the cardiovascular system: a comprehensive review of the clinical literature. J Am Heart Assoc 2:e000272

    Article  PubMed  PubMed Central  Google Scholar 

  7. Edelman S, Butler J, Hershatter BW, Khan MK (2014) The effects of androgen deprivation therapy on cardiac function and heart failure: implications for management of prostate cancer. Clin Genitourin Cancer 12:399–407

    Article  PubMed  Google Scholar 

  8. Mirdamadi A, Garakyaraghi M, Pourmoghaddas A, Bahmani A, Mahmoudi H, Gharipour M (2014) Beneficial effects of testosterone therapy on functional capacity, cardiovascular parameters, and quality of life in patients with congestive heart failure. Biomed Res Int 2014:392432

    Article  PubMed  PubMed Central  Google Scholar 

  9. Murphy E (2004) Primary and secondary signaling pathways in early preconditioning that converge on the mitochondria to produce cardioprotection. Circ Res 94:7–16

    Article  CAS  PubMed  Google Scholar 

  10. Murphy E, Steenbergen C (2007) Preconditioning: the mitochondrial connection. Annu Rev Physiol 69:51–67

    Article  CAS  PubMed  Google Scholar 

  11. Colom B, Oliver J, Roca P, Garcia-Palmer FJ (2007) Caloric restriction and gender modulate cardiac muscle mitochondrial H2O2 production and oxidative damage. Cardiovasc Res 74:456–465

    Article  CAS  PubMed  Google Scholar 

  12. Stirone C, Duckles SP, Krause DN, Procaccio V (2005) Estrogen increases mitochondrial efficiency and reduces oxidative stress in cerebral blood vessels. Mol Pharmacol 68:959–965

    Article  CAS  PubMed  Google Scholar 

  13. Razmara A, Duckles SP, Krause DN, Procaccio V (2007) Estrogen suppresses brain mitochondrial oxidative stress in female and male rats. Brain Res 1176:71–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Borras C, Gambini J, Vina J (2007) Mitochondrial oxidant generation is involved in determining why females live longer than males. Front Biosci 12:1008–1013

    Article  CAS  PubMed  Google Scholar 

  15. Alaynick WA (2008) Nuclear receptors, mitochondria and lipid metabolism. Mitochondrion 8:329–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    Article  CAS  PubMed  Google Scholar 

  17. Gustafsson R, Tata JR, Lindberg O, Ernster L (1965) The relationship between the structure and activity of rat skeletal muscle mitochondria after thyroidectomy and thyroid hormone treatment. J Cell Biol 26:555–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jones M, Ferrans VJ, Morrow AG, Roberts WC (1975) Ultrastructure of crista supraventricularis muscle in patients with congenital heart diseases associated with right ventricular outflow tract obstruction. Circulation 51:39–67

    Article  CAS  PubMed  Google Scholar 

  19. Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252:8731–8739

    CAS  PubMed  Google Scholar 

  20. Palmer JW, Tandler B, Hoppel CL (1986) Heterogeneous response of subsarcolemmal heart mitochondria to calcium. Am J Physiol 250:H741–H748

    CAS  PubMed  Google Scholar 

  21. Asemu G, O’Connell KA, Cox JW, Dabkowski ER, Xu W, Ribeiro RF, Shekar KC, Hecker PA, Rastogi S, Sabbah HN, Hoppel CL, Stanley WC (2012) Enhanced resistance to permeability transition in interfibrillar cardiac mitochondria in dogs: effects of aging and long term aldosterone infusion. Am J Physiol Heart Circ Physiol 304(4):H514–H528

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hollander JM, Thapa D, Shepherd DL (2014) Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies. Am J Physiol Heart Circ Physiol 307:H1–H14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O’shea KM, Khairallah RJ, Sparagna GC, Xu W, Hecker PA, Robillard-Frayne I, Des Rosiers C, Kristian T, Murphy RC, Fiskum G, Stanley WC (2009) Dietary omega-3 fatty acids alter cardiac mitochondrial phospholipid composition and delay Ca2+-induced permeability transition. J Mol Cell Cardiol 47:819–827

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ribeiro RF Jr, Dabkowski ER, O’Connell KA, Xu W, Galvao TF, Hecker PA, Shekar KC, Stefanon I, Stanley WC (2014) Effect of a high-protein diet on development of heart failure in response to pressure overload. Appl Physiol Nutr Metab 39:238–247

    Article  CAS  PubMed  Google Scholar 

  25. Dabkowski ER, Baseler WA, Williamson CL, Powell M, Razunguzwa TT, Frisbee JC, Hollander JM (2010) Mitochondrial dysfunction in the type 2 diabetic heart is associated with alterations in spatially distinct mitochondrial proteomes. Am J Physiol Heart Circ Physiol 299:H529–H540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Papanicolaou KN, Ngoh GA, Dabkowski ER, O’Connell KA, Ribeiro RF, Stanley WC, Walsh K (2011) Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. Am J Physiol Heart Circ Physiol 302(1):H167–H179

    Article  PubMed  PubMed Central  Google Scholar 

  27. Khairallah RJ, Sparagna GC, Khanna N, O’shea KM, Hecker PA, Kristian T, Fiskum G, Des Rosiers C, Polster BM, Stanley WC (2010) Dietary supplementation with docosahexaenoic acid, but not eicosapentaenoic acid, dramatically alters cardiac mitochondrial phospholipid fatty acid composition and prevents permeability transition. Biochim Biophys Acta 1797:1555–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khairallah RJ, O’shea KM, Brown BH, Khanna N, Des Rosiers C, Stanley WC (2010) Treatment with docosahexaenoic acid, but not eicosapentaenoic acid, delays Ca2+-induced mitochondria permeability transition in normal and hypertrophied myocardium. J Pharmacol Exp Ther 335:155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Galvao TF, Brown BH, Hecker PA, O’Connell KA, O’shea KM, Sabbah HN, Rastogi S, Daneault C, Des Rosiers C, Stanley WC (2011) High intake of saturated fat, but not polyunsaturated fat, improves survival in heart failure despite persistent mitochondrial defects. Cardiovasc Res 93:24–32

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shekar KC, Li L, Dabkowski ER, Xu W, Ribeiro RF Jr, Hecker PA, Recchia FA, Sadygov RG, Willard B, Kasumov T, Stanley WC (2014) Cardiac mitochondrial proteome dynamics with heavy water reveals stable rate of mitochondrial protein synthesis in heart failure despite decline in mitochondrial oxidative capacity. J Mol Cell Cardiol 75:88–97

    Article  CAS  PubMed  Google Scholar 

  31. Lu M, Zhou L, Stanley WC, Cabrera ME, Saidel GM, Yu X (2008) Role of the malate-aspartate shuttle on the metabolic response to myocardial ischemia. J Theor Biol 254:466–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Asemu G, O’Connell KA, Cox JW, Dabkowski ER, Xu W, Ribeiro RF Jr, Shekar KC, Hecker PA, Rastogi S, Sabbah HN, Hoppel CL, Stanley WC (2013) Enhanced resistance to permeability transition in interfibrillar cardiac mitochondria in dogs: effects of aging and long-term aldosterone infusion. Am J Physiol Heart Circ Physiol 304:H514–H528

    Article  CAS  PubMed  Google Scholar 

  33. McCully JD, Rousou AJ, Parker RA, Levitsky S (2007) Age- and gender-related differences in mitochondrial oxygen consumption and calcium with cardioplegia and diazoxide. Ann Thorac Surg 83:1102–1109

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sanz A, Hiona A, Kujoth GC, Seo AY, Hofer T, Kouwenhoven E, Kalani R, Prolla TA, Barja G, Leeuwenburgh C (2007) Evaluation of sex differences on mitochondrial bioenergetics and apoptosis in mice. Exp Gerontol 42:173–182

    Article  CAS  PubMed  Google Scholar 

  35. Lagranha CJ, Deschamps A, Aponte A, Steenbergen C, Murphy E (2010) Sex differences in the phosphorylation of mitochondrial proteins result in reduced production of reactive oxygen species and cardioprotection in females. Circ Res 106:1681–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taylor SW, Fahy E, Zhang B, Glenn GM, Warnock DE, Wiley S, Murphy AN, Gaucher SP, Capaldi RA, Gibson BW, Ghosh SS (2003) Characterization of the human heart mitochondrial proteome. Nat Biotechnol 21:281–286

    Article  CAS  PubMed  Google Scholar 

  38. Rupert BE, Segar JL, Schutte BC, Scholz TD (2000) Metabolic adaptation of the hypertrophied heart: role of the malate/aspartate and alpha-glycerophosphate shuttles. J Mol Cell Cardiol 32:2287–2297

    Article  CAS  PubMed  Google Scholar 

  39. Peterson LR, Soto PF, Herrero P, Mohammed BS, Avidan MS, Schechtman KB, Dence C, Gropler RJ (2008) Impact of gender on the myocardial metabolic response to obesity. JACC Cardiovasc Imaging 1:424–433

    Article  PubMed  PubMed Central  Google Scholar 

  40. Essop MF, Chan WY, Taegtmeyer H (2007) Metabolic gene switching in the murine female heart parallels enhanced mitochondrial respiratory function in response to oxidative stress. FEBS J 274:5278–5284

    Article  CAS  PubMed  Google Scholar 

  41. Razeghi P, Young ME, Ying J, Depre C, Uray IP, Kolesar J, Shipley GL, Moravec CS, Davies PJ, Frazier OH, Taegtmeyer H (2002) Downregulation of metabolic gene expression in failing human heart before and after mechanical unloading. Cardiology 97:203–209

    Article  CAS  PubMed  Google Scholar 

  42. Davila-Roman VG, Vedala G, Herrero P, de las Fuentes L, Rogers JG, Kelly DP, Gropler RJ (2002) Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 40:271–277

    Article  CAS  PubMed  Google Scholar 

  43. Neglia D, De CA, Marraccini P, Natali A, Ciardetti M, Vecoli C, Gastaldelli A, Ciociaro D, Pellegrini P, Testa R, Menichetti L, L’Abbate A, Stanley WC, Recchia FA (2007) Impaired myocardial metabolic reserve and substrate selection flexibility during stress in patients with idiopathic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 293:H3270–H3278

    Article  CAS  PubMed  Google Scholar 

  44. Lionetti V, Stanley WC, Recchia FA (2011) Modulating fatty acid oxidation in heart failure. Cardiovasc Res 90:202–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rattanasopa C, Phungphong S, Wattanapermpool J, Bupha-Intr T (2015) Significant role of estrogen in maintaining cardiac mitochondrial functions. J Steroid Biochem Mol Biol 147:1–9

    Article  CAS  PubMed  Google Scholar 

  46. Koenig H, Goldstone A, Lu CY (1982) Testosterone-mediated sexual dimorphism of the rodent heart. Ventricular lysosomes, mitochondria, and cell growth are modulated by androgens. Circ Res 50:782–787

    Article  CAS  PubMed  Google Scholar 

  47. Er F, Michels G, Gassanov N, Rivero F, Hoppe UC (2004) Testosterone induces cytoprotection by activating ATP-sensitive K+ channels in the cardiac mitochondrial inner membrane. Circulation 110:3100–3107

    Article  CAS  PubMed  Google Scholar 

  48. McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425

    CAS  PubMed  Google Scholar 

  49. Finkel T, Menazza S, Holmstrom KM, Parks RJ, Liu J, Sun J, Liu J, Pan X, Murphy E (2015) The ins and outs of mitochondrial calcium. Circ Res 116:1810–1819

    Article  CAS  PubMed  Google Scholar 

  50. Halestrap AP (2010) A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 38:841–860

    Article  CAS  PubMed  Google Scholar 

  51. Bernardi P (2013) The mitochondrial permeability transition pore: a mystery solved? Front Physiol 4:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Milerova M, Drahota Z, Chytilova A, Tauchmannova K, Houstek J, Ostadal B (2016) Sex difference in the sensitivity of cardiac mitochondrial permeability transition pore to calcium load. Mol Cell Biochem 412:147–154

    Article  CAS  PubMed  Google Scholar 

  53. Lu X, Kwong J, Molkentin JD, Bers DM (2015) Individual cardiac mitochondria undergo rare transient permeability transition pore openings. Circ Res 118(5):834–841

    Article  PubMed  Google Scholar 

  54. dos Santos RL, da Silva FB, Ribeiro RF Jr, Stefanon I (2014) Sex hormones in the cardiovascular system. Horm Mol Biol Clin Investig 18:89–103

    PubMed  Google Scholar 

  55. Lopes RA, Neves KB, Pestana CR, Queiroz AL, Zanotto CZ, Chignalia AZ, Valim YM, Silveira LR, Curti C, Tostes RC (2014) Testosterone induces apoptosis in vascular smooth muscle cells via extrinsic apoptotic pathway with mitochondria-generated reactive oxygen species involvement. Am J Physiol Heart Circ Physiol 306:H1485–H1494

    Article  PubMed  Google Scholar 

  56. Arieli Y, Gursahani H, Eaton MM, Hernandez LA, Schaefer S (2004) Gender modulation of Ca(2+) uptake in cardiac mitochondria. J Mol Cell Cardiol 37:507–513

    Article  CAS  PubMed  Google Scholar 

Download references

Author contribution

Rogério Faustino Ribeiro Júnior, Karoline de Sousa Ronconi, Elis Morra, Patricia Ribeiro do Val Lima and Marcella Leite Porto performed the experiments, analyzed the data, discussed the results, and wrote the paper, Suely Gomes Figueiredo, Dalton Valentim Vassallo, and Ivanita Stefanon were involved in discussing the results and writing the paper.

Funding

This study was supported by Grants from CAPES; CNPq (470479-2013-2), CNPq (455294/2014-3); and FAPES. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério Faustino Ribeiro Jr..

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest related to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, R.F., Ronconi, K.S., Morra, E.A. et al. Sex differences in the regulation of spatially distinct cardiac mitochondrial subpopulations. Mol Cell Biochem 419, 41–51 (2016). https://doi.org/10.1007/s11010-016-2748-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2748-4

Keywords

Navigation