Skip to main content

Advertisement

Log in

Ameliorative effect of melatonin against increased intestinal permeability in diabetic rats: possible involvement of MLCK-dependent MLC phosphorylation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The increased intestinal permeability and functional impairment play an important role in type 2 diabetes (T2D), and melatonin may possess enteroprotection properties. Therefore, we used streptozotocin-induced diabetic rat model to investigate the regulation of intestinal permeability by melatonin. Rats were randomly divided into three groups, including control, diabetes mellitus (DM), and DM rats treated with melatonin. Melatonin was administered (10 mg/kg/day) by gavage for 24 weeks. The DM rats significantly increased the serum fasting blood glucose and lipid levels, which were alleviated by melatonin treatment. Importantly, the intestinal epithelial permeability was significantly increased in DM rats but was ameliorated following treatment with melatonin. These findings also indicated the expression of myosin light chain kinase (MLCK) and phosphorylation of MLC targeting subunit (MYPT) induced myosin light chain (MLC) phosphorylation level was markedly elevated in hyperglycemic and hyperlipidemic status. They were partly associated with down-regulated membrane type 1 and 2 (MT1 and MT2) expression, and up-regulated Rho-associated protein kinase (ROCK) expression and increased extracellular signal-regulated kinase (ERK) phosphorylation. However, the changes in target protein expression were reversed by melatonin. In conclusion, our results show melatonin beneficial effects on impaired intestinal epithelial permeability in T2D by suppressing ERK/MLCK- and ROCK/MCLP-dependent MLC phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bytzer P, Talley NJ, Hammer J, Young LJ, Jones MP, Horowitz M (2002) GI symptoms in diabetes mellitus are associated with both poor glycemic control and diabetic complications. Am J Gastroenterol 97(3):604–611

    Article  PubMed  Google Scholar 

  2. Visser J, Rozing J, Sapone A, Lammers K, Fasano A (2009) Tight junctions, intestinal permeability, and autoimmunity: celiac disease and type 1 diabetes paradigms. Ann N Y Acad Sci 1165:195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arrieta MC, Bistritz L, Meddings JB (2006) Alterations in intestinal permeability. Gut 55:1512–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mooradian AD, Morley JE, Levine AS, Prigge WF, Gebhard RL (1986) Abnormal intestinal permeability to sugars in diabetes mellitus. Diabetologia 29:221–224

    Article  CAS  PubMed  Google Scholar 

  5. Kuitunen M, Saukkonen T, Ilonen J, Akerblom HK, Savilahti E (2002) Intestinal permeability to mannitol and lactulose in children with type 1 diabetes with the HLA-DQB1*02 allele. Autoimmunity 35:365–368

    Article  CAS  PubMed  Google Scholar 

  6. Sapone A, de Magistris L, Pietzak M, Clemente MG, Tripathi A, Cucca F, Lampis R, Kryszak D, Carteni M, Generoso M, Iafusco D, Prisco F, Laghi F, Riegler G, Carratu R, Counts D, Fasano A (2006) Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 55:1443–1449

    Article  CAS  PubMed  Google Scholar 

  7. Xue Y, Wang H, Du M, Zhu MJ (2014) Maternal obesity induces gut inflammation and impairs gut epithelial barrier function in non-obese diabetic mice. J Nutr Biochem 25:758–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Galipeau HJ, Rulli NE, Jury J, Huang X, Araya R, Murray JA, David CS, Chirdo FG, McCoy KD, Verdu EF (2011) Sensitization to gliadin induces moderate enteropathy and insulitis in nonobese diabetic-DQ8 mice. J Immunol 187:4338–4346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Horton F, Wright J, Smith L, Hinton PJ, Robertson MD (2014) Increased intestinal permeability to oral chromium (51Cr)-EDTA in human Type 2 diabetes. Diabet Med 31:559–563

    Article  CAS  PubMed  Google Scholar 

  10. Yu M, Yang S, Qiu Y, Chen G, Wang W, Xu C, Cai W, Sun L, Xiao W, Yang H (2015) Par-3 modulates intestinal epithelial barrier function through regulating intracellular trafficking of occludin and myosin light chain phosphorylation. J Gastroenterol 50:1103–1113

    Article  CAS  PubMed  Google Scholar 

  11. Eutamene H, Theodorou V, Schmidlin F, Tondereau V, Garcia-Villar R, Salvador-Cartier C, Chovet M, Bertrand C, Bueno L (2005) LPS-induced lung inflammation is linked to increased epithelial permeability: role of MLCK. Eur Respir J 25:789–796

    Article  CAS  PubMed  Google Scholar 

  12. Al-Sadi R, Ye D, Dokladny K, Ma TY (2008) Mechanism of IL-1beta—induced increase in intestinal epithelial tight junction permeability. J Immunol 180:5653–5661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suzuki T (2012) Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 70:631–659

    Article  PubMed  Google Scholar 

  14. Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358

    Article  CAS  PubMed  Google Scholar 

  15. Clayburgh DR, Barrett TA, Tang Y, Meddings JB, Van Eldik LJ, Watterson DM, Clarke LL, Mrsny RJ, Turner JR (2005) Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J Clin Invest 115:2702–2715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chew TL, Wolf WA, Gallagher PJ, Matsumura F, Chisholm RL (2002) A fluorescent resonant energy transfer-based biosensor reveals transient and regional myosin light chain kinase activation in lamella and cleavage furrows. J Cell Biol 156:543–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chu J, Miller CT, Kislitsyna K, Laine GA, Stewart RH, Cox CS, Uray KS (2012) Decreased myosin phosphatase target subunit 1(MYPT1) phosphorylation via attenuated rho kinase and zipper-interacting kinase activities in edematous intestinal smooth muscle. Neurogastroenterol Motil 24:257–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang ST, Su H, Zhang Q, Tang HQ, Wang CJ, Zhou Q, Wei W, Zhu HQ, Wang Y (2015) Melatonin attenuates aortic endothelial permeability and arteriosclerosis in streptozotocin-induced diabetic rats: possible role of MLCK- and MLCP-dependent MLC phosphorylation. J Cardiovasc Pharmacol Ther 21:82–92

    Article  PubMed  Google Scholar 

  19. Ma TY, Boivin MA, Ye D, Pedram A, Said HM (2005) Mechanism of TNF-α modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol 288:G422–G430

    Article  CAS  PubMed  Google Scholar 

  20. Al-Sadi R, Guo S, Dokladny K, Smith MA, Ye D, Kaza A, Watterson DM, Ma TY (2012) Mechanism of interleukin-1β induced-increase in mouse intestinal permeability in vivo. J Interferon Cytokine Res 32:474–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Feighery LM, Cochrane SW, Quinn T, Baird AW, O’Toole D, Owens SE, O’Donoghue D, Mrsny RJ, Brayden DJ (2008) Myosin light chain kinase inhibition: correction of increased intestinal epithelial permeability in vitro. Pharm Res 25:1377–1386

    Article  CAS  PubMed  Google Scholar 

  22. Liu X, Xu J, Mei Q, Han L, Huang J (2013) Myosin light chain kinase inhibitor inhibits dextran sulfate sodium-induced colitis in mice. Dig Dis Sci 58:107–114

    Article  CAS  PubMed  Google Scholar 

  23. Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX, Reiter RJ (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 71:2997–3025

    Article  PubMed  Google Scholar 

  24. Raikhlin NT, Kvetnoy IM, Tolkachev VN (1975) Melatonin may be synthesised in enterochromaffin cells. Nature 255:344–345

    Article  CAS  PubMed  Google Scholar 

  25. Paredes SD, Terrón MP, Marchena AM, Barriga C, Pariente JA, Reiter RJ, Rodríguez AB (2007) Effect of exogenous melatonin on viability, ingestion capacity, and free-radical scavenging in heterophils from young and old ringdoves (Streptopelia risoria). Mol Cell Biochem 304:305–314

    Article  CAS  PubMed  Google Scholar 

  26. Park K, Lee Y, Park S, Lee S, Hong Y, Kil Lee S, Hong Y (2010) Synergistic effect of melatonin on exercise-induced neuronal reconstruction and functional recovery in a spinal cord injury animal model. J Pineal Res 48:270–281

    Article  CAS  PubMed  Google Scholar 

  27. Lee PP, Pang SF (1993) Melatonin and its receptors in the gastrointestinal tract. Biol Signals 2:181–193

    Article  CAS  PubMed  Google Scholar 

  28. Zhu HQ, Cheng XW, Xiao LL, Jiang ZK, Zhou Q, Gui SY, Wei W, Wang Y (2008) Melatonin prevents oxidized low-density lipoprotein-induced increase of myosin light chain kinase activation and expression in HUVEC through ERK/MAPK signal transduction. J Pineal Res 45:328–334

    Article  CAS  PubMed  Google Scholar 

  29. Tan J, Wang Y, Xia Y, Zhang N, Sun X, Yu T, Lin L (2014) Melatonin protects the esophageal epithelial barrier by suppressing the transcription, expression and activity of myosin light chain kinase through ERK1/2 signal transduction. Cell Physiol Biochem 34:2117–2127

    Article  CAS  PubMed  Google Scholar 

  30. Sommansson A, Nylander O, Sjöblom M (2013) Melatonin decreases duodenal epithelial paracellular permeability via a nicotinic receptor–dependent pathway in rats in vivo. J Pineal Res 54:282–291

    Article  CAS  PubMed  Google Scholar 

  31. Lange S, Delbro DS, Jennische E (1994) Evans blue permeation of intestinal mucosa in the rat. Scand J Gastroenterol 29:38–46

    Article  CAS  PubMed  Google Scholar 

  32. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481

    Article  CAS  PubMed  Google Scholar 

  33. Weir GC, Bonner-Weir S (2004) Five stages of evolving β-cell dysfunction during progression to diabetes. Diabetes 53(Suppl 3):S16–S21

    Article  CAS  PubMed  Google Scholar 

  34. Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European prospective investigation into cancer and nutrition (EPIC)-potsdam study. Diabetes 52:812–817

    Article  CAS  PubMed  Google Scholar 

  35. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, an risk of developing type 2 diabetes mellitus. JAMA 286:327–334

    Article  CAS  PubMed  Google Scholar 

  36. Yajima S, Morisaki H, Serita R, Suzuki T, Katori N, Asahara T, Nomoto K, Kobayashi F, Ishizaka A, Takeda J (2009) Tumor necrosis factor-alpha mediates hyperglycemia-augmented gut barrier dysfunction in endotoxemia. Crit Care Med 37:1024–1030

    Article  CAS  PubMed  Google Scholar 

  37. Madara JL (1987) Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am J Physiol 253:C171–C175

    CAS  PubMed  Google Scholar 

  38. Kureishi Y, Kobayashi S, Amano M, Kimura K, Kanaide H, Nakano T et al (1997) Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 272:12257–12260

    Article  CAS  PubMed  Google Scholar 

  39. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M et al (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273:245–248

    Article  CAS  PubMed  Google Scholar 

  40. Ruemmele FM, Seidman EG (1998) Cytokine–intestinal epithelial cell interactions: implications for immune mediated bowel disorders. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 39:1–8

    CAS  PubMed  Google Scholar 

  41. Fasano A, Not T, Wang W, Uzzau S, Berti I, Tommasini A, Goldblum SE (2000) Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 355:1518–1519

    Article  CAS  PubMed  Google Scholar 

  42. Jayashree B, Bibin YS, Prabhu D, Shanthirani CS, Gokulakrishnan K, Lakshmi BS, Mohan V, Balasubramanyam M (2014) Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of pro-inflammation in patients with type 2 diabetes. Mol Cell Biochem 388:203–210

    Article  CAS  PubMed  Google Scholar 

  43. Zhang D, Zhang L, Zheng Y, Yue F, Russell RD, Zeng Y (2014) Circulating zonulin levels in newly diagnosed Chinese type 2 diabetes patients. Diabetes Res Clin Pract 106:312–318

    Article  CAS  PubMed  Google Scholar 

  44. Su L, Shen L, Clayburgh DR, Nalle SC, Sullivan EA, Meddings JB, Abraham C, Turner JR (2009) Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology 136:551–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ivanov AI, Bachar M, Babbin BA, Adelstein RS, Nusrat A, Parkos CA (2007) A unique role for nonmuscle myosin heavy chain IIA in regulation of epithelial apical junctions. PLoS One 2:e658

    Article  PubMed  PubMed Central  Google Scholar 

  46. Buendia I, Navarro E, Michalska P, Gameiro I, Egea J, Abril S, López A, González-Lafuente L, López MG, León R (2015) New melatonin-cinnamate hybrids as multi-target drugs for neurodegenerative diseases: Nrf2-induction, antioxidant effect and neuroprotection. Future Med Chem 7:1961–1969

    Article  CAS  PubMed  Google Scholar 

  47. Challet E (2015) Keeping circadian time with hormones. Diabetes Obes Metab 17(Suppl 1):76–83

    Article  CAS  PubMed  Google Scholar 

  48. Sommansson A, Saudi WS, Nylander O, Sjöblom M (2013) Melatonin inhibits alcohol-induced increases in duodenal mucosal permeability in rats in vivo. Am J Physiol Gastrointest Liver Physiol 305:G95–G105

    Article  CAS  PubMed  Google Scholar 

  49. Siah KT, Wong RK, Ho KY (2014) Melatonin for the treatment of irritable bowel syndrome. World J Gastroenterol 20:2492–2498

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lu WZ, Gwee KA, Moochhalla S, Ho KY (2005) Melatonin improves bowel symptoms in female patients with irritable bowel syndrome: a double-blind placebo-controlled study. Aliment Pharmacol Ther 22:927–934

    Article  CAS  PubMed  Google Scholar 

  51. Swanson GR, Gorenz A, Shaikh M, Desai V, Forsyth C, Fogg L, Burgess HJ, Keshavarzian A (2015) Decreased melatonin secretion is associated with increased intestinal permeability and marker of endotoxemia in alcoholics. Am J Physiol Gastrointest Liver Physiol 308:G1004–G1011

    Article  PubMed  Google Scholar 

  52. Cui P, Yu M, Luo Z, Dai M, Han J, Xiu R, Yang Z (2008) Intracellular signaling pathways involved in cell growth inhibition of human umbilical vein endothelial cells by melatonin. J Pineal Res 44:107–114

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Nature Science Research Grants (Nos.: 81272399, 81470568), Fund of colleges excellent young key projects in Anhui Province (No. 2013SQRL101ZD), and the Anhui Natural Science Foundation (No. 1508085QH167), Doctor fund of Anhui Medical University (No. 0108020103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Zuo or Yuan Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Xiaoping Yang, Duobing Zou, and Songtao Tang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zou, D., Tang, S. et al. Ameliorative effect of melatonin against increased intestinal permeability in diabetic rats: possible involvement of MLCK-dependent MLC phosphorylation. Mol Cell Biochem 416, 23–32 (2016). https://doi.org/10.1007/s11010-016-2691-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2691-4

Keywords

Navigation